Download FREE Study Package from <u>www.TekoClasses.com</u> & Learn on Video <u>www.MathsBySuhag.com</u> Phone : 0 903 903 7779, 98930 58881 WhatsApp 9009 260 559 PERMUTATION & COMBINATION PART 4 OF 4

fo/u fopkjr Hk# tu] ughavkjEHksdke] foifr n{k NkHsrjar e/;e eu dj ';keA i#"k flg lalYi dj] lgrsfoifr vusl] ^cuk^ u NkHs/;\$ dk\$ j?kqj jk[ksVslAA jfpr%ekuo /keZiaksk Inx# Jhj. Wikhki thegkjkt PERMUTATION & COMBINATION

Some questions (Assertion–Reason type) are given below. Each question contains **Statement – 1** (Assertion) and **Statement – 2** (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct. So select the correct choice :

- (A) Statement 1 is True, Statement 2 is True; Statement 2 is a correct explanation for Statement 1.
- (B) Statement -1 is True, Statement -2 is True; Statement -2 is NOT a correct explanation for Statement -1.
- (C) **Statement 1** is True, **Statement 2** is False.
- (D) Statement 1 is False, Statement 2 is True.
- **399.** Statement-1: $51 \times 52 \times 53 \times 54 \times 55 \times 56 \times 57 \times 58$ is divisible by 40320
 - **Statement-2:** The product of r consecutive natural numbers is always divisible by r!
- **400.** Statement-1: Domain is $\{d_1, d_2, d_3, d_4\}$, range is $\{r_1, r_2, r_3\}$. Number of into functions which can be made is 45.

Statement-2: Numbers of into function = number of all functions – number of onto functions.

= $3^4 - 3({}^4C_2 \cdot {}^2C_1) = 81 - 36 = 45$ of d₁, d₂, d₃, d₄ any two correspond to r₁, remaining two to r₂, r₃ one with each

 \therefore ⁴C₂ × ²C₁ = 12, total = 12 × 3 = 36 = number of onto functions.

- **401.** Statement-1: The smallest number which has 24 divisors is 420. Statement-2: $24 = 3 \times 2 \times 2 = (2 + 1) (1 + 1) (1 + 1) (1 + 1)$, therefore, prime factors of the number are 2, 2, 3, 5, 7 & their product is 420.
- 402. Consider the word 'SMALL'
 Statement-1 : Total number of 3 letter words from the letters of the given word is 13.
 Statement-2 : Number of words having all the letters distinct = 4 and number of words having two are alike and third different = 9
- **403.** Statement-1 : Number of non integral solution of the equation $x_1 + x_2 + x_3 = 10$ is equal to 34.
- **S–2**: Number of non integral solution of the equation $x_1 + x_2 + x_3 + ... x_n = r$ is equal to ${}^{n+r-1}C_r$
- **404.** Statement-1 : ${}^{10}C_r = {}^{10}C_4 \Rightarrow r = 4 \text{ or } 6$ Statement-2 : ${}^{n}C_r = {}^{n}C_{n-r}$
- **405.** Statement-1 : The number of ways of arranging n boys and n girls in a circle such that no two boys are consecutive, is $(|n-1)^2$.

Statement-2 : The number of ways of arranging n distinct objects in a circle is |n-1|

406. Statement-1 : The number of ways of selecting 5 students from 12 students (of which six are boys and six are girls), such that in the selection there are at least three girls is ${}^{6}C_{3} \times {}^{9}C_{2}$.

Statement-2: If a work has two independent parts, of which first part can be done in m way and for each choice of first part, the second part can be done in n ways, then the work can be completed in $m \times n$ ways.

- **407**. **Statement–1** : The number of ways of writing 1400 as a product of two positive integers is 12.
- **Statement–2** : 1400 is divisible by exactly three prime numbers.
- **408**. **Statement–1** : The number of selections of four letters taken from the word 'PARALLEL' must be 15. **Statement–2** : Coefficient of x^4 in the expansion of $(1 x)^{-3}$ is 15.

Download FREE Study Package from www.TekoClasses.com & Learn on Video www.MathsBySuhag.com Phone: 0 903 903 7779, 98930 58881 WhatsApp 9009 260 559 **PERMUTATION & COMBINATION PART 4 OF 4**

Statement-1: Total number of permutation of n things of which p are alike of one kind, q are alike of 409.

2nd kind, r are alike of 3rd kind and rest are all difference is $\frac{n!}{p!q!r!}$.

Statement-2: Total number of selection from n identical object is n.

- 410. Statement-1: A polygon has 44 diagonals and number of sides are 11.
- **Statement–2**: From n distinct object r object can be selected in ${}^{n}C_{r}$ ways.
- 411. Let y = x + 3, y = 2x + 3, y = 3x + 2 and y + x = 3 are four straight lines **Statement-1**: The number of triangles formed is ${}^{4}C_{3}$ Statement-2 : Number of distinct point of intersection between various lines will determine the number of possible triangle.
- **Statement-1** : The total number of positive integral solutions (zero included) of $x + y + z + \omega = 20$ 412. without restriction is ${}^{23}C_{20}$ Statement-2 : Number of ways of distributing n identical items among m persons when each person gets zero or more items = ${}^{m+n-1}C_n$
- **Statement-1**: The total ways of selection of 5 objects out of $n(n \ge 5)$ identical objects is one. 413. Statement-2: If objects are identical then total ways of selection of any number of objects from given objects is one.
- **Statement-1:** The total number of different 3-digits number of type N = abc, where a < b < c is 84. 414. **Statement-2:** O cannot appear at any position, so total numbers are ${}^{9}C_{3}$.
- 415. **Statement-1:** The number of positive integral solutions of the equation $x_1x_2x_3x_4x_5 = 1050$ is 1875. Statement-2: The total number of divisor of 1050 is 25.
- Statement-1: $\left(\sum_{r=0}^{100} {}^{500-r}C_3\right) + {}^{400}C_4 = {}^{501}C_4$ Statement-2: ${}^{n}C_r + {}^{n}C_{r-1} = {}^{n+1}C_r$ 416.
- **Statement-1 :** $\frac{(n^2)!}{(n!)^n}$ is a natural number for all $n \in \mathbb{N}$ 417.

S-2: The number of ways of distributing mn things in m groups each containing n things is $\frac{(mn)!}{(n!)^m}$.

418. Statement-1: The number of divisors of 10, 800 is 60. **Statement-2:** The number of odd divisors of 10, 800 is 12.

Statement-1: Number of onto functions from $A \rightarrow B$ where A contains n elements 2B contains m 419. elements (where $n \ge m$) = $m^n - {}^mC_1 (m - 1)^n + {}^mC_2 (m - 2)^n + ...$ Statement-2: Number of ways of putting 5 identical balls in 3 different boxes when empty boxes are not allowed are 6.

420. Statement-1: 4 persons can be seated in a row containing 12 chairs, such that no two of them are consecutive in ${}^{9}C_{4} \times 4!$ ways

S-2:Number of non-negative integral solutions of equation $x_1+x_2+...+x_r = n$ is $= {}^{n+r-1}C_{r-1}$.

- Statement-1: The number of selections of four letters taken from the word PARALLEL must be 22. 421.
- **Statement-2:** Coefficient of x^4 in the expansion of $(1 x)^3$ is 10.
- 422. Statement-1: Number of permutations of n dissimilar things taken 'n' at a time is ⁿP_n. **Statement-2:** n(A) = n(B) = n then the total number of functions from A to B are n!
- 423. **Statement-1:** Number of permutations of n dissimilar things taken n at a time in ${}^{n}P_{n}$.
- **Statement-2:** n(A) = n(B) = n then the total number of functions from A to B are n!
- 424. **Statement-1:** ${}^{n}C_{r} = {}^{n}C_{p} \Longrightarrow r = p \text{ or } r + p = n$ **Statement-2:** ${}^{n}C_{r} = {}^{n}C_{n-r}$
- S-1: The total number of words with letters of the word civilization (all taken at a time) is 19958393. 425. **Statement-2:** The number of permutations of n distinct objects (r taken at a time) is ${}^{n}p_{r+1}$.
- S-1: The number of ways in which 81 different beads can be arranged to form a necklace is $\frac{80}{2!}$ 426.

Download FREE Study Package from www.TekoClasses.com & Learn on Video www.MathsBySuhag.com Phone : 0 903 903 7779, 98930 58881 WhatsApp 9009 260 559 **PERMUTATION & COMBINATION PART 4 OF 4**

Statement-2: Number of circular arrangements of n different objects is (n - 1)!.

- 427. Statement-1: There are 9ⁿ, n digit numbers in which no two consecutive digits are same. Statement-2: The n digits number in which no two consecutive digits are equal cannot contain zero.
- Statement-1: $\frac{(n+2)!}{(n-1)!}$ is divisible by 6.S-2: Product of three consecutive integer is divisible by 6. 428.

399. A	Answer					
	400. A	401. C	402. A	403. D	404. A	405. D
406. D	407. B	408. D	409. C	410. A	411. A	412. A
413. A	414. A	415. C	416. A	417. A	418. B	419. B
420. A	421. C	422. C	423. C	424. A	425. C	426. A
427. C	428. A					

Details Solution

Number of words having all the letters distinct = ${}^{4}P_{1} = 4$

Number of words having two are alike and third different = ${}^{1}C_{1}$. ${}^{3}C_{1}$. $\frac{3!}{2!}=9$

 \therefore (A) is the correct option.

- (D) Number of solution = ${}^{12}C_{10} = 66$. 403.
- **404.** (A) r = 4
- or r = 10 4 = 6.
- Statement II is true as on fixing one object anywhere in the circle, the remaining n 1 objects can be 405. arranged in $\lfloor n - 1 \rfloor$ ways

Statement – II is false, as after arranging boys on the circle in |n-1| ways, girls can be arranged in between the boys in |n| ways (for any arrangement of boys).

Hence number of arrangements is |n|n-1.

Hence (D) is the correct answer.

Statement – II is true, known as the rule of product. 406. Statement – I is not true, as the two parts of the work are not independent. Three girls can be chosen out of six girls in ⁶C₃ ways, but after this choosing 3 students out of remaining nine students depends on the first part.

Hence (D) is the correct answer.

Since, $1400 = 2^3 \cdot 5^2 \cdot 7^1$ 407. \Rightarrow Total no. of factors = (3 + 1)(2 + 1)(1 + 1) = 24

 \Rightarrow No. of ways of expressing 1400 as a product of two numbers $=\frac{1}{2} \times 24 = 12$.

But this does not follow from statement – II which is obviously true. Hence (b) is the correct answer.

Statement – I is false since the number of selection of four letters from 'PARALLEL' is 22. **408**.

1. 3 alike, 1 diff. = ${}^{1}c_{1} \times {}^{4}c_{1} = 4$ 2. 2 alike, 2 alike = ${}^{2}c_{2} = 1$ 3. 2 alike, 2 diff. = ${}^{2}c_{1} \times {}^{4}c_{2} = 12$ 4. All diff. $= {}^{5}c_{4} = 5$ Total selection = 22Statement – II is true, since $(1 - x)^{-3} = 1 + 3x + 6x^{2} + 10x^{3} + 15x^{4} + \dots$ Hence (D) is the correct answer. 410. (A) Let no of sides are n. ${}^{n}C_{2} - n = 44$ \Rightarrow n = -8 or 11 \Rightarrow n = 11. **415.** $x_1x_2x_3x_4 = 1050 = 2 \times 3 \times 5^2 \times 7$

19 of 20

Download FREE Study Package from <u>www.TekoClasses.com</u> & Learn on Video <u>www.MathsBySuhag.com</u> Phone : 0 903 903 7779, 98930 58881 WhatsApp 9009 260 559 PERMUTATION & COMBINATION PART 4 OF 4

Thus 5^2 can as sign in ${}^5C_1 + {}^5C_2 = 15$ ways We can assign 2, 3, or 7 to any. of 5 variables. Hence req. number of solutions.

- **417.** The number of ways of distributing mn things in m groups each containing n things is $\frac{(mn)!}{(n!)^m}$

here if m = n, then $\frac{(n^2)!}{(n!)^n}$ which must be a natural number.

- 'A' is correct.
 418. If n = 10, 800 = 2⁴ × 3³ × 5² Number of divisors depends upon all possible selection of prime factors. So clearly (4 + 1) (3 + 1) (2+1) = 5 × 4 × 3 = 60 for odd divisors, only selection of odd prime factors, (3 + 1) (2 + 1) = 12 b is correct.
 421 (C) A is true since number of selection of four letters from PAPALLEL is 22 (3 alike 1 different 4
- **421.** (C) A is true since number of selection of four letters from PARALLEL is 22. (3 alike 1 different 4 cases; 2 alike and 2 alike one case; 2 alike 2 different $2 \times {}^{4}C_{2} = 12$ and all different ${}^{5}C_{4} = 5$ total selections = 4 + 1 + 12 + 5 = 22). R is false since $(1 x)^{-3} = 1 + 3x + 6x^{2} + 10x^{3} + 15x^{4} + ...$
- **422.** ${}^{n}P_{n} = n!$ but number of function from A to B is n^{n} . (C)
- **423.** (C) ${}^{n}P_{n} = n!$, but the number of functions from A to B is n^{n} .
- 424. (A) Statement-1 is true, Statement-2 is true, Also Statement-2 is the correct explanation of Statement-1.
 425. (C)

In the given word 4 are there so required number of permutations is $\frac{12!}{4!} = 19958392$

426. (A) Since clockwise and anticlockwise arrangements are not different so required number of arrangements is $\frac{80}{21}$.

For 39 Years Que. of IIT-JEE (Advanced) <u>& 15 Years Que. of AIEEE (JEE Main)</u> <u>we have already distributed a book</u>