Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

ALTERNATING CURRENT

1. AC AND DC CURRENT :

A current that changes its direction periodically is called alternating current (AC). If a current maintains its direction constant it is called direct current (DC).

constant dc

periodic dc

variable dc

ac

ac

If a function suppose current, varies with time as $i=I_{m} \sin (\omega t+\phi)$, it is called sinusoidally varying function. Here \mathcal{o}^{-0} I_{m} is the peak current or maximum current and i is the instantaneous current. The factor ($\omega t+\phi$) is called phase. ω is called the angular frequency, its unit rad/s. Also $\omega=2 \pi f$ where f is called the frequency, its unit s^{-1} or Hz . Also frequency $\mathrm{f}=1 / \mathrm{T}$ where T is called the time period.
2. AVERAGE VALUE :

Average value of a function, from t_{1} to t_{2}, is defined as $\langle f\rangle=\frac{t_{1}}{t_{2}-t_{1}}$. We can find the value of $\iint_{t_{1}} f d t$ graphically if the graph is simple. It is the area of f - t graph from t_{1} to t_{2}
Ex. 1 Find the average value of current shown graphically, from $t=0$ to $\mathrm{t}=2 \mathrm{sec}$.

Sol. From the $\mathrm{i}-\mathrm{t}$ graph, area from $\mathrm{t}=0$ to $\mathrm{t}=2 \mathrm{sec}$

$$
\begin{aligned}
& =\frac{1}{2} \times 2 \times 10=10 \text { Amp. sec. } \\
\therefore \quad & \text { Average Current }=\frac{10}{2}=5 \text { Amp. }
\end{aligned}
$$

Ex. 2 Find the average value of current from $t=0$ to $t=\frac{2 \pi}{\omega}$ if the current varies as $i=I_{m} \sin \omega t$.

Sol. $\left\langle i>=\frac{\int_{0}^{\frac{2 \pi}{\omega}} I_{m} \sin \omega t d t}{\frac{2 \pi}{\omega}}=\frac{\frac{I_{m}}{\omega}\left(1-\cos \omega \frac{2 \pi}{\omega}\right)}{\frac{2 \pi}{\omega}}=0\right.$

It can be seen graphically that the area of $\mathrm{i}-\mathrm{t}$ graph of one cycle is zero.
$\therefore \quad<\mathrm{i}>$ in one cycle $=0$.

Ex. 3 Show graphically that the average of sinusoidally varying current in half cycle may or may not be zero

Figure shows two parts A and B, each half cycle. In part A we can see that the net area is zero $\therefore \quad<\mathrm{i}>$ in part A is zero.
In part B, area is positive hence in this part $\langle\mathrm{i}\rangle \neq 0$.
Ex. 4 Find the average value of current $i=I_{m} \sin \omega t$ from (i) $t=0$ to $t=\frac{\pi}{\omega}$ (ii) $t=\frac{\pi}{2 \omega}$ to $t=\frac{3 \pi}{2 \omega}$.

Sol. (i) <i>

(ii)

Ex. 5 Current in an A.C. circuit is given by $i=2 \sqrt{2} \sin (\pi t+\pi / 4)$, then the average value of current during time $t=0$ to $t=1 \sec$ is:

Ans.

3. ROOT MEAN SQUARE VALUE:

Root Mean Square Value of a function, from t_{1} to t_{2}, is defined as $f_{r m s}=\sqrt{\frac{\int_{t_{1}}^{t_{2}} f^{2} d t}{t_{2}-t_{1}}}$.

Ex. 6 Find the rms value of current from $t=0$ to $t=\frac{2 \pi}{\omega}$ if the current varies as $i=I_{m} \sin \omega t$.

Sol. $\quad i_{\text {rms }}=\sqrt{\frac{\int_{0}^{\frac{2 \pi}{\omega}} I_{m}{ }^{2} \sin ^{2} \omega t d t}{\frac{2 \pi}{\omega}}}=\sqrt{\frac{I_{m}{ }^{2}}{2}}=\frac{I_{m}}{\sqrt{2}}$

Ex. 7 Find the rms value of current $i=I_{m} \sin \omega t$ from (i) $t=0$ to $t=\frac{\pi}{\omega}$ (ii) $t=\frac{\pi}{2 \omega}$ to $t=\frac{3 \pi}{2 \omega}$.

(ii) $<\mathrm{i}>=\sqrt{\frac{\int_{\frac{\pi}{2 \omega}}^{\frac{3 \pi}{2 \omega}} \mathrm{I}_{\mathrm{m}}^{2} \sin ^{2} \omega t \mathrm{tt}}{\frac{\pi}{\omega}}}=\sqrt{\frac{\mathrm{I}_{\mathrm{m}}{ }^{2}}{2}}=\frac{\mathrm{I}_{\mathrm{m}}}{\sqrt{2}}$
Note: The rm s values for one cycle and half cycle (either positive half cycle or negative half cycle) is same.
From the above two examples note that for sinusoidal functions rms value (Also called effective value)

$$
=\frac{\text { peak value }}{\sqrt{2}} \quad \text { or } \quad I_{r m s}=\frac{I_{m}}{\sqrt{2}}
$$

Ex. 8 Find the effective value of current $i=2 \sin 100 \pi t+2 \cos \left(100 \pi t+30^{\circ}\right)$.
Sol. The equation can be written as $i=2 \sin 100 \pi t+2 \sin \left(100 \pi t+120^{\circ}\right)$
so phase difference $\phi=120^{\circ}$

$$
\begin{aligned}
& \left.I_{m}\right)_{\mathrm{res}}=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \phi} \\
& =\sqrt{4+4+2 \times 2 \times 2\left(-\frac{1}{2}\right)}=2, \text { so effective value or rms value }=2 / \sqrt{2}=\sqrt{2} A
\end{aligned}
$$

Ques. The peak voltage in a 220 V AC source is
(A) 220 V
(B) about 160 V
(C) about 310 V
(D) 440 V
Ans. (C)
Ques. An AC source is rated $220 \mathrm{~V}, 50 \mathrm{~Hz}$. The average voltage is calculated in a time interval of 0.01 s . It
(A) must be zero
$\left(B^{*}\right)$ may be zero
(C) is never zero
(D) is $(220 / \sqrt{ } 2) \mathrm{V}$
Ans. (B)
Ques. Find the effective value of current $i=2+4 \cos 100 \pi t$.
Ans. $\quad 2 \sqrt{3} \mathrm{~A}$

Ques. The peak value of an alternating current is 5 A and its frequency is 60 Hz . Find its rms value. How long will the current take to reach the peak value starting from zero?
Ans. $\quad i=\frac{T}{4}=\frac{1}{240} \mathrm{~S}$
Ques. An alternating current havingpeak value 14 A is used to heat a metal wire. To produce the same heating effect, a constant current i can be used where i is
(A) 14 A
(B) about 20 A
(C) 7 A
(D) about 10 A
Ans. (D)

4. AC SINUSOIDAL SOURCE:

Figure shows a coil rotating in a magnetic field. The flux in the coil changes as $\varphi=$ NBA $\cos (\omega t+\phi)$. Emf induced in the coil, from Faraday's law is $\frac{-\mathrm{d} \varphi}{\mathrm{dt}}=\mathrm{NBA} \omega \sin (\omega t+\phi)$. Thus the emf between the points A and B will vary as $E=E_{0} \sin (\omega t+\phi)$. The potential difference between the points A and B will also vary as $V=V_{0} \sin (\omega t+\phi)$. The symbolic notation of the above arrangement is A. We do not put any + or - sign on the AC source.

5. POWER CONSUMED OR SUPPLIED IN AN AC CIRCUIT:
 sinct. Let the current through it be $i=I \sin (\omega t+\phi)$. Instantaneous power P consumed
by the device $=\mathrm{vi}=\left(\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}\right)\left(\mathrm{I}_{\mathrm{m}} \sin (\omega \mathrm{t}+\phi)\right)$
Average power consumed in a cycle $=\frac{\int_{0}^{\frac{2 \pi}{\omega}} \mathrm{Pdt}}{\frac{2 \pi}{\omega}}=\frac{1}{2} \mathrm{~V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \cos \phi$

$$
=\frac{\mathrm{V}_{\mathrm{m}}}{\sqrt{2}} \cdot \frac{\mathrm{I}_{\mathrm{m}}}{\sqrt{2}} \cdot \cos \phi=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \cos \phi
$$

Here $\cos \phi$ is called power factor.

Note : Isin ϕ is called "wattless current".

Ex. 9 When a voltage $\mathrm{v}_{\mathrm{s}}=200 \sqrt{2} \sin \left(\omega \mathrm{t}+15^{\circ}\right)$ is applied to an AC circuit the current in the circuit is found to be $\mathrm{i}=2 \sin (\omega \mathrm{t}+\pi / 4)$ then average power concsumed in the circuit is
(A) 200 watt
(B) $400 \sqrt{2}$ watt
(C) $100 \sqrt{6}$ watt
(D) $200 \sqrt{2}$ watt

Sol. $\quad P_{a v}=v_{r m s} I_{r m s} \cos \phi$
$=\frac{200 \sqrt{2}}{\sqrt{2}} \frac{2}{\sqrt{2}} \cdot \cos \left(30^{\circ}\right)=100 \sqrt{6}$ watt
Ques. Find the average power concumed in the circuit if a voltage $v_{s}=200 \sqrt{2} \sin \omega t$ is applied to an AC circuit and the current in the circuit is found to be $i=2 \sin (\omega t+\pi / 4)$.
Ans. 200W
6. SOME DEFINITIONS:

The factor cos ϕ is called Power factor.
$I_{m} \boldsymbol{\operatorname { s i n }} \phi$ is called wattless current.
Impedance Z is defined as $Z=\frac{V_{m}}{I_{m}}=\frac{V_{\text {rms }}}{I_{\text {rms }}}$
$\omega \mathrm{L}$ is called inductive reactance and is denoted by X_{L}.
$\frac{1}{\omega \mathrm{C}}$ is called capacitive reactance and is denoted by X_{c}.
7. PURELY RESISTIVE CIRCUIT:

Writing KVL along the circuit,

$$
v_{s}-i R=0
$$

or $\quad i=\frac{\mathbf{v}_{s}}{R}=\frac{V_{m} \sin \omega t}{R}=I_{m} \sin \omega t$

$\Rightarrow \quad$ We see that the phase difference between potential difference across $\mathrm{rppistance}, \mathrm{v}_{\mathrm{R}}$ and i_{R} is 0 .

$$
\begin{aligned}
& I_{m}=\frac{V_{m}}{R} \\
& I_{\mathrm{rms}}=\frac{V_{\mathrm{ms}}}{R} \\
& \langle P\rangle=V_{\mathrm{rms}} I_{\mathrm{rms}} \cos \phi=\frac{V_{\mathrm{rms}}^{2}}{R}
\end{aligned}
$$

8. PURELY CAPACITIVE CIRCUIT:

Writing KVL along the circuit,
$\mathrm{v}_{\mathrm{s}}-\frac{\mathrm{q}}{\mathrm{C}}=0$

or $\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}=\frac{\mathrm{d}(\mathrm{Cv})}{\mathrm{dt}}=\frac{\mathrm{d}\left(\mathrm{CV}_{\mathrm{m}} \sin \omega \mathrm{t}\right)}{\mathrm{dt}}=\mathrm{CV}_{\mathrm{m}} \omega \cos \omega \mathrm{t}=\frac{\mathrm{V}_{\mathrm{m}}}{1 / \omega \mathrm{C}} \cos \omega \mathrm{t}=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{X}_{\mathrm{C}}} \cos \omega \mathrm{t}=\mathrm{I}_{\mathrm{m}} \cos \omega \mathrm{t}$.
$X_{C}=\frac{1}{\omega C}$ and is called capacitive reactance. Its unit is ohm Ω.

$=\omega \Delta \mathrm{t}=\frac{2 \pi}{\mathrm{~T}} \frac{\mathrm{~T}}{4}=\frac{2 \pi}{4}=\frac{\pi}{2}$. i_{C} leads v_{C} by $\pi / 2$ Diagrammatically (phasor
diagram) it is represented as $\underset{V_{m}}{\longrightarrow}$.
Since $\phi=90^{\circ},\left\langle P>=V_{\text {rms }} I_{\text {ms }} \cos \phi=0\right.$
Ques. A capacitor acts as an infinite resistance for
(A) DC
(B) AC
(C) DC as well as AC
(D) neither AC nor DC

Ans. (A)
Ex. 10 An alternating voltage $\mathrm{E}=200 \sqrt{2} \sin (100 \mathrm{t}) \mathrm{V}$ is connected to a $1 \mu \mathrm{~F}$ capacitor through an ac ammeter (it reads $r m s$ value). What will be the reading of the ammeter?
Sol. Comparing $\mathrm{E}=200 \sqrt{2} \sin (100 \mathrm{t})$ with $\mathrm{E}=\mathrm{E}_{0} \sin \omega t$ we find that,

$$
E_{0}=200 \sqrt{2} \mathrm{~V} \text { and } \omega=100(\mathrm{rad} / \mathrm{s})
$$

So, $\quad X_{C}=\frac{1}{\omega C}=\frac{1}{100 \times 10^{-6}}=10^{4} \Omega$
And as ac instruments reads rms value, the reading of ammeter will be,

$$
I_{r m s}=\frac{E_{r m s}}{X_{c}}=\frac{E_{0}}{\sqrt{2} X_{c}} \quad\left[\text { as } E_{r m s}=\frac{E_{0}}{\sqrt{2}}\right]
$$

i.e. $\quad I_{\text {rms }}=\frac{200 \sqrt{2}}{\sqrt{2} \times 10^{4}}=20 \mathrm{~mA}$

Ans
Ques. A $10 \mu \mathrm{~F}$ capacitor is connected with an ac source $\mathrm{E}=200 \sqrt{2} \sin (100 \mathrm{t}) \mathrm{V}$ through an ac ammeter (it reads rms value). What will be the reading of the ammeter?
Ans: $\quad 200 \mathrm{~mA}$
Ques. Find the reactance of a capacitor ($\mathrm{C}=200 \mu \mathrm{~F}$) when it is connected to (a) 10 Hz AC source, (b) a 50 Hz AC source and (c) a 500 Hz AC source.
Ans.
(a) 80Ω for 10 Hz AC source,
(b) 16Ω for 50 Hz and (
(c) 1.6Ω for 500 Hz .
9. PURELY INDUCTIVE CIRCUIT:

Writing KVL along the circuit,

$$
\begin{array}{lll}
v_{s}-L \frac{d i}{d t}=0 & \Rightarrow & L \frac{d i}{d t}=V_{m} \sin \omega t \\
\int L d i=\int V_{m} \sin \omega t d t & & i=-\frac{V_{m}}{\omega L} \cos \omega t+C
\end{array}
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

$$
<\mathrm{i}>=0 \quad \Rightarrow \quad C=0
$$

$$
\therefore \mathrm{i}=-\frac{\mathrm{V}_{\mathrm{m}}}{\omega \mathrm{~L}} \cos \omega \mathrm{t} \quad \Rightarrow \quad \mathrm{I}_{\mathrm{m}}=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{X}_{\mathrm{L}}}
$$

From the graph of current versus time and voltage versus time, it is clear that voltage attains its peak value at a time $\frac{\mathrm{T}}{4}$ before the time at which current attains its peak value. Corresponding to $\frac{T}{4}$ the phase difference $=$ $\omega \Delta t=\frac{2 \pi}{\mathrm{~T}} \frac{\mathrm{~T}}{4}=\frac{2 \pi}{4}=\frac{\pi}{2}$. Diagrammatically (phasor diagram) it is repre-


```
sented as }\stackrel{\mp@subsup{\}{m}{\prime}}{\mp@subsup{V}{m}{\prime}}.\mp@subsup{i}{L}{}\mathrm{ lags behind v}\mp@subsup{v}{L}{}\mathrm{ by }\pi/2\mathrm{ .
```

Since $\phi=90^{\circ}, \quad<\mathrm{P}>=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \cos \phi=0$

Summary :

Ques. An inductor $(\mathrm{L}=200 \mathrm{mH})$ is connected to an AC source of peak current. What is the intantaneous voltage of the source when the current is at its peak value?
Ans. zero
10. RC SERIES CIRCUIT WITH AN AC SOURCE :

$$
\begin{array}{lll}
\text { Let } \mathrm{i}=\mathrm{I}_{\mathrm{m}} \sin (\omega \mathrm{t}+\phi) & \Rightarrow & \mathrm{v}_{\mathrm{R}}=\mathrm{iR}=\mathrm{I}_{\mathrm{m}} \mathrm{R} \sin (\omega \mathrm{t}+\phi) \\
\mathrm{v}_{\mathrm{C}}=\mathrm{I}_{\mathrm{m}} X_{\mathrm{C}} \sin \left(\omega \mathrm{t}+\phi-\frac{\pi}{2}\right) & \Rightarrow & v_{\mathrm{S}}=\mathrm{v}_{\mathrm{R}}+\mathrm{v}_{\mathrm{C}}
\end{array}
$$

or $\quad V_{m} \sin (\omega t+\phi)=I_{m} R \sin (\omega t+\phi)+I_{m} X_{C} \sin \left(\omega t+\phi-\frac{\pi}{2}\right)$
$V_{m}=\sqrt{\left(I_{m} R\right)^{2}+\left(I_{m} X_{c}\right)^{2}+2\left(I_{m} R\right)\left(I_{m} X_{c}\right) \cos \frac{\pi}{2}}$
OR $I_{m}=\frac{V_{m}}{\sqrt{R^{2}+X C^{2}}} \quad \Rightarrow \quad Z=\sqrt{R^{2}+X c^{2}}$
Using phasor diagram also we can find the above result.
$\tan \phi=\frac{I_{m} X_{c}}{I_{m} R}=\frac{X_{c}}{R}$.

Ques. An AC source producing emf $\xi=\xi_{0}\left[\cos \left(100 \pi s^{-1}\right) t+\cos \left(500 \pi \mathrm{~s}^{-1}\right) t\right]$
is connected in series with a capacitor and a resistor. The steady-state current in the circuit is found to

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
be $i=i_{1} \cos \left[\left(100 \pi \mathrm{~s}^{-1}\right) t+\varphi_{1}\right]+i_{2} \cos \left[\left(500 \pi \mathrm{~s}^{-1}\right) t+\varphi_{1}\right]$
(A) $i_{1}>i_{2}$
(B) $i_{1}=i_{2}$
(C) $i_{1}<i_{2}$
(D) the information is insufficient to find the relation between i_{1} and i_{2}

Ans. (C)
Ex. 11 In an RC series circuit, the rms voltage of source is 200 V and its frequency is 50 Hz . If $\mathrm{R}=100 \Omega$ and $\mathrm{C}=\frac{100}{\pi} \mu \mathrm{~F}$, find
(i) Impedance of the circuit
(ii) Power factor angle
(iii) Power factor
(iv) Current
(v) Maximum current
(vii) voltage across C
(ix) max voltage across C
(vi) voltage across R
(viii) max voltage across R
(xi) $<P_{R}>$
(x) $<\mathrm{P}\rangle$
(xii) $<\mathrm{P}_{\mathrm{C}}>$

Sol. $X_{C}=\frac{10^{6}}{\frac{100}{\pi}(2 \pi 50)}=100 \Omega$
(i) $\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathrm{Xc}^{2}}=\sqrt{100^{2}+(100)^{2}}=100 \sqrt{2} \Omega$
(ii) $\quad \tan \phi=\frac{X c}{R}=1 \quad \therefore \phi=455^{\circ}$
(iii) Power factor $=\cos \phi=\frac{1}{\sqrt{2}}$
(iv) Current $\mathrm{I}_{\mathrm{rms}}=\frac{\mathrm{V}_{\mathrm{rms}}}{\mathrm{Z}}=\frac{200}{100 \sqrt{2}}=\sqrt{2} \mathrm{~A}$
(v) Maximum current $=I_{\text {rms }} \sqrt{2}=2 \mathrm{~A}$
(vi) voltage across $\mathrm{R}=\mathrm{V}_{\mathrm{R}, \mathrm{ms}}=\mathrm{I}_{\mathrm{rms}} \mathrm{R}=\sqrt{2} \times 100$ Volt
(vii) voltage across $\mathrm{C}=\mathrm{V}_{\mathrm{c}, \mathrm{ms}}=\mathrm{I}_{\mathrm{rms}} \mathrm{X}_{\mathrm{c}}=\sqrt{2} \times 100$ Volt
(viii) max voltage across $R=\sqrt{2} V_{R, \text { rms }}=200$ Volt
(ix) max voltage across $C=\sqrt{2} V_{c, \text { rms }}=200$ Volt
(x) $\langle P\rangle=V_{r m s} I_{r m s} \cos \phi=200 \times \sqrt{2} \times \frac{1}{\sqrt{2}}=200$ Watt
(xi) $\left\langle P_{R}\right\rangle=I_{r m s}{ }^{2} R=200 \mathrm{~W}$

Ex. 13 An ac source of angular frequency ω is fed across a resistor R and a capacitor C in series. The current registered is I. If now the frequency of source is changed to $\omega / 3$ (but maintaining the same voltage), the current in the circuit is found to be halved. Calculate the ratio of reactance to resistance at the original frequency ω.
Sol. According to given problem,

$$
\begin{equation*}
I=\frac{V}{Z}=\frac{V}{\left[R^{2}+(1 / C \omega)^{2}\right]^{1 / 2}} \tag{1}
\end{equation*}
$$

and, $\quad \frac{I}{2}=\frac{V}{\left[R^{2}+(3 / C \omega)^{2}\right]^{1 / 2}}$
Substituting the value of I from Equation (1) in (2),

$$
4\left(R^{2}+\frac{1}{C^{2} \omega^{2}}\right)=R^{2}+\frac{9}{C^{2} \omega^{2}} \text {. i.e., } \frac{1}{C^{2} \omega^{2}}=\frac{3}{5} R^{2}
$$ So that, $\frac{X}{R}=\frac{(1 / C \omega)}{R}=\frac{\left(\frac{3}{5} R^{2}\right)^{1 / 2}}{R}=\sqrt{\frac{3}{5}}$

Ans.

11. LR SERIES CIRCUIT WITH AN AC SOURCE :

Ex. $14 \mathrm{~A} \frac{9}{100 \pi} \mathrm{H}$ inductor and a 12 ohm resistance are connected in series to a $225 \mathrm{~V}, 50 \mathrm{~Hz}$ ac source. Calculate the current in the circuit and the phase angle between the current and the source voltage.

Sol. Here $X_{L}=\omega L=2 \pi f L=2 \pi \times 50 \times \frac{9}{100 \pi}=9 \Omega$
So, $\quad Z=\sqrt{R^{2}+X_{L}{ }^{2}}=\sqrt{12^{2}+9^{2}}=15 \Omega$
So (a) $I=\frac{V}{Z}=\frac{225}{15}=15 \mathrm{~A}$
and (b) $\phi=\tan ^{-1}\left(\frac{X_{L}}{R}\right)=\tan ^{-1}\left(\frac{9}{12}\right)$
i.e., the current will lag the applied voltage by 37° in phase.

Ans
‘6LLL E06 ع06 0 : əuoud Iedoug '
Ex. 15 When an inductor coil is connected to an ideal battery of emf 10 V , a constant current 2.5 A flows. When the same inductor coil is connected to an AC source of 10 V and 50 Hz then the current is 2 A . Find out inductance of the coil
Sol. When the coil is connected to dc source, the final current is decided by the resistance of the coil .
$\therefore \quad r=\frac{10}{2.5}=4 \Omega$
When the coil is connected to ac source, the final current is decided by the impedance of the coil .
$\therefore \quad \mathrm{Z}=\frac{10}{2}=5 \Omega$
But $\quad Z=\sqrt{(r)^{2}+(X L)^{2}}$

$$
X_{L}^{2}=5^{2}-4^{2}=9
$$

$$
\mathrm{X}_{\mathrm{L}}=3 \Omega
$$

$\therefore \quad \omega L=2 \pi f L=3$
$\therefore \quad 2 \pi 50 \mathrm{~L}=3$
$\therefore \quad \mathrm{L}=3 / 100 \pi$ Henry
Ex. 16 A bulb is rated at $100 \mathrm{~V}, 100 \mathrm{~W}$, it can be treated as a resistor .Find out the inductance of an inductor (called choke coil) that should be connected in series with the bulb to operate the bulb at its rated power with the help of an ac source of 200 V and 50 Hz .
Sol: From the rating of the bulb, the resistance of the bulb is $R=\frac{V_{r m s}{ }^{2}}{P}=100 \Omega$

For the bulb to be operated at its rated value the rms current through it should be 1A
Also, $\quad I_{r m s}=\frac{V_{r m s}}{Z}$
$\therefore \quad 1=\frac{200}{\sqrt{100^{2}+(2 \pi 50 \mathrm{~L})^{2}}}$
$L=\frac{\sqrt{3}}{\pi} H$

Ex. 17 A choke coil is needed to operate an arc lamp at 160 V (rms) and 50 Hz . The arc lamp has an effective resistance of 5Ω when running of $10 \mathrm{~A}(\mathrm{rms})$. Calculate the inductance of the choke coil. If the same arc lamp is to be operated on 160 V (dc), what additional resistance is required? Compare the power losses in both cases.
Sol. As for lamp $V_{R}=I R=10 \times 5=50 \mathrm{~V}$, so when it is connected to 160 V ac source through a choke in series,

$$
V^{2}=V_{R}^{2}+V_{L}^{2}, \quad V_{L}=\sqrt{160^{2}-50^{2}}=152 V
$$

and as,

$$
\mathrm{V}_{\mathrm{L}}=\mathrm{IX} \mathrm{~L}_{\mathrm{L}}=\mathrm{I} \omega \mathrm{~L}=2 \pi \mathrm{fLI}
$$

So, $\quad L=\frac{V_{L}}{2 \pi f I}=\frac{152}{2 \times \pi \times 50 \times 10}=4.84 \times 10^{-2} \mathrm{H}$
Ans.
Now the lamp is to be operated at 160 V dc; instead of choke if additional resistance r is put in series with it,

$$
\begin{aligned}
& V=I(R+r) \text {, i.e., } 160=10(5+r) \\
& \text { i.e., } \quad r=11 \Omega
\end{aligned}
$$

Ans.
In case of ac, as choke has no resistance, power loss in the choke will be zero while the bulb will consume,

$$
\mathrm{P}=\mathrm{I}^{2} \mathrm{R}=10^{2} \times 5=500 \mathrm{~W}
$$

However, in case of dc as resistance r is to be used instead of choke, the power loss in the resistance r will be.

$$
\mathrm{PL}=10^{2} \times 11=1100 \mathrm{~W}
$$

while the bulb will still consume 500 W , i.e., when the lamp is run on resistance r instead of choke more than double the power consumed by the lamp is wasted by the resistance r.

Ques. An alternating voltage of 220 volt r.m.s. at a frequency of $40 \mathrm{cycles} / \mathrm{sec}$ is supplied to a circuit containing a pure inductance of 0.01 H and a pure resistance of 6 ohms in series. Calculate (i) the current, (ii) potential difference across the resistance, (iii) potential difference across the inductance, (iv) the time lag, (v) power factor.
Ans.
(i) 33.83 amp .
(ii) 202.98 volts
(iii) 96.83 volts (iv) 0.01579 sec (v) 0.92
12. LC SERIES CIRCUIT WITH AN AC SOURCE :

From the phasor diagram

$$
\mathrm{V}=\mathrm{I}\left|\left(\mathrm{X}_{\mathrm{L}}-\mathrm{XC}_{\mathrm{C}}\right)\right|=\mathrm{I} \mathrm{Z} \quad \phi=90^{\circ}
$$

Ques. Which of the following plots may represnet the reactance of a series LC combination?

13. RLC SERIES CIRCUIT WITH AN AC SOURCE :

Ans. D

Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

$$
\begin{aligned}
& \mathrm{V}=\sqrt{(\mathrm{IR})^{2}+\left(\mathrm{I} \mathrm{X}_{\mathrm{L}}-\mathrm{IX} \mathrm{X}\right)^{2}}=\mathrm{I} \sqrt{(\mathrm{R})^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}=\mathrm{I} \mathrm{Z} \quad \mathrm{Z}=\sqrt{(\mathrm{R})^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{XC}_{\mathrm{C}}\right)^{2}} \\
& \tan \phi=\frac{\mathrm{I}\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)}{\mathrm{IR}}=\frac{\left(\mathrm{X}_{\mathrm{L}}-\mathrm{XXC}_{\mathrm{C}}\right)}{\mathrm{R}}
\end{aligned}
$$

(A) 5Ω
(B) 7Ω
(C) $12 / 7 \Omega$
(D) $7 / 12 \Omega$
Ans. (A)

13.1 Resonance :

Amplitude of current (and therefore $I_{r m s}$ also) in an RLC series circuit is maximum for a given value of V_{m} and R, if the impedance of the circuit is minimum, which will be when $X_{L}-X_{C}=0$. This condition is called resonance.
So at resonance:

$$
X_{L}-X_{C}=0 .
$$

or $\quad \omega \mathrm{L}=\frac{1}{\omega \mathrm{C}}$
or $\quad \omega=\frac{1}{\sqrt{\mathrm{LC}}}$. Let us denote this ω as ω_{r}.
Ex. 18 In the circuit shown in the figure, find

(a) the reactance of the circuit .
(b) impedance of the circuit
(c) the current
(d) readings of the ideal AC voltmeters (these are hot wire instruments and read rms values).
(a) $X_{L}=2 \pi f L=2 \pi \times 50 \times \frac{2}{\pi}=200 \Omega$

Sol:

$\frac{i}{\omega_{r}}$

Ω. the impedance of the circuit is

$$
X_{c}=\frac{1}{2 \pi 50 \frac{100}{\pi} \times 10^{-6}}=100 \Omega
$$

$\therefore \quad$ The reactance of the circuit $\mathrm{X}=\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}=200-100=100 \Omega$
Since $X_{L}>X_{C}$, the circuit is called inductive.
(b) impedance of the circuit $Z=\sqrt{R^{2}+\mathrm{X}^{2}}=\sqrt{100^{2}+100^{2}}=100 \sqrt{2} \Omega$
(c) the current $I_{r m s}=\frac{V_{r m s}}{Z}=\frac{200}{100 \sqrt{2}}=\sqrt{2} \mathrm{~A}$
(d) readings of the ideal voltmeter

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

$$
\begin{aligned}
& \mathrm{V}_{1}: \mathrm{I}_{\mathrm{rms}} \mathrm{X}_{\mathrm{L}}=200 \sqrt{2} \text { Volt } \\
& \mathrm{V}_{2}: \mathrm{I}_{\mathrm{rms}} \mathrm{R}=100 \sqrt{2} \text { Volt } \\
& \mathrm{V}_{3}: \mathrm{I}_{\mathrm{ms}} \mathrm{X}_{\mathrm{c}}=100 \sqrt{2} \text { Volt } \\
& \mathrm{V}_{4}: \mathrm{I}_{\mathrm{ms}} \sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2}}=100 \sqrt{10} \text { Volt }
\end{aligned}
$$

$$
\mathrm{V}_{5}: \mathrm{I}_{\mathrm{rms}} \mathrm{Z}=200 \text { Volt , which also happens to be the voltage of source. }
$$

13.1 Q VALUE (QUALITY FACTOR) OF LCR SERIES CIRCUIT (NOT IN IIT SYLLA- ®. BUS) :
Q value is defined as $\frac{X_{L}}{R}$ where X_{L} is the inductive reactance of the circuit, at resonance.
More Q value implies more sharpness of I Vs ω curve

