

To solve this, substitute $t=a x+b y+c$. Then the equation reduces to separable type in the variable t and x which can be solved. Consider the example $(\mathrm{x}+\mathrm{y})^{2} \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{a}^{2}$.

OTYPE-3. HOMOGENEOUS EQUATIONS :

A differential equation of the form $\frac{d y}{d x}=\frac{f(x, y)}{\phi(x, y)}$
where $f(x, y) \& \phi(x, y)$ are homogeneous functions of $x \& y$, and of the same degree, is called Homogeneous. This equation may also be reduced to the form $\frac{d y}{d x}=g\left(\frac{x}{y}\right) \&$ is solved by putting $\mathrm{y}=\mathrm{vx}$ so that the dependent variable y is changed to another variable v , where v is some unknown function, the differential equation is transformed to an equation with variables separable. Consider $\frac{d y}{d x}+\frac{\mathrm{y}(\mathrm{x}+\mathrm{y})}{\mathrm{x}^{2}}=0$.

TYPE-4. EQUATIONS REDUCIBLE TO THE HOMOGENEOUS FORM :

If $\frac{d y}{d x}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}} ;$ where $a_{1} b_{2}-a_{2} b_{1} \neq 0$,

$$
\text { i.e. } \frac{a_{1}}{b_{1}} \neq \frac{a_{2}}{b_{2}}
$$

then the substitution $\mathrm{x}=\mathrm{u}+\mathrm{h}, \mathrm{y}=\mathrm{v}+\mathrm{k}$ transform this equation to a homogeneous type in the new variables u and v where h and k are arbitrary constants to be chosen so as to make the given
(i) $a_{1} b_{2}-a_{2} b_{1}=0$, then a substitution $u=a_{1} x+b_{1} y$ transforms the differential equation to an equation with variables separable. and
(ii) $b_{1}+a_{2}=0$, then a simple cross multiplication and substituting $d(x y)$ for $x d y+y d x \&$ integrating term by term yields the result easily.
Consider $\frac{d y}{d x}=\frac{x-2 y+5}{2 x+y-1} ; \quad \frac{d y}{d x}=\frac{2 x+3 y-1}{4 x+6 y-5} \quad \& \quad \frac{d y}{d x}=\frac{2 x-y+1}{6 x-5 y+4}$
(iii) In an equation of the form: $\mathrm{yf}(\mathrm{xy}) \mathrm{dx}+\mathrm{xg}(\mathrm{xy}) \mathrm{dy}=0$ the variables can be separated by the substitution $x y=v$.
IMPORTANT NOTE
The function $f(x, y)$ is said to be a homogeneous function of degree n if for any real number $\mathrm{t}(\neq 0)$, we have $\mathrm{f}(\mathrm{tx}, \mathrm{ty})=\mathrm{t}^{\mathrm{n}} \mathrm{f}(\mathrm{x}, \mathrm{y})$.
For e.g. $f(x, y)=a x^{2 / 3}+h x^{1 / 3} \cdot y^{1 / 3}+\mathrm{by}^{2 / 3}$ is a homogeneous function of degree $2 / 3$.
A differential equation of the form $\frac{d y}{d x}=f(x, y)$ is homogeneous if $f(x, y)$ is a homogeneous function of degree zero i.e. $f(t x, t y)=t^{\circ} f(x, y)=f(x, y)$. The function f does not depend on $x \& y$ separately but only on their ratio $\frac{y}{x}$ or $\frac{x}{y}$.

OLINEAR DIFERENTIAL EQUATIONS :

A differential equation is said to be linear if the dependent variable \& its differential coefficients occur in the first degree only and are not multiplied together .
The nth order linear differential equation is of the form ;
$a_{0}(x) \frac{d^{n} y}{d x^{n}}+a_{1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots \ldots+a_{n}(x) \cdot y=\phi(x)$. Where $a_{0}(x), a_{1}(x) \ldots . . a_{n}(x)$ are called the coefficients of the differential equation.
Note that a linear differential equation is always of the first degree but every differental equation of the first degree need not be linear. e.g. the differential equation $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3}+y^{2}=0$ is not linear, though its degree is 1 .

TYPE - 5. LINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER :

The most general form of a linear differential equations of first order is $\frac{d y}{d x}+P y=Q$, where $P \& Q$ are \vdash functions of x. To solve such an equation multiply both sides by $\mathrm{e}^{\int \mathrm{Pdx}}$. becomes the differential coefficient of some function of $x \& y$, is called integrating factor of the differential equation popularly abbreviated as I. F. the derivative of the product of y and the I.F.
Some times a given differential equation becomes linear if we take y as the independent variable and x as the dependent variable. e.g. the equation ;
$(x+y+1) \frac{d y}{d x}=y^{2}+3$ can be written as $\left(y^{2}+3\right) \frac{d x}{d y}=x+y+1$ which is a linear differential ${ }_{\sim}^{\mathbb{O}}$ equation.

TYPE-6. EQUATIONS REDUCIBLE TO LINEAR FORM :

The equation $\frac{d y}{d x}+p y=Q \cdot y^{n}$ where $P \& Q$ functions of x, is reducible to the linear form by dividing it by $y^{n} \&$ then substituting $y^{-n+1}=Z$. Its solution can be obtained as in Type-5. Consider the example $\left(x^{3} y^{2}+x y\right) d x=d y$.
The equation $\frac{d y}{d x}+P y=Q \cdot y^{n}$ is called Bernouli's Equation.
TRAJECTORIES :
Suppose we are given the family of plane curves.
$\Phi(\mathrm{x}, \mathrm{y}, \mathrm{a})=0$
depending on a single parameter a.
A curve making at each of its points a fixed angle α with the curve of the family passing through that point is called an isogonal trajectory of that family; if in particular $\alpha=\pi / 2$, then it is called an orthogonal trajectory.
Orthogonal trajectories : We set up the differential equation of the given family of curves. Let it be of the form

$$
F\left(x, y, y^{\prime}\right)=0
$$

The differential equation of the orthogonal trajectories is of the form

$$
F\left(x, y,-\frac{1}{y^{\prime}}\right)=0
$$

The general integral of this equation

$$
\Phi_{1}(x, y, C)=0
$$

gives the family of orthogonal trajectories.
Q. 1 State the order and degree of the following differential equations :

Note : Following exact differentials must be remembered : $\mathrm{g}, \mathrm{f} \& \mathrm{c}$ are arbitary constants.
Form the differential equation of the family of curves represented by,
$c(y+c)^{2}=x^{3}$; where c is any arbitrary constant.
 the law of variation of a mass of radium as a function of time if at $t=0$, the mass of the radius was m_{0} and during time $\mathrm{t}_{0} \alpha \%$ of the original mass of radium decay.

$\frac{d y}{d x}+\sin \frac{x+y}{2}=\sin \frac{x-y}{2}$

Q. $14 \operatorname{Sin} \mathrm{x} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{y} . \ln \mathrm{y}$ if $\mathrm{y}=\mathrm{e}$, when $\mathrm{x}=\frac{\pi}{2}$

OQ. $15 e^{(d y / d x)}=x+1$ given that when $x=0, y=3$
A normal is drawn at a point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ of a curve. It meets the $\mathrm{x}-$ axis at Q . If $P \mathrm{Q}$ is of constant length k, then show that the differential equation describing such curves is, $y \frac{d y}{d x}= \pm \sqrt{k^{2}-y^{2}}$. Find the equation of such a curve passing through $(0, \mathrm{k})$.
OQ. 17 Find the curve for which the sum of the lengths of the tangent and subtangent at any of its point is proportional to the product of the co-ordinates of the point of tangency, the proportionality factor is equal to k .
Obtain the differential equation associated with the primitive,
$y=c_{1} e^{3 x}+c_{2} e^{2 x}+c_{3} e^{x}, \quad$ where c_{1}, c_{2}, c_{3} are arbitrary constants .
Q. 19 A curve is such that the length of the polar radius of any point on the curve is equal to the length of the tangent drawn at this point. Form the differential equation and solve it to find the equation of the curve.
. Q. 20 Find the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ where $\mathrm{f}(\mathrm{x}) \geq 0, \mathrm{f}(0)=0$, bounding a curvilinear trapezoid with the base

$\frac{0}{0}$	$[0, x]$ whose ar
$\frac{0}{0}$	
E_{0}^{10}	$\frac{d y}{d x}=\frac{x^{2}+x y}{x^{2}+y^{2}}$

EXERCISE-II

Find the equation of a curve such that the projection of its ordinate upon the normal is equal to its abscissa. The light rays emanating from a point source situated at origin when reflected from the mirror of a search light are reflected as beam parallel to the x -axis. Show that the surface is parabolic, by first forming the differential equation and then solving it.
〇Q. 4 The perpendicular from the origin to the tangent at any point on a curve is equal to the abscissa of the point of contact. Find the equation of the curve satisfying the above condition and which passes through $(1,1)$. Find the equation of the curve intersecting with the x - axis at the point $\mathrm{x}=1$ and for which the length of
the subnormal at any point of the curve is equal to the arthemetic mean of the co-ordinates of this point
$(\mathrm{y}-\mathrm{x})^{2}(\mathrm{x}+2 \mathrm{y})=1$.
the subnormal at any point of the curve is equal to the arthemetic mean of the co-ordinates of this point
$(\mathrm{y}-\mathrm{x})^{2}(\mathrm{x}+2 \mathrm{y})=1$.
융 $Q . ~$$\quad \begin{aligned} & \text { hence solve it. } \\ & \text { Find the isogonal trajectories for } \\ & \text { an angle of } 45^{\circ} .\end{aligned}$ Use the substitution $y^{2}=a-x$ to reduce the equation $y^{3} \cdot \frac{d y}{d x}+x+y^{2}=0$ to homogeneous form and
hence solve it.
Find the isogonal trajectories for the family of rectangular hyperbolas $x^{2}-y^{2}=a^{2}$ which makes with it

Show that every homogeneous differential equation of the form $\frac{d y}{d x}=\frac{f(x, y)}{g(x, y)}$ where f and g are homogeneous function of the same degree can be converted into variable separable by the substitution homogeneous function of the same degree

$$
x=r \cos \theta \text { and } y=r \sin \theta .
$$

Q. 10
$\left[x \cos \frac{y}{x}+y \sin \frac{y}{x}\right] y-\left[y \sin \frac{y}{x}-x \cos \frac{y}{x}\right] x \frac{d y}{d x}=0$
Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

EXERCISE-IV

(GENERAL - CHANGE OF VARIABLE BY A SUITABLE SUBSTITUTION)
$\left(x-y^{2}\right) d x+2 x y d y=0$
Q 2. $\quad\left(x^{3}+y^{2}+2\right) d x+2 y d y=0$
$x \frac{d y}{d x}+y \ln y=x y e^{x} Q 4 \cdot \frac{d y}{d x}-\frac{\tan y}{1+x}=(1+x) e^{x} \sec y Q 5 . \frac{d y}{d x}=\frac{e^{y}}{x^{2}}-\frac{1}{x}$
$\left(\frac{d y}{d x}\right)^{2}-(x+y) \frac{d y}{d x}+x y=0 Q 7$
7. $\frac{d y}{d x}=\frac{y^{2}-x}{2 y(x+1)}$
Q 8. $\left(1-x y+x^{2} y^{2}\right) d x=x^{2} d y$
$\frac{d y}{d x}=e^{x-y}\left(e^{x}-e^{y}\right)$
Q 10. $y^{\prime} \sin x=\cos x\left(\sin x-y^{2}\right)$

EXERCISE-V(MISCELLANEOUS)

OQ. 3 Given two curyes $y=f(x)$ passing through the points $(0,1) \& y=\int^{x} f(t)$ dt passing through the points $(0,1 / 2)$. The tangents drawn to both curves at the points with equal abscissas intersect on the x -axis. Find the curve $f(x)$.
Q. $4 \quad$ Consider the differential equation $\frac{d y}{d x}+P(x) y=Q(x)$
If two particular solutions of given equation $u(x)$ and $v(x)$ are known, find the general solution of the same equation in terms of $u(x)$ and $v(x)$.
$\begin{array}{ll}\text { © } & \begin{array}{l}\text { same equation in terms of } u \\ \text { If } \alpha \text { and } \beta \text { are constants suc }\end{array} \\ \text { equation, find the relation b }\end{array}$
${ }_{0}$ Q. 6 Find the curve which passes through the point $(2,0)$ such that the segment of the tangent between the point of tangency \& the y-axis has a constant length equal to 2 .
$x d y+y d x+\frac{x d y-y d x}{x^{2}+y^{2}}=0 \quad$ Q. $8 \quad \frac{y d x-x d y}{(x-y)^{2}}=\frac{d x}{2 \sqrt{1-x^{2}}}$, given that $y=2$ when $x=1$
Find the equation of the curve passing through the orgin if the middle point of the segment of its normal from any point of the curve to the x-axis lies on the parabola $2 y^{2}=x$.
Find the continuous function which satisfies the relation, $\int_{0}^{\mathrm{x}} \mathrm{t} f(\mathrm{x}-\mathrm{t}) \mathrm{dt}=\int_{0}^{\mathrm{x}} f(\mathrm{t}) \mathrm{dt}+\sin \mathrm{x}+\cos \mathrm{x}-\mathrm{x}-1$, for all real number x .
$\left(x^{2}+y^{2}+a^{2}\right) y \frac{d y}{d x}+x\left(x^{2}+y^{2}-a^{2}\right)=0 Q \cdot 12\left(1-x^{2}\right)^{2} d y+\left(y \sqrt{1-x^{2}}-x-\sqrt{1-x^{2}}\right) d x=0$
Q. $13 \quad 3 x^{2} y^{2}+\cos (x y)-x y \sin (x y)+\frac{d y}{d x}\left\{2 x^{3} y-x^{2} \sin (x y)\right\}=0$.

$\stackrel{\sim}{\amalg}$ Q. 15 Find all the curves possessing the following property; the segment of the tangent between the
ㄴ point of tangency \& the x-axis is bisected at the point of intersection with the y-axis.
Q. $16 \mathrm{y}^{2}(\mathrm{ydx}+2 x d y)-x^{2}(2 y d x+x d y)=0$
Successful Peoplé Replace the words like; "wish", "try" \& "should" with "I will". Ineffective People don't.
Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Q. 17 A perpendicular drawn from any point P of the curve on the x-axis meets the x-axis at A. Length of find the equation to all possible curves, expressing the answer explicitly.

Find the orthogonal trajectories for the given family of curves when 'a' is the parameter.
(i) $y=a x^{2}$
(ii) $\cos y=a e^{-x}$
(iii) $\mathrm{x}^{\mathrm{k}}+\mathrm{y}^{\mathrm{k}}=\mathrm{a}^{\mathrm{k}}$
OQ. $24 \quad$ Let $f\left(x, y, c_{1}\right)=0$ and $f\left(x, y, c_{2}\right)=0$ define two integral curves of a homogeneous first order differential
equation. If P_{1} and P_{2} are respectively the points of intersection of these curves with an arbitrary line, $\stackrel{N}{N}$
$\mathscr{\mathcal { Q }} .25$ Find the curve for which the portion of y-axis cut-off between the origin and the tangent varies as cube of the absissa of the point of contact.
EXERCISE-VI
(PROBLEMS ASKED IN JEE \& REE)
Determine the equation of the curve passing through the origin in the form $y=f(x)$, which satisfies the
$[J E E \quad 96,5]$
differential equation $\frac{d y}{d x}=\sin (10 x+6 y)$.
Solve the diff. equation

$$
y \cos \frac{y}{x}(x d y-y d x)+x \sin \frac{y}{x}(x d y+y d x)=0 \text {, when } y(1)=\frac{\pi}{2}
$$ $(x), f(x) \& g(x)$ are continuous functions. If $u\left(x_{1}\right)>v\left(x_{1}\right)$ for some x_{1} and $f(x)>g(x)$ for all $\dot{\oplus}$ $\mathrm{x}>\mathrm{x}_{1}$, prove that any point (x, y) where $\mathrm{x}>\mathrm{x}_{1}$ does not satisfy the equations $\mathrm{y}=\mathrm{u}(\mathrm{x}) \&$ $\mathrm{y}=\mathrm{v}(\mathrm{x})$.

$\underset{\text { (A) } 5}{\mathrm{y}=\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)} \cos \left(\mathrm{x}+\mathrm{C}_{3}\right)-\mathrm{C}_{4} \mathrm{e}^{\mathrm{x}+\mathrm{C}_{5}}$ (B) $4{ }^{\text {where } \mathrm{C}_{1}}, \mathrm{C}_{2}, C_{3}, C_{4}, C_{5}$ are arbitrary constants, is
(A) 5
(B) 4
(C) 3
(ii) A curve C has the property that if the tangent drawn at any point P on C meets the coordinate axes at A and B, then P is the mid-point of $A B$. The curve passes through the point $(1,1)$. Determine the equation of the curve.
Solve the differential equation $(1+\operatorname{tany})(d x-d y)+2 x d y=0$
[REE '98, 6]
7(a) A soluton of the differential equation, $\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0$ is :
(A) $y=2$
(B) $y=2 x$
(C) $y=2 x-4$
(D) $y=2 x^{2}-4$
(b) The differential equation representing the family of curves, $\mathrm{y}^{2}=2 \mathrm{c}(\mathrm{x}+\sqrt{\mathrm{c}})$, where c is a positive parameter, is of:
(A) order 1
(B) order 2
(C) degree 3
(D) degree 4
(c) A curve passing through the point $(1,1)$ has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to the distance of P from the x -axis. Determine the equation of the curve.
[JEE '99, $2+3+10$, out of 200]

Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

Q 8. $y=c(1-a y)(x+a)$
Q 10. $\ln \left[1+\tan \frac{x+y}{2}\right]=x+c$
$\frac{\pi}{5}$
ω
11. $y \sin y=x^{2} \ln x+c$
${\underset{\omega}{\infty}}_{\infty}^{\infty}$ Q 13. $\ln \left|\tan \frac{\mathrm{y}}{4}\right|=\mathrm{c}-2 \sin \frac{\mathrm{x}}{2}$
Q 12. $\mathrm{m}=\mathrm{m}_{0} \mathrm{e}^{-\mathrm{kt}}$ where $\mathrm{k}=-\frac{1}{\mathrm{t}_{0}} \ln \left(1-\frac{\alpha}{100}\right)$
$\stackrel{{ }_{5}^{0}}{0}$
15. $y=(x+1) \cdot \ln (x+1)-x+3$
17. $\mathrm{y}=\frac{1}{\mathrm{k}} \ell \mathrm{n}\left|\mathrm{c}\left(\mathrm{k}^{2} \mathrm{x}^{2}-1\right)\right|$
19. $y=k x$ or $x y=c$

EXERCITSE-II

Q. $14 \mathrm{y}=\mathrm{e}^{\tan (\mathrm{x} / 2)}$

Q 16. $x^{2}+y^{2}=k^{2}$
Q 18. $\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}-6 y=0$

Get Solution of These Packages \& Learnby Video Jutorials on www.MathsBySuhag.com
 EXERCVSEETM,

© Q 1. $y^{2}+x \ln a x=0$
Q3. $x \ln y=e^{x}(x-1)+c$
ס्रं) 4. $\sin y=\left(e^{x}+c\right)(1+x)$
Q 2. $y^{2}=3 x^{2}-6 x-x^{3}+c e^{-x}+4$
Q 6. $\mathrm{y}=\mathrm{ce}^{\mathrm{x}} ; \mathrm{y}=\mathrm{c}+\frac{\mathrm{x}^{2}}{2}$
Q 5. $\mathrm{cx}^{2}+2 \mathrm{xe}^{-y}=1$
$\frac{0}{5}$
7. $y^{2}=-1+(x+1) \ell n \frac{c}{x+1}$ or $x+(x+1) \ln \frac{c}{x+1}$

29. $e^{y}=c \cdot \exp \left(-e^{x}\right)+e^{x}-1$

Q 8. $\mathrm{y}=\frac{1}{\mathrm{x}} \tan (\ell \mathrm{n}|\mathrm{cx}|)$
Q 10. $y^{2}=\frac{2}{3} \sin x+\frac{c}{\sin ^{2} x}$

EXERCISE-V

O

EXERCISE-VII
Oi'. The degree of differential equation satisfying the relation

$$
\sqrt{1+\mathrm{x}^{2}}+\sqrt{1+\mathrm{y}^{2}}=\lambda\left(\mathrm{x} \sqrt{1+\mathrm{y}^{2}}-\mathrm{y} \sqrt{1+\mathrm{x}^{2}}\right) \text { is : }
$$

(A) 1
(B) 2
(C) 3
(D) none of these

If p and q are order and degree of differential equation $y \frac{d y}{d x}+x^{3}\left(\frac{d^{2} y}{d x^{2}}\right)+x y=\cos x$, then
(A) $p<q$
(B) $p=q$
(C) $p>q$
(D) none of these

The differential equation for all the straight lines which are at a unit distance from the origin is
(A) $\left(y-x \frac{d y}{d x}\right)^{2}=1-\left(\frac{d y}{d x}\right)^{2}$
(B) $\left(y+x \frac{d y}{d x}\right)^{2}=1+\left(\frac{d y}{d x}\right)^{2}$
(C) $\left(y-x \frac{d y}{d x}\right)^{2}=1+\left(\frac{d y}{d x}\right)^{2}$
(D) $\left(y+x \frac{d y}{d x}\right)^{2}=1-\left(\frac{d y}{d x}\right)^{2}$

(D) $y^{\prime \prime}+y=0$

(A) e^{5}
(B) $e^{6}+1$
(C) $\frac{e^{6}+9}{2}$
(D) $\log _{e} 6$
If $\phi(x)$
(A) e^{2}
(B) $2 \mathrm{e}^{2}$
(C) $3 e^{2}$
(D) $2 \mathrm{e}^{3}$
9. If integrating factor of $x\left(1-x^{2}\right) d y+\left(2 x^{2} y-y-a x^{3}\right) d x=0$ is $e^{\int p . d x}$, then P is equal to
(A) $\frac{2 x^{2}-a x^{3}}{x\left(1-x^{2}\right)}$
(B) $\left(2 x^{2}-1\right)$
(C) $\frac{2 x^{2}-1}{a x^{3}}$
(D) $\frac{\left(2 x^{2}-1\right)}{x\left(1-x^{2}\right)}$
10. If $\frac{d y}{d x}=1+x+y+x y$ and $y(-1)=0$, then function y is
(A) $e^{(1-x)^{2} / 2}$
(B) $e^{(1+x)^{2} / 2}-1$
(C) $\log _{e}(1+x)-1$
(D) $1+x$
(A) $e^{(-x)^{2} / 2}$
12. The solution of $\frac{d v}{d t}+\frac{k}{m} v=-g$ is
(A) $v=c e^{-\frac{k}{m} t}-\frac{m g}{k}$
(B) $v=c-\frac{m g}{k} e^{-\frac{k}{m} t}$
(C) $v e^{-\frac{k}{m} t}=c-\frac{m g}{k}$
(D) $v e^{\frac{k}{m} t}=c-\frac{m g}{k}$
(A) $-\frac{5}{3}$
(B) -1
(C) 1
(D) $\frac{5}{3}$
13. The solution of the differential equation $\sqrt{a+x} \frac{d y}{d x}+x y=0$ is
(A) $y=A e^{2 / 3}(2 a-x) \sqrt{x+a}$
(B) $y=A e^{-2 / 3}(a-x) \sqrt{x+a}$
(C) $y=A e^{2 / 3}(2 a+x) \sqrt{x+a}$
(D) $y=A e^{-2 / 3}(2 a-x) \sqrt{x+a}$

Where A is an arbitrary constant.
4. If $y_{1}(x)$ and $y_{2}(x)$ are two solutions of $\frac{d y}{d x}+y(x) y=r(x)$ then $y_{1}(x)+y_{2}(x)$ is solution of :
(A) $\frac{d y}{d x}+f(x) y=0$
(B) $\frac{d y}{d x}+2 f(x) y=r(x)$
(C) $\frac{d y}{d x}+f(x) y=2 r(x)$
(D) $\frac{d y}{d x}+2 f(x) y=2 r(x)$
5. The differential equation of all 'Simple Harmonic Motions' of given period $\frac{2 \pi}{n}$ is
(A) $\frac{d^{2} x}{d t^{2}}+n x=0$
(B) $\frac{d^{2} x}{d t^{2}}+n^{2} x=0$
(C) $\frac{d^{2} x}{d t^{2}}-n^{2} x=0$
(D) $\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}}{ }^{2}+\frac{1}{\mathrm{n}^{2}} \mathrm{x}=0$.
16. If $\sqrt{\left(x^{2}+y^{2}\right)}=a e^{\tan ^{-1}(y / x)}, a>0$. Then $y^{\prime \prime}(0)$, equals
(A) $\frac{a}{2} e^{\pi / 2}$
(B) $\mathrm{ae}^{\pi / 2}$
(C) $-\frac{2}{a} e^{-\pi / 2}$
(D) $\frac{\mathrm{a}}{2} \mathrm{e}^{-\pi / 2}$
17. The function $f(\theta)=\frac{d}{d \theta} \int_{0}^{\theta} \frac{d x}{1-\cos \theta \cos x}$ satisfies the differential equation
(A) $\frac{d f}{d \theta}+2 f(\theta) \cot \theta=0$
(B) $\frac{d f}{d \theta}-2 f(\theta) \cot \theta=0$ (C) $\frac{d f}{d \theta}+2 f(\theta)=0$
(D) $\frac{d f}{d \theta}-2 f(\theta)=0$
(A) $x=A_{1} y^{2}+A_{2} y+A_{3}$
$3 y^{2}$ is
(B) $x=A_{1} y+A_{2}$
(C) $x=A_{1} y^{2}+A_{2}^{2} y$
(D) none of these
19. The solution of $y d x-x d y+3 x^{2} y^{2} e^{x^{3}} d x=0$ is
(A) $\frac{x}{y}+e^{x^{3}}=C$
(B) $\frac{x}{y}-e^{x^{3}}=0$
(C) $-\frac{x}{y}+e^{x^{3}}=C$
(D) none of these
©゙20.
The solution of the differential equation
$\left(x^{2} \sin ^{3} y-y^{2} \cos x\right) d x+\left(x^{3} \cos y \sin ^{2} y-2 y \sin x\right) d y=0$ is
(A) $x^{3} \sin ^{3} y=3 y^{2} \sin x+C$
(B) $x^{3} \sin ^{3} y+3 y^{2} \sin x=C$
(C) $x^{2} \sin ^{3} y+y^{3} \sin x=C$
(D) $2 x^{2} \sin y+y^{2} \sin x=C$

The differential equation of the curve for which the initial ordinate of any tangent is equal to the corre-
sponding subnormal
(A) is linear (B) is homogeneous
(C) has separable variables
(D) is none of these
22. The solution of $x^{2} y_{1}^{2}+x y y_{1}-6 y^{2}=0$ are
(A) $y=C x^{2}$
(B) $x^{2} y=C$
(C) $\frac{1}{2} \log y=C+\log x$ (D) $x^{3} y=C$
23. The orthogonal trajectories of the system of curves $\left(\frac{d y}{d x}\right)^{2}=a / x$ are
(A) $9 a(y+c)=4 x^{3}$
(B) $y+C=\frac{-2}{3 \sqrt{a}} x^{3 / 2}$
(C) $y+C=\frac{2}{3 \sqrt{a}} x^{3 / 2}$
(D) none of these
(D) none of these

The solution of $\left(\frac{d y}{d x}\right)\left(x^{2} y^{3}+x y\right)=1$ is
$1 / x=2-y^{2}+C e^{-y^{2}} / 2$
$2 / x=1-y^{2}+e^{-y} / 2$
(D) $\frac{1-2 x}{x}=-y^{2}+C e^{-y^{2}} / 2$

EXERCISE-VIII

(B) the solution of an equation which is reducible to linear equation.

Solve: $\frac{x d x-y d y}{x d y-y d x}=\sqrt{\frac{1+x^{2}-y^{2}}{x^{2}-y^{2}}}$
Solve:
Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.
(a) $\quad x^{2} d y+y(x+y) d x=0$, given that $y=1$, when $x=1$

$$
\begin{equation*}
\left[x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right] y-\left[y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right] x \frac{d y}{d x}=0 \tag{b}
\end{equation*}
$$

Find the equation of the curve satisfying $\frac{d y}{d x}=\frac{y^{2}-2 x y-x^{2}}{y^{2}+2 x y-x^{2}}$ and passing through (1,-1). Find the solution of the differential equation $\frac{d^{3} y}{d x^{3}}=8 \frac{d^{2} y}{d x^{2}}$ satisfying $y(0)=\frac{1}{8}, y_{1}(0)=0$ and $y_{2}(0)=1$.

Solve :(i) $\quad\left(x+3 y^{2}\right) \frac{d y}{d x}=y, y>0$
(iii) $\frac{d y}{d x}=y \tan x-2 \sin x$

Solve: (i) $\quad y\left(x^{2} y+e^{x}\right) d x=e^{x} d y$
(iii) $2 y \sin x d y+\left(y^{2} \cos x+2 x\right) d x=0$

Solve the following differential equations.

$$
\text { 文 }+\frac{\overline{x+1}}{=}=\frac{y^{2}}{}
$$

Find the curve $y=f(x)$ where $f(x) \geq 0, f(0)=0$, bounding a curvilinear trapezoid with the base $[0, x]$ whose area is propostinal to $(n+1)^{\text {th }}$ power of $f(x)$. It is known that $f(1)=1$
Find the nature of the curve for which the length of the normal at the point P is equal to the radius vector of the point P.
10. A particle, P, starts from origin and moves along positive direction of y-axis. Another particle, Q, follows Pi.e. it's velocity is always directed towards P, in such a way that the distance between P and Q remains constant. If Q starts from (2,0), find the equation of the path traced by Q. Assume that they start moving at the same instant.
(iv) $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\cos x$

$$
\begin{equation*}
x \frac{d y}{d x}+y=x^{2} y^{4} \tag{ii}
\end{equation*}
$$

$$
3 \frac{d y}{d x}+\frac{2 y}{x+1}=\frac{x^{3}}{y^{2}}
$$

Let c_{1} and c_{2} be two integral curves of the differential equation $\frac{d y}{d x}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$. A line passing through origin meets c_{1} at $P\left(x_{1}, y_{1}\right)$ and c_{2} at $Q\left(x_{2}, y_{2}\right)$. If $c_{1}: y=f(x)$ and $c_{2}: y=g(x)$ prove that $f^{\prime}\left(x_{1}\right)=g^{\prime}\left(x_{2}\right)$.
Find the integral curve of the differential equation $x(1-x y) \frac{d y}{d x}+y=0$ which passes through $(1,1 / e)$.
Show that the integral curves of the equation $\left(1-x^{2}\right) \frac{d y}{d x}+x y=a x$ are ellipses and hyperbolas, with the centres at the point ($0, a$ a) and the axes parallel to the co-ordinate axes, each curve having one constant axis whose length is equal to 2 .
14. If $y_{1} \& y_{2}$ be solutions of the differential equation $\frac{d y}{d x}+P y=Q$, where $P \& Q$ are functions of x alone,
and $y_{2}=y_{1} z$, then prove that $\quad z=1+a$, ,angent and subtangent at any of its point is Find the curve for which the sum of the lengths of the tangent and subtangent at any of its point is
proportional to the product of the co-ordinates of the point of tangency, the proportionality factor is equal to k.
Find all the curves possessing the following property; the segment of the tangent between the point of tangency \& the x -axis is bisected at the point of intersection with the y -axis.
17. A curve passing through $(1,0)$ such that the ratio of the square of the intercept cut by any tangent off the y-axis to the subnormal is equal to the ratio of the product of the co-ordinates of the point of tangency to the product of square of the slope of the tangent and the subtangent at the same point. Determine all such possible curves.
18. A \& B are two separate reservoirs of water. Capacity of reservoir A is double the capacity of reservoir B. Both the reservoirs are filled completely with water, their inlets are closed and then the water is released simultaneously from both the reservoirs. The rate of flow of water out of each reservoir at any instant of time is proportional to the quantity of water in the reservoir at that time. One hour after the water is released, the quantity of water in reservoir A is 1.5 times the quantity of water in reservoir B . After how many hours do both the reservoirs have the same quantity of water?
19. A curve $y=f(x)$ passes through the point $P(1,1)$. The normal to the curve at P is; $a(y-1)+(x-1)=0$. If the slope of the tangent at any point on the curve is proportional to the ordinate of the point, determine the equation of the curve. Also obtain the area bounded by the y-axis, the curve \& the normal to the curve at P.
[IIT - 1996, 5]
Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

A If the rate of evaporation is directly proportional to the surface area of the liquid in contact with air (constant of proportionality $\mathrm{k}>0$), find the time in which whole liquid evaporates.
[IIT - 2003 (Mains) 4]
6. (i) $\frac{1}{y} e^{x}=-\frac{x^{3}}{3}+c$
(ii) $\frac{1}{y^{3}}=3 x^{2}+c x^{3}$
2. C
3. C
4. C
6. A
7. C
8. B
12. A
16. C
20. A
24. $A B D$

EXERCISE-VIII
$\sqrt{x^{2}-y^{2}}+\sqrt{1+x^{2}-y^{2}}=\frac{c(x+y)}{\sqrt{x^{2}-y^{2}}}$
(a) $3 x^{2} y=2 x+y$
(b) $x y \cos \left(\frac{y}{x}\right)=c$
4. $64 y=\left(e^{8 x}-8 x\right)+7$
$x+y=0$
(i) $\frac{x}{y}=3 y+c$
(ii) $x y=c-\arctan x$
(iii) $y=\cos x+c \sec x$ (iv) $y\left(1+x^{2}\right)=c+\sin x$.

$$
\text { (iii) } y^{2} \sin x=-x^{2}+c
$$

7. $y^{3}(x+1)^{2}=\frac{x^{6}}{6}+\frac{2}{5} x^{5}+\frac{1}{4} x^{4}+c$
8. $y=x^{1 / n}$
9. Rectangular hyperbola or circle.
10. A
11. C
12. B
13. A
14. $A B C$
15. $y=2 \ln x-2 \ln \left(2-\sqrt{4-x^{2}}\right)-\sqrt{4-x^{2}}$
16. $x(e y+\ell n y+1)=1 \quad 15$.
17. $y^{2}=c x$
18. $x=e^{2 \sqrt{y / x}} ; x=e^{-2 \sqrt{y / x}}$
19. $T=\log _{4 / 3} 2$ hrs from the start
20. $\mathrm{e}^{\mathrm{a}(\mathrm{x}-1)} \frac{1}{\mathrm{a}}\left[\mathrm{a}-\frac{1}{2}+\mathrm{e}^{-\mathrm{a}}\right]$, sq. unit
21. (c) $x^{2}+y^{2}-2 x=0$
22. $t=H / k$ 23.
\qquad
\qquad any point (x, y) where $x>x_{1}$ does not satisfy the equations $y=u(x) \& y=v(x)$. from the normal at any point P of the curve is equal to the distance of P from the x-axis. Determine the equation of the curve.
[IIT - 1999, 10]號 and food after ' n ' years, where ' n ' is the smallest integer bigger than or equal to, $\frac{\ell \mathrm{n} 10-\ell \mathrm{n} 9}{\ell \mathrm{n}(1.04)-0.03}$.
[IIT - 2000 (Mains) 10]
