Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 WhatsApp 9009260559 PERMUTATION \& COMBINATION PART 4 OF 4 folu foptr $\boldsymbol{H E t u l}$ ugay i/4kd glen dj] Igsfifr vis] jfrotko/keztck I neeff hi.hairt thegift

PRRMUTATION \& COMBINATION

Some questions (Assertion-Reason type) are given below. Each question contains Statement - $\mathbf{1}$ (Assertion) and Statement - 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. So select the correct choice :
(A) Statement $\mathbf{- 1}$ is True, Statement $\mathbf{- 2}$ is True; Statement $\mathbf{- 2}$ is a correct explanation for Statement $\mathbf{- 1}$.
(B) Statement - $\mathbf{1}$ is True, Statement - $\mathbf{2}$ is True; Statement - $\mathbf{2}$ is NOT a correct explanation for Statement - 1.
(C) Statement $\mathbf{- 1}$ is True, Statement $\mathbf{- 2}$ is False.
(D) Statement - $\mathbf{1}$ is False, Statement $\mathbf{- 2}$ is True.
399. Statement-1: $51 \times 52 \times 53 \times 54 \times 55 \times 56 \times 57 \times 58$ is divisible by 40320

Statement-2: The product of r consecutive natural numbers is always divisible by r !
400. Statement-1: Domain is $\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}$, range is $\left\{r_{1}, r_{2}, r_{3}\right\}$. Number of into functions which can be made is 45 .
Statement-2: Numbers of into function $=$ number of all functions - number of onto functions.
$=3^{4}-3\left({ }^{4} \mathrm{C}_{2} \cdot{ }^{2} \mathrm{C}_{1}\right)=81-36=45$ of $\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}, \mathrm{~d}_{4}$ any two correspond to r_{1}, remaining two to $\mathrm{r}_{2}, \mathrm{r}_{3}$ one with each
$\therefore{ }^{4} \mathrm{C}_{2} \times{ }^{2} \mathrm{C}_{1}=12$, total $=12 \times 3=36=$ number of onto functions.
401. Statement-1: The smallest number which has 24 divisors is 420 .

Statement-2: $24=3 \times 2 \times 2=(2+1)(1+1)(1+1)(1+1)$, therefore, prime factors of the number are $2,2,3,5,7 \&$ their product is 420 .
402. Consider the word 'SMALL'

Statement-1 : Total number of 3 letter words from the letters of the given word is 13 .
Statement-2 : Number of words having all the letters distinct $=4$ and number of words having two are alike and third different $=9$
403. Statement-1 : Number of non integral solution of the equation $x_{1}+x_{2}+x_{3}=10$ is equal to 34 .

S-2 : Number of non integral solution of the equation $x_{1}+x_{2}+x_{3}+\ldots x_{n}=r$ is equal to ${ }^{n+r-1} C_{r}$
404. Statement-1 : ${ }^{10} \mathrm{C}_{\mathrm{r}}={ }^{10} \mathrm{C}_{4} \Rightarrow \mathrm{r}=4$ or 6 Statement-2 : $\quad{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-\mathrm{r}}$
405. Statement-1 : The number of ways of arranging n boys and n girls in a circle such that no two boys are consecutive, is $(\underline{n-1})^{2}$.
Statement-2 : The number of ways of arranging n distinct objects in a circle is $n-1$
406. Statement-1 : The number of ways of selecting 5 students from 12 students (of which six are boys and six are girls), such that in the selection there are at least three girls is ${ }^{6} \mathrm{C}_{3} \times{ }^{9} \mathrm{C}_{2}$.
Statement-2 : If a work has two independent parts, of which first part can be done in m way and for each choice of first part, the second part can be done in n ways, then the work can be completed in $\mathrm{m} \times \mathrm{n}$ ways.
407. Statement-1 : The number of ways of writing 1400 as a product of two positive integers is 12 .

Statement-2 : 1400 is divisible by exactly three prime numbers.
408. Statement-1 : The number of selections of four letters taken from the word 'PARALLEL' must be 15. Statement-2 : Coefficient of x^{4} in the expansion of $(1-x)^{-3}$ is 15 .

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 WhatsApp 9009260559
 PERMUTATION \& COMBINATION PART 4 OF 4

409. Statement-1 : Total number of permutation of n things of which p are alike of one kind, q are alike of $2 n d$ kind, r are alike of 3 rd kind and rest are all difference is $\frac{\mathrm{n}!}{\mathrm{p}!\mathrm{q}!\mathrm{r}!}$.
Statement-2 : Total number of selection from n identical object is n .
410. Statement-1 : A polygon has 44 diagonals and number of sides are 11.

Statement-2 : From n distinct object r object can be selected in ${ }^{n} C_{r}$ ways.
411. Let $y=x+3, y=2 x+3, y=3 x+2$ and $y+x=3$ are four straight lines

Statement-1: The number of triangles formed is ${ }^{4} \mathrm{C}_{3}$
Statement-2 : Number of distinct point of intersection between various lines will determine the number of possible triangle.
412. Statement-1 : The total number of positive integral solutions (zero included) of $x+y+z+\omega=20$ without restriction is ${ }^{23} \mathrm{C}_{20}$
Statement-2 : Number of ways of distributing n identical items among m persons when each person gets zero or more items $={ }^{m+n-1} C_{n}$
413. Statement-1 : The total ways of selection of 5 objects out of $n(n \geq 5)$ identical objects is one.

Statement-2: If objects are identical then total ways of selection of any number of objects from given objects is one.
414. Statement-1: The total number of different 3-digits number of type $N=a b c$, where $a<b<c$ is 84 .

Statement-2: O cannot appear at any position, so total numbers are ${ }^{9} \mathrm{C}_{3}$.
415. Statement-1: The number of positive integral solutions of the equation $x_{1} x_{2} x_{3} x_{4} x_{5}=1050$ is 1875 .

Statement-2: The total number of divisor of 1050 is 25 .
416. Statement-1: $\left(\sum_{r=0}^{100}{ }^{500-\mathrm{r}} \mathrm{C}_{3}\right)+{ }^{400} \mathrm{C}_{4}={ }^{501} \mathrm{C}_{4} \quad$ Statement-2 : ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}={ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}}$
417. Statement-1 : $\frac{\left(n^{2}\right)!}{(n!)^{n}}$ is a natural number for all $n \in N$

S-2 : The number of ways of distributing $m n$ things in m groups each containing n things is $\frac{(m n)!}{(n!)^{m}}$.
418. Statement-1: The number of divisors of 10,800 is 60 .

Statement-2: The number of odd divisors of 10,800 is 12 .
419. Statement-1: Number of onto functions from $A \rightarrow B$ where A contains n elements 2B contains m elements (where $n \geq m)=m^{n}-{ }^{m} C_{1}(m-1)^{n}+{ }^{m} C_{2}(m-2)^{n}+\ldots$
Statement-2: Number of ways of putting 5 identical balls in 3 different boxes when empty boxes are not allowed are 6 .
420. Statement-1 : 4 persons can be seated in a row containing 12 chairs, such that no two of them are consecutive in ${ }^{9} \mathrm{C}_{4} \times 4$! ways
S-2:Number of non-negative integral solutions of equation $x_{1}+x_{2}+\ldots+x_{r}=n$ is $={ }^{n+r-1} C_{r-1}$.
421. Statement-1: The number of selections of four letters taken from the word PARALLEL must be 22.

Statement-2: Coefficient of x^{4} in the expansion of $(1-x)^{3}$ is 10 .
422. Statement-1: Number of permutations of n dissimilar things taken ' n ' at a time is ${ }^{n} P_{n}$.

Statement-2: $n(A)=n(B)=n$ then the total number of functions from A to B are n !
423. Statement-1: Number of permutations of n dissimilar things taken n at a time in ${ }^{n} P_{n}$.

Statement-2: $n(A)=n(B)=n$ then the total number of functions from A to B are n !
424. Statement-1: ${ }^{n} C_{r}={ }^{n} C_{p} \Rightarrow r=p$ or $r+p=n \quad$ Statement-2: ${ }^{n} C_{r}={ }^{n} C_{n-r}$
425. S-1: The total number of words with letters of the word civilization (all taken at a time) is 19958393.

Statement-2: The number of permutations of n distinct objects (r taken at a time) is ${ }^{n} p_{r+1}$.
426. S-1: The number of ways in which 81 different beads can be arranged to form a necklace is $\frac{80}{2!}$

Download FREE Study Package from www.TekoClasses.com \& Learn on Video

 www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 WhatsApp 9009260559 PERMUTATION \& COMBINATION PART 4 OF 4Statement-2: Number of circular arrangements of n different objects is $(n-1)$!.
427. Statement-1: There are 9^{n}, n digit numbers in which no two consecutive digits are same.

Statement-2: The n digits number in which no two consecutive digits are equal cannot contain zero.
428. Statement-1: $\frac{(n+2)!}{(n-1)!}$ is divisible by 6.S-2: : Product of three consecutive integer is divisible by 6 .

	Answer					
399. A	400. A	401. C	402. A	403. D	404. A	405. D
406. D	407. B	408. D	409. C	410. A	411. A	412. A
413. A	414. A	415. C	416. A	417. A	418. B	419. B
420. A	421. C	422. C	423. C	424. A	425. C	426. A
427. C	428. A					

Details Solution

Number of words having all the letters distinct $={ }^{4} \mathrm{P}_{1}=4$
Number of words having two are alike and third different $={ }^{1} \mathrm{C}_{1} \cdot{ }^{3} \mathrm{C}_{1} \cdot \frac{3!}{2!}=9$
\therefore (A) is the correct option.
403. (D) Number of solution $={ }^{12} \mathrm{C}_{10}=66$.
404. (A) $\quad r=4$
or $r=10-4=6$.
405. Statement - II is true as on fixing one object anywhere in the circle, the remaining $n-1$ objects can be arranged in $\lfloor-1$ ways
Statement - II is false, as after arranging boys on the circle in $\lfloor n-1$ ways, girls can be arranged in between the boys in \lfloor n ways (for any arrangement of boys).
Hence number of arrangements is $\lfloor n \mid n-1$.
Hence (D) is the correct answer.
406. Statement - II is true, known as the rule of product.

Statement - I is not true, as the two parts of the work are not independent. Three girls can be chosen out of six girls in ${ }^{6} \mathrm{C}_{3}$ ways, but after this choosing 3 students out of remaining nine students depends on the first part.
Hence (D) is the correct answer.
407. Since, $1400=2^{3} .5^{2} .7^{1}$
\Rightarrow Total no. of factors $=(3+1)(2+1)(1+1)=24$
\Rightarrow No. of ways of expressing 1400 as a product of two numbers $=\frac{1}{2} \times 24=12$.
But this does not follow from statement - II which is obviously true.
Hence (b) is the correct answer.
408. Statement - I is false since the number of selection of four letters from 'PARALLEL' is 22 .

1. 3 alike, 1 diff. $={ }^{1} c_{1} \times{ }^{4} c_{1}=4$
2. 2 alike, 2 alike $={ }^{2} \mathrm{c}_{2}=1$
3. 2 alike, 2 diff. $={ }^{2} \mathrm{c}_{1} \times{ }^{4} \mathrm{c}_{2}=12$
4. All diff. $={ }^{5} \mathrm{c}_{4}=5$

Total selection $=22$
Statement - II is true, since
$(1-x)^{-3}=1+3 x+6 x^{2}+10 x^{3}+15 x^{4}+\ldots$ Hence (D) is the correct answer.
410. (A) Let no of sides are n .
${ }^{\mathrm{n}} \mathrm{C}_{2}-\mathrm{n}=44 \quad \Rightarrow \mathrm{n}=-8$ or $11 \Rightarrow \mathrm{n}=11$.
415. $\quad \mathrm{x}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}=1050=2 \times 3 \times 5^{2} \times 7$

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 WhatsApp 9009260559 PERMUTATION \& COMBINATION PART 4 OF 4
Thus 5^{2} can as sign in ${ }^{5} \mathrm{C}_{1}+{ }^{5} \mathrm{C}_{2}=15$ ways
We can assign 2,3 , or 7 to any. of 5 variables.
Hence req. number of solutions.
$=5 \times 5 \times 5 \times 15=1875$
Ans. (C)
416. $\quad\left({ }^{400} \mathrm{C}_{4}+{ }^{400} \mathrm{C}_{3}\right)+{ }^{401} \mathrm{C}_{3}+\ldots+{ }^{500} \mathrm{C}_{3}$
$=\left({ }^{401} \mathrm{C}_{4}+{ }^{401} \mathrm{C}_{3}\right)+{ }^{402} \mathrm{C}_{3}+\ldots+{ }^{500} \mathrm{C}_{3}$
$\ldots .=\left({ }^{500} \mathrm{C}_{4}+{ }^{500} \mathrm{C}_{3}\right)={ }^{501} \mathrm{C}_{4}$
Ans. (A)
417. The number of ways of distributing $m n$ things in m groups each containing n things is $\frac{(\mathrm{mn}) \text { ! }}{(\mathrm{n}!)^{\mathrm{m}}}$
here if $\mathrm{m}=\mathrm{n}$, then $\frac{\left(\mathrm{n}^{2}\right)!}{(\mathrm{n}!)^{\mathrm{n}}}$ which must be a natural number.
' A ' is correct.
418. If $n=10,800$

$$
=2^{4} \times 3^{3} \times 5^{2}
$$

Number of divisors depends upon all possible selection of prime factors. So clearly $(4+1)(3+1)(2+1)$ $=5 \times 4 \times 3=60$ for odd divisors, only selection of odd prime factors, $(3+1)(2+1)=12$
b is correct.
421. (C) A is true since number of selection of four letters from PARALLEL is 22 . (3 alike 1 different 4 cases; 2 alike and 2 alike one case; 2 alike 2 different $2 \times{ }^{4} \mathrm{C}_{2}=12$ and all different ${ }^{5} \mathrm{C}_{4}=5$ total selections $=4+1+12+5=22$). R is false since $(1-x)^{-3}=1+3 x+6 x^{2}+10 x^{3}+15 x^{4}+\ldots$
422. ${ }^{n} P_{n}=n$! but number of function from A to B is n^{n}. (C)
423. (C) ${ }^{n} P_{n}=n$!, but the number of functions from A to B is n^{n}.
424. (A) Statement-1 is true,

Statement-2 is true, Also Statement-2 is the correct explanation of Statement-1.
425. (C)

In the given word 4 are there so required number of permutations is $\frac{12!}{4!}=19958392$
426. (A) Since clockwise and anticlockwise arrangements are not different so required number of arrangements is $\frac{80}{2!}$.

For 39 Years Que. of IIT-JEE (Advanced) \& 15 Years Que. of AI EEE (JEE Main) we have already distributed a book

