DIFFPRFNTIAL BQUATION

Some questions (Assertion-Reason type) are given below. Each question contains Statement - 1 (Assertion) and Statement - 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. So select the correct choice :
Choices are :
(A) Statement - $\mathbf{1}$ is True, Statement $\mathbf{- 2}$ is True; Statement $\mathbf{- 2}$ is a correct explanation for Statement $\mathbf{- 1}$.
(B) Statement $\mathbf{- 1}$ is True, Statement $\mathbf{- 2}$ is True; Statement $\mathbf{- 2}$ is NOT a correct explanation for Statement $\mathbf{- 1}$.
(C) Statement - $\mathbf{1}$ is True, Statement - $\mathbf{2}$ is False.
(D) Statement - 1 is False, Statement - 2 is True.
227. Statement-1: The order of the differential equation whose general solution is $y=c_{1} \cos 2 x+\cos _{2} \sin ^{2} x+c_{3} \cos ^{2} x+$ $c_{4} e^{2 x}+c_{5} \mathrm{e}^{2 x+c_{6}}$ is 3
Statement-2: Total number of arbitrary parameters in the given general solution in the statement (1) is 6 .
228. Statement-1: Degree of differential equation of parabolas having their axis along x-axis and vertex at $(2,0)$ is 2 .

Statement-2: Degree of differential equation of parabola having their axis along x-axis and vertex at $(1,0)$ is 1 .
229. Statement-1 : Solution of the differential equation $\frac{d y}{d x}+\frac{y}{x}=x$ is $x y=\frac{x^{3}}{3}+c$.

Statement-2 : Solution of the differential equation $\frac{d y}{d x}+P Y=Q$ is
$Y e^{\int p d x}=\int\left(Q . e^{\int p d x}\right) d x+c$ where P and Q are function of x alone.
230. Let the general solution of a differential equation be $y=a e^{b x+c}$.

Statement-1 : Order of the differential equation is 3.
Statement-2 : Order of the differential equation is equal to the number of actual constant of the solution
231. Let F be the family of ellipses on the Cartesian plane, whose directrices are $\mathrm{x}= \pm 2$.

Statement-1 : The order of the differential equation of the family F is 2.
Statement-2 : F is a two parameter family.
232. Consider the differential equation $\left(x^{2}+1\right) \cdot \frac{d^{2} y}{d x^{2}}=2 x \cdot \frac{d y}{d x}$.

Statement-1: For any member of this family y $\rightarrow \infty$ as $x \rightarrow \infty$.
Statement-2 : Any solution of this differential equation is a polynomial of odd degree with positive coefficient of maximum power.
233. Statement-1 : The solution of the differential equation $x \frac{d y}{d x}=y(\log y-\log x+i)$ is $y=x e^{c x}$.
Statement-2 : A solution of the differential equation $\left(\frac{d y}{d x}\right)^{2}-x\left(\frac{d y}{d x}\right)+y=0$ is $y=2$.
234. Statement-1: Order of the differential equation of family of parabola whose axis is perpendicular to y-axis and ratus rectum is fix is 2 .
Statement-2: Order of first equation is same as actual no. of abitrary constant present in diff. equation.
235. Statement-1: Solution of $y d y=x-x$ as is family of rectangular hyperbola

Statement-2: Solution of $y \frac{d y}{d x}=1$ is family of parabola
236. Statement-1: Solution of differential equation $d y\left(x^{2} y-1\right)+d x\left(y^{2} x-1\right)=0$ is $\frac{x^{2} y^{2}}{2}=x+y+c$

Statement-2: Order of differential equation of family of circle touching the coordinate axis is 1 .
237. Statement-1: Integrating factor of $\frac{d y}{d x}+y=x^{2}$ is e^{x}

Statement-2: Integrating factor of $\frac{d y}{d x}+p(x) y=Q(x)$ is $e^{\int p(x) d x}$
238. Statement-1: The differential equation of all circles in a plane must be of order 3 .

Statement-2: There is only one circle passing through three non-collinear points.
239. Statement-1: The degree of the differential equation $\left(\frac{d^{3} y}{d x^{3}}\right)^{2 / 3}+6-2 \frac{d^{2} y}{d x^{2}}+15 \frac{d y}{d x}=0$ is 3 .

Statement-2: The degree of the highest order derivative occuring in the D.E. when the D.E. has been expressed as a polynomial of derivatives.
240. Statement-1: Solution of $\frac{x+y \frac{d y}{d x}}{y-x \frac{d y}{d x}}=\frac{x \cos ^{2}\left(x^{2}+y^{2}\right)}{y^{3}}$ is $\frac{x^{2}}{y^{2}}-\tan \left(x^{2}+y^{2}\right)=c$

Statement-2: Since the given differential equation is homogenous can be solved by putting $y=v x$
241. Statement-1: The order of the differential equation formed by the family of curve $\mathrm{y}=\mathrm{c}_{1} \mathrm{e}^{\mathrm{x}}+\left(\mathrm{c}_{2}+\mathrm{c}_{3}\right) \mathrm{e}^{\mathrm{x}+\mathrm{c}_{4}}$ is ' 1 '. Here $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}$ are arbitrary constant.
Statement-2: The order of the differential equation formed by any family of curve is equal to the number of arbitrary constants present in it.
242. Statement-1: The degree of differential equation $3 \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\log \left(\frac{d^{2} y}{d x^{2}}\right)$ is not defined.

Statement-2: The degree of differential equation is the power of highest order derivative when differential equation has been expressed as polynomial of derivatives.
243. Statement-1: The order of differential equation of family of circles passing then origin is 2 .

Statement-2: The order of differential equation of a family of curve is the number of independent parameters present in the equation of family of curves
244. Statement-1: Integrating factor of $\frac{x d y}{d x}+3 y=x$ is x^{3}

Statement-2: Integrating factor of $\frac{d y}{d x}+p(x) y=Q(x)$ is $e^{\int p d x}$
245. Statement-1: The differentiable equation $y^{3} d y+\left(x+y^{2}\right) d x=0$ becomes homogeneous if we put $y^{2}=t$.

Statement-2: All differential equation of first order and first degree becomes homogeneous if we put $\mathrm{y}=\mathrm{tx}$.
246. Statement-1: The general solution of $\frac{d y}{d x}+P(x) y=Q(x)$ is $e^{\int p(x) d x}+c$

Statement-2: Integrating factor of $\frac{d y}{d x}+P(x) y=Q(x)$ is $e^{\int p(x) d x}$
247. Statement-1: The general solution of $\frac{d y}{d x}+y=1$ is $y e^{x}=e^{x}+c$

Statement-2: The number of arbitrary constants in the general solution of the differential equation is equal to the order of differential equation.
248. Statement-1: Degree of the differential equation $y=x \times \frac{d y}{d x}+\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$ is 2 .

Statement-2: In the given equation the power of highest order derivative when expressed as a polynomials in derivatives is 2 .

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881

249. Statement-1: The differential equation of the family of curves represented by $y=A \cdot e^{x}$ is given by $\frac{d y}{d x}=y$.

Statement-2: $\frac{d y}{d x}=y$ is valid for every member of the given family.
250. Statement-1: The differential equation $\frac{d y}{d x}=\frac{2 x y}{x^{2}+y^{2}}$ can be solved by putting $y=v x$

Statement-2: Since the given differentiable equation is homogenous
251. Statement-1: A differential equation $\frac{d y}{d x}+\frac{y}{x}=x^{2}$ can be solved by finding. If $=e^{\int \operatorname{Pdx}}$ $=\mathrm{e}^{\int 1 / \mathrm{xdx}}=\mathrm{e}^{\log \mathrm{x}}=\mathrm{x}$ then solution $\mathrm{y} \cdot \mathrm{x}=\int \mathrm{x}^{3} \mathrm{dx}+\mathrm{c}$
Statement-2: Since the given differential equation in of the form $d y / d x+p y=\phi$ wherep, ϕ are function of x
252. Statement-1: The differential equation of all circles in a plane must be of order 3 .

Statement-2: There is only on circle passing through three non collinear points.

ANSWER

227. A
228. D
229. A 230. D
230. A
231. A 233. C 234. A
232. D 236. B
233. A 238. A
234. D
235. C 241. C
236. A 243. A
237. A
238. C
239. D
240. B 248. A 249. A
241. A 251. A 252. A

DETAILS SOLUTION
227. $y=c_{1} \cos 2 x+c_{2} \sin ^{2} x+c_{3} \cos ^{2} x+c_{4} e^{2 x}+c_{5} e^{2 x+c_{6}}$
$=c_{1} \cos 2 x+c_{2}\left[\frac{1-\cos 2 x}{2}\right]+c_{3}\left[\frac{\cos 2 x-1}{2}\right]+c_{4} e^{2 x}+c_{5} e^{2 x} . e^{c_{6}}$
$=\left(\mathrm{c}_{1}-\frac{\mathrm{c}_{2}}{2}+\frac{\mathrm{c}_{3}}{2}\right) \cos 2 \mathrm{x}+\left(\frac{\mathrm{c}_{2}}{2}-\frac{\mathrm{c}_{3}}{2}\right)+\left(\mathrm{c}_{4}+\mathrm{c}_{5}^{\prime}\right) \mathrm{e}^{2 \mathrm{x}}=\lambda_{1} \cos 2 \mathrm{x}+\lambda_{2} \mathrm{e}^{2 \mathrm{x}}+\lambda_{3}$
\Rightarrow Total number of independent parameters in the given general solution is 3. Ans. : A
228. Equation of parabola will be $y^{2}=a p(x-1)$
$\Rightarrow 2 y \frac{d y}{d x}=p \Rightarrow$ D.E. is $y=2 \frac{d y}{d x}(x-1) \Rightarrow$ degree of this D.E. is 1 .
Ans. : D
229. (a)
$e^{\int P d x}=e^{\int \frac{d x}{x}}=x$
\therefore Sol. is $x y=\int x^{2} d x+c$
$x y=\frac{x^{3}}{3}+c$.
230. (D)
$y=a e^{b x+c}=a e^{c} \cdot e^{b x}=A e^{b x}$
\therefore order is two.
231. Statement - II is true as any member of the family will have equation $\frac{x^{2}}{a^{2}}+\frac{(y-\beta)^{2}}{a^{2}\left(1-e^{2}\right)}=1$, where $0<e<1$, $>$
$0, b \in R$ and $a e=2$.
Hence F is a two parameter family.
Statement - I is true, because of statement - II, because order of a differential equation of a n parameter family is n.

Hence (a) is the correct answer.
232. The given differential equation is $\frac{d\left(\frac{d y}{d x}\right)}{\frac{d y}{d x}}=\frac{2 x}{x^{2}+1} d x$
$\Rightarrow \ln \left(\frac{d y}{d x}\right)=\ell n\left(x^{2}+1\right)+\ell n c, c>0 \Rightarrow \frac{d y}{d x}=c\left(x^{2}+1\right) \Rightarrow y=c\left(\frac{x^{3}}{3}+x\right)+c^{\prime}, c^{\prime} \in R$.
Obviously y $\rightarrow \infty$, as $\mathrm{x} \rightarrow \infty$; as c >0
Hence (a) is the correct answer.
233. The given equation can be rearranged as,
$\frac{d y}{d x}=\frac{y}{x}\left(\log \left(\frac{y e}{x}\right)\right)$
put $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x} \quad \Rightarrow \frac{d v}{d x}=\frac{v \log v}{x} \Rightarrow \int \frac{d v}{v \log v}=\int \frac{d x}{x} \Rightarrow y=x e^{c x}$
for II, put $\frac{d y}{d x}=p \Rightarrow p^{2}-x p+y=0$
$\Rightarrow \mathrm{y}=\mathrm{px}-\mathrm{p}^{2} \Rightarrow \mathrm{p}=\mathrm{p}+\mathrm{x} \frac{\mathrm{dp}}{\mathrm{dx}}-2 \mathrm{p} \frac{\mathrm{dp}}{\mathrm{dx}} \Rightarrow \frac{\mathrm{dp}}{\mathrm{dx}}=0$ or $\mathrm{x}-2 \mathrm{p}=0 \Rightarrow \mathrm{y}=2 \mathrm{x}+\mathrm{c}$
Hence (c) is the correct answer.
234. $(x-h)^{2}=4 b(y-k)$
here b is constant and h, k are parameters
Hence order is 2 .
235. (D) $\int y d y=\int d x-\int d x$
$\frac{y^{2}}{2}+\frac{x^{2}}{2}=x+c$ is family of circle
$\int y d y=\int d x \Rightarrow \frac{y^{2}}{2}=x+c$ which is family of parabola
236. $\quad \int_{x y d}(x y)=\int d(x+y)$
$\frac{x^{2} y^{2}}{2}=x+y+c$
let circle is $(x-h)^{2}+(y-h)^{2}=h^{2}$
Hence order of differential equation will be 1 .
237. Option (a) is correct. I.F. $=\mathrm{e}^{\int \mathrm{f} . \mathrm{dx}}=\mathrm{e}^{\mathrm{x}}$
238. Option (a) is correct

The equation of circle contains. Three independent constants if it passes through three non-collinear points, therefore a is true and follows from R .
239. $\left(\frac{d^{3} y}{d x^{3}}\right)^{3}=\left(2 \frac{d^{2} y}{d x^{2}}-15 \frac{d y}{d x}-6\right)^{2}$

Hence degree is 2 .
240. $\frac{2 x d x+2 y d y}{\cos ^{2}\left(x^{2}+y^{2}\right)}=\frac{2 x}{y}\left(\frac{y d x-x d y}{y^{2}}\right)$
$\Rightarrow \int \sec ^{2}\left(x^{2}+y^{2}\right)(2 x d x+2 y d y)=2 \int \frac{x}{y} \cdot d\left(\frac{x}{y}\right)$
$\Rightarrow \tan \left(x^{2}+y^{2}\right)=\frac{2 \cdot\left(x^{2} / y^{2}\right)}{2}+c$
$\Rightarrow \frac{x^{2}}{y^{2}}-\tan \left(x^{2}+y^{2}\right)=c$
Ans. (C)
241. $y=c_{1} e^{x}+\left(c_{2}+c_{3}\right) e^{x} \times e^{c_{4}}=e^{x}\left(c_{1}+\left(c_{2}+c_{3}\right) e^{c_{4}}\right)$
$y=c e^{x} \ldots(1) \quad\left\{\right.$ here $\left.c=c_{1}+\left(c_{2}+c_{3}\right) e^{c_{4}}\right\}$
$\frac{d y}{d x}=c e^{x}$
$c=\frac{\frac{d y}{d x}}{e^{x}}$ Put in (1) $y=\frac{\frac{d y}{d x}}{e^{x}} \times e^{x}$
So $\frac{d y}{d x}=y$ and order is 1 .
' c ' is correct.
242. $\sqrt[3]{1+\left(\frac{d y}{d x}\right)^{2}}=\log \left(\frac{d^{2} y}{{d x^{2}}^{2}}\right)$
$1+\left(\frac{d y}{d x}\right)^{2}=\left(\log \left(\frac{d^{2} y}{d x^{2}}\right)\right)^{3}$
degree is not defined as it is not a polynomial of derivatives.
' a ' is correct.
244. I.F. $e^{\int p d x}=e^{3 \int \frac{1}{x} d x}$
$\frac{d y}{d x}+\frac{3 y}{x}=1=x^{3}$.
245. (C)
R is false since $\frac{d y}{d x}=\frac{x+y^{2}}{y+x^{2}}$ cannot be made homogenous by putting $y=t x$.
But if we put $y^{2}=t$ in the differential equation in assertion A then $2 y \frac{d y}{d x}=\frac{d t}{d x}$
And differential equation becomes $\mathrm{t} \cdot \frac{1}{2} \mathrm{dt}+(\mathrm{x}+\mathrm{t}) \mathrm{dx}=0$
or $\mathrm{dx} / \mathrm{dt}-\frac{-\mathrm{t}}{2(\mathrm{x}+\mathrm{t})}$ which is homogeneous.
246. (D)

Statement-1 is false
Statement-2 is true.
247.
(b) $\frac{d y}{d x}+y=1 \Rightarrow \frac{d y}{1-y}=d x$
$\int \frac{d y}{1-y}=\int d x-\log (1-y)=x$
$1-\mathrm{y}=\mathrm{e}^{-\mathrm{x}}, \mathrm{ye}^{\mathrm{x}}=\mathrm{e}^{\mathrm{x}}+\mathrm{c}$
order of differential equation is the number of arbitrary constants.
Both one true, but Statement-2 is not the correct explanation.
248. (A)
$y=x \frac{d y}{d x}+\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$ becomes
$\left(x^{2}-1\right)\left(\frac{d y}{d x}\right)^{2}-2 x y \frac{d y}{d x}+\left(y^{2}-1\right)=0, \quad$ when expressed as a polynomial in derivatives.
249. (A)
$y=A . e^{x}$
on differentiation we get $\frac{d y}{d x}=A \cdot e^{x}$
250. $\frac{d y}{d x}=\frac{2 x y}{x^{2}+y^{2}}$..

This is homogenous differential equation put $y=v x$
from (1) $\frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+\frac{x d v}{d x}=\frac{2 x^{2} v}{x^{2}\left(1+v^{2}\right)}$
$x \frac{d v}{d x}=\frac{2 v}{1+v^{2}}-v=\frac{2 v-v-v^{3}}{1+v^{2}}=\frac{v\left(1-v^{2}\right)}{1+v^{2}}$
$\int \frac{\left(1+v^{2}\right)}{v\left(1-v^{2}\right)} d v=\int \frac{d x}{x}$
251. $d y / d x+y / x=x^{2}$... (1)

This is term of linear differential equation $d y / d x+p y=\phi$.
from (1) and (2) $p=-1 / x, \phi=x^{2}$
I.f. $e^{\int P d x}=e^{\int 1 / x d x=x} e$
y.I.f $=\int_{X} \times I . f d+c$
$\mathrm{yx}=\int \mathrm{x}^{3} \mathrm{dx}+\mathrm{c}$.
Ans. (A)
252. (A)

The equation of circle contains three independent constants if it passes through three non-collinear points therefore A is true and follows from statement-2

