EXERCISE-1

Ш	SECTI	ON (A) : AVERAGE,	, PEAK AND RMS V	ALUE		
Ö.	A 1.	r.m.s. value of current	:i = 3 + 4 sin (ωt + π/3) i	5.		
uha		(A) 5 A	(B) √17 A	(C) $\frac{5}{\sqrt{2}}$ A	(D) $\frac{7}{\sqrt{2}}$ A	12
ISByS	A 2.	A coil of inductance $V = 10 \sin (100 t)$. The (A) 2 amp	5.0 mH and negligible peak current in the circu (B) 1 amp	resistance is connect uit will be : (C) 10 amp	ed to an alternating voltage (D) 20 amp	page
Math	A 3.	The peak value of an a time $t = (1/600)$ sec, the	alternating e.m.f E given ne instantaneous value o	n by E = E ₀ cos ωt is 10 y f e.m.f is :	volt and frequency is 50 Hz. At	881.
Į. ≷		(A) 10 volt	(B) $5\sqrt{3}$ volt	(C) 5 volt	(D) 1 volt	0 58
8 WW	A* 4.	The voltage of an AC s Where t is in second at (A) the peak voltage of	ource varies with time ac nd V is in volt. Then : f the source is 100 volt	cording to the equation,	V = 100 sin 100 π t cos 100 π t.	0 9893
s.com		(B) the peak voltage of(C) the peak voltage of(D) the frequency of the	f the source is $(100/\sqrt{2})$ f the source is 50 volt ne source is 50 Hz	volt		3 7779,
Classe	A 5.	An alternating voltage is given by :	is given by : $e = e_1 \sin \omega t$	+ $e_2 \cos \omega t$. Then the roo	t mean square value of voltage	06 206 0
ko O		(A) $\sqrt{e_1^2 + e_2^2}$	(B) $\sqrt{e_1 e_2}$	(C) $\sqrt{\frac{e_1 e_2}{2}}$	(D) $\sqrt{\frac{e_1^2 + e_2^2}{2}}$	ne : (
.Te	A 6.	An AC voltage is given	by:			Pho
Ň	[$E = E_0 \sin \frac{2\pi}{T}$				opal
3		Then the mean value of (A) is always zero	of voltage calculated over	time interval of T/2 sec (C) is (2e $/\pi$) always	onds: (D) may be zero	, B
site	A 7.	Average value of A.C.	current in a half time per	ios may be :	(2) may be zere	. Sir)
eb;	A 0	(A) positive	(B) negative	(C) zero	(D) none	₹ N
Ň	A 0.	(A) n	(B) 2 n	(C) n/2	(D) zero	S.
ron	A 9.	An AC voltage of $V = 2$	$220\sqrt{2} \sin\left(2\pi 50 t + \frac{\pi}{2}\right)$	is applied across a DC	voltmeter, its reading will be:	ariya
ge 1		(A) 220√2 V	(B) √2 V	(C) 220 V	(D) zero	Ч Ч
cka	A 10.	The current in a dischar calculate the rms curre	arging LR circuit is given ent for the period t = 0 tc	by $i = I_o e^{-t/T}$ where τ is to $t = \tau$.	the time constant of the circuit	hag
Pa	A 11.	Find the rms value for t	he saw-tooth voltage of pe	eak value V_0 from t=0 to t	=2T as shown in figure.	Su Su
Download Study	SECTIO	+v₀ ↓ ↓ −V₀ −V₀ −V₀ −V₀ −V₀ −V₀ −V₀ −V₀	$-\frac{T}{2}$ T ONSUMED IN AN AC	$-\frac{3}{2}T$	$t \rightarrow t$	Teko Classes, Maths
REE	B 1.	The average power de (A) E _{rms} I _{rms}	livered to a series AC cire (B) Ε _{rms} Ι _{rms} cos φ	cuit is given by (symbols (C) E _{rms} I _{rms} sin ϕ	s have their usual meaning) : (D) zero	
ш	B 2.	Energy dissipates in L	CR circuit in :			

	Get S	Solution of These Pa	ackages & Learn by	Video Tutorials on w	ww.MathsBySuhag.com
	B 3	(A) L ONIY	(B) C only	(C) R only rent I flowing through an	(D) all of these ΔC circuit are
com	201	given by : $V = (5 \cos \omega t)$ $I = (2 \sin \omega t)$) volt A		
hag.		The power dissipated (A) zero	in the instrument is : (B) 5 watt	(C) 10 watt	(D) 2.5 watt
Su	В4.	A coil has an inductand	ce of $\frac{2.2}{\pi}$ H and is joined	in series with a resistanc	e of 220 Ω. When an alternating $\frac{\alpha}{\omega}$
sBy		e.m.f. of 220 V at 50 c is	resp is applied to it, then	the wattless component	of the rms current in the circuit
ath		(A) 5 ampere	(B) 0.5 ampere (C) 0.	7 ampere (D) 7 a	ampere
ww.Ma	В 5.	A direct current of 2 A identical resistances. T (A) 1 : 1	A and an alternating cu The ratio of heat produce (B) 1 : 2	rent having a maximum ed in the two resistances (C) 2 : 1	n value of 2 A flow through two 80 in the same time interval will be 80 (D) 4 : 1
N & W	B 6.	A resistor and an inducircuit is 3 ampere. If is :	ictor are connected to a the power consumed in	an AC supply of 120 vol- the circuit is 108 watt, th	t and 50 Hz. The current in the ຜູ້ hen the resistance in the circuit ອ ດ
οu		(A) 12 ohm	(B) 40 ohm	(C) $\sqrt{(52 \times 28)}$ ohm	(D) 360 ohm
es.c	Β7.	What is the rms value which is thrice that pro	of an alternating currer oduced by a current of 2	nt which when passed th ampere in the same res	rough a resistor produces heat, \triangleright sistor in the same time interval?
ass		(A) 6 ampere	(B) 2 ampere	(C) $2\sqrt{3}$ ampere	(D) 0.65 ampere
koCla	B 8.	A resistor and a capaci circuit is 2 ampere. If is :	itor are connected to an the power consumed in	AC supply of 200 volt, 50 the circuit is 100 watt, the circuit is 100 w) Hz in series. The current in the ග hen the resistance in the circuit ි මු
He		(A) 100 ohm	(B) 25 ohm	(C) $\sqrt{125 \times 75}$ ohm	(D) 400 ohm
-					
ww.	B 9.	The impedance of a set of the circuit is :	eries circuit consists of 3	ohm resistance and 4 of	hm reactance. The power factor
www.	B 9.	The impedance of a set of the circuit is : (A) 0.4	(B) 0.6	ohm resistance and 4 of (C) 0.8	(D) 1.0
ite: www.	B 9. B 10.	The impedance of a set of the circuit is : (A) 0.4 An electric bulb and a co of the source, the brig	eries circuit consists of 3 (B) 0.6 capacitor are connected htness of the bulb :	ohm resistance and 4 ol (C) 0.8 in series with an AC sour	hm reactance. The power factor (D) 1.0 rce. On increasing the frequency
bsite: www.	B 9. B 10.	The impedance of a set of the circuit is : (A) 0.4 An electric bulb and a co of the source, the brig (A) increase (C) remains unchange	eries circuit consists of 3 (B) 0.6 capacitor are connected htness of the bulb :	C) 0.8 (C) 0.8 in series with an AC sour (B) decreases (D) sometimes increas	hm reactance. The power factor (D) 1.0 rce. On increasing the frequency
website: www.	B 9. B 10.	The impedance of a set of the circuit is : (A) 0.4 An electric bulb and a co of the source, the brig (A) increase (C) remains unchange By what percentage th	eries circuit consists of 3 (B) 0.6 capacitor are connected htness of the bulb : ed e impedance in an AC s	ohm resistance and 4 of (C) 0.8 in series with an AC sour (B) decreases (D) sometimes increases eries circuit should be inc	hm reactance. The power factor (D) 1.0 rce. On increasing the frequency ses and sometimes decreases creased so that the power factor
rom website: www.	B 9. B 10. B 11.	The impedance of a set of the circuit is : (A) 0.4 An electric bulb and a d of the source, the brig (A) increase (C) remains unchange By what percentage th changes from (1/2) to (A) 200%	eries circuit consists of 3 (B) 0.6 capacitor are connected htness of the bulb : ed e impedance in an AC s (1/4) (when R is cosnta (B) 100%	cohm resistance and 4 of (C) 0.8 in series with an AC sour (B) decreases (D) sometimes increase eries circuit should be increase nt) ? (C) 50%	hm reactance. The power factor (D) 1.0 rce. On increasing the frequency ses and sometimes decreases creased so that the power factor (D) 400%
le from website: www.	B 9. B 10. B 11. B 12*.	The impedance of a set of the circuit is : (A) 0.4 An electric bulb and a co of the source, the brig (A) increase (C) remains unchange By what percentage th changes from (1/2) to (A) 200% Average power consu	(B) 0.6 (B) 0.6 (capacitor are connected (htness of the bulb : (htness of the bulb : (ht	cohm resistance and 4 of (C) 0.8 in series with an AC sour (B) decreases (D) sometimes increase eries circuit should be inc nt) ? (C) 50%	hm reactance. The power factor (D) 1.0 (D) 1.0 (D) 1.0 (D) 1.0 (D) 4.0 (D) 400% (D) 400% (D) 400%
cage from website: www.	B 9. B 10. B 11. B 12*.	The impedance of a set of the circuit is : (A) 0.4 An electric bulb and a d of the source, the brig (A) increase (C) remains unchange By what percentage th changes from (1/2) to (A) 200% Average power consu	eries circuit consists of 3 (B) 0.6 capacitor are connected htness of the bulb : e impedance in an AC s (1/4) (when R is cosnta (B) 100% med in an A.C. series of (B) $(I_{rms})^2 R$	c ohm resistance and 4 of (C) 0.8 in series with an AC sour (B) decreases (D) sometimes increase eries circuit should be increase eries circuit should be increase (C) 50% from the series of	hm reactance. The power factor (D) 1.0 rce. On increasing the frequency ses and sometimes decreases creased so that the power factor (D) 400% ols have their usual meaning) : $\frac{10^2}{2} z \cos \phi$
Package from website: www.	B 9. B 10. B 11. B 12*. B 13.	The impedance of a set of the circuit is : (A) 0.4 An electric bulb and a d of the source, the brig (A) increase (C) remains unchange By what percentage th changes from (1/2) to (A) 200% Average power consu (A) $E_{rms} I_{rms} \cos \phi$ An electric bulb is des gives normal brightne	eries circuit consists of 3 (B) 0.6 capacitor are connected htness of the bulb : e impedance in an AC s (1/4) (when R is cosnta (B) 100% med in an A.C. series of (B) $(I_{rms})^2 R$ signed to operate at 12 ss. What would be the p	c ohm resistance and 4 of (C) 0.8 in series with an AC sour (B) decreases (D) sometimes increase eries circuit should be increase eries circuit should be increase (C) 50% ircuit is given by (symbol (C) $\frac{E_0^2 R}{2(z)^2}$ volts DC. If this bulb is cheak voltage of the source	hm reactance. The power factor (D) 1.0 rce. On increasing the frequency ses and sometimes decreases creased so that the power factor (D) 400% ols have their usual meaning) : $\frac{10^2}{2} z \cos \phi$ connected to an AC source and se?
udy Package from website: www.	B 9. B 10. B 11. B 12*. B 13. B 14.	The impedance of a set of the circuit is : (A) 0.4 An electric bulb and a d of the source, the brig (A) increase (C) remains unchange By what percentage th changes from (1/2) to (A) 200% Average power consu (A) $E_{rms} I_{rms} \cos \phi$ An electric bulb is des gives normal brightne A resistor of resistance consumed by the bulb	eries circuit consists of 3 (B) 0.6 capacitor are connected htness of the bulb : ed e impedance in an AC s (1/4) (when R is cosnta (B) 100% med in an A.C. series of (B) $(I_{rms})^2 R$ signed to operate at 12 ss. What would be the p e 100 Ω is connected to b.	c ohm resistance and 4 of (C) 0.8 in series with an AC sources (B) decreases (D) sometimes increases eries circuit should be increased eries circuit should be increased eries circuit should be increased (C) 50% from the source series of the source increased to the source an AC source $\varepsilon = (12V)$	hm reactance. The power factor (D) 1.0 rce. On increasing the frequency (D) 400% (D) 400% (D) $\frac{I_0^2 z \cos \phi}{2}$ (D) $\frac{I_0^2 z \cos \phi}{2}$ connected to an AC source and (z) $\frac{I_0^2 z \cos \phi}{2}$ sin (250 π s ⁻¹)t. Find the power factor
Study Package from website: www.	B 9. B 10. B 11. B 12*. B 13. B 14. B 15.	The impedance of a set of the circuit is : (A) 0.4 An electric bulb and a contract of the source, the brig (A) increase (C) remains unchange By what percentage the changes from (1/2) to (A) 200% Average power consumed (A) $E_{rms} I_{rms} \cos \phi$ An electric bulb is des gives normal brightnes A resistor of resistance consumed by the bulb In an ac circuit the inst	eries circuit consists of 3 (B) 0.6 capacitor are connected htness of the bulb : ad e impedance in an AC s (1/4) (when R is cosnta (B) 100% med in an A.C. series of (B) $(I_{rms})^2 R$ signed to operate at 12 ss. What would be the p e 100 Ω is connected to b.	c ohm resistance and 4 of (C) 0.8 in series with an AC sources (B) decreases (D) sometimes increases (D) sometimes increases eries circuit should be increased eries circuit should be increased (C) 50% ircuit is given by (symbol (C) $\frac{E_0^2 R}{2(z)^2}$ volts DC. If this bulb is control an AC source $\varepsilon = (12V)$ errent and applied voltage	hm reactance. The power factor (D) 1.0 rce. On increasing the frequency (D) 400% (D) 400% (D) $\frac{I_0^2 z \cos \phi}{2}$ (D) $\frac{I_0^2 z \cos \phi}{2}$ connected to an AC source and for the power factor of the power factor
load Study Package from website: www.	B 9. B 10. B 11. B 12*. B 13. B 14. B 15.	The impedance of a set of the circuit is : (A) 0.4 An electric bulb and a contract of the source, the brig (A) increase (C) remains unchange By what percentage the changes from (1/2) to (A) 200% Average power consumed (A) $E_{rms} I_{rms} \cos\phi$ An electric bulb is des gives normal brightnes A resistor of resistance consumed by the bulb In an ac circuit the inst (250 π s ⁻¹)t and ε = (14)	eries circuit consists of 3 (B) 0.6 capacitor are connected htness of the bulb : rd e impedance in an AC s (1/4) (when R is cosnta (B) 100% med in an A.C. series of (B) $(I_{rms})^2 R$ signed to operate at 12 ss. What would be the p e 100 Ω is connected to a connected to b connected to connected to conne	c ohm resistance and 4 of (C) 0.8 in series with an AC source (B) decreases (D) sometimes increases (D) sometimes increase eries circuit should be indent (C) 50% incuit is given by (symbol (C) $\frac{E_0^2 R}{2(z)^2}$ volts DC. If this bulb is of the source $\varepsilon = (12V)$ erent and applied voltage	hm reactance. The power factor (D) 1.0 The ce. On increasing the frequency (D) 400% (D) 400% (D) $\frac{I_0^2 z \cos \phi}{2}$ (D) $\frac{I_0^2 z \cos \phi}{2}$ connected to an AC source and the power factor of
Jownload Study Package from website: www.	B 9. B 10. B 11. B 12*. B 13. B 14. B 15.	The impedance of a set of the circuit is : (A) 0.4 An electric bulb and a contract of the source, the brig (A) increase (C) remains unchange By what percentage the changes from (1/2) to (A) 200% Average power consumed (A) E_{rms} Irms cos¢ An electric bulb is des gives normal brightne A resistor of resistance consumed by the bulb In an ac circuit the inst (250 π s ⁻¹)t and $\varepsilon = (14)$ at t = $\frac{2}{3}$ ms and its ave	eries circuit consists of 3 (B) 0.6 capacitor are connected htness of the bulb : rd e impedance in an AC s (1/4) (when R is cosnta (B) 100% med in an A.C. series of (B) $(I_{rms})^2 R$ signed to operate at 12 ss. What would be the p e 100 Ω is connected to cantaneous values of cur 0V) sin ((250 π s ⁻¹)t + $\frac{\pi}{3}$ rerage value.	c ohm resistance and 4 of (C) 0.8 in series with an AC sources (B) decreases (D) sometimes increases eries circuit should be increased eries circuit should be increased (C) 50% incuit is given by (symbol (C) $\frac{E_0^2 R}{2(z)^2}$ volts DC. If this bulb is control an AC source $\varepsilon = (12V)$ erent and applied voltage	hm reactance. The power factor (D) 1.0 rce. On increasing the frequency (D) 400% ols have their usual meaning) : (D) $\frac{I_0^2 z \cos \phi}{2}$ connected to an AC source and is in (250 π s ⁻¹)t. Find the power are respectively i = 2(Amp) sin us power drawn from the source
REE Download Study Package from website: www.	B 9. B 10. B 11. B 12*. B 13. B 14. B 15. B 16.	The impedance of a set of the circuit is : (A) 0.4 An electric bulb and a contract of the source, the brig (A) increase (C) remains unchange By what percentage the changes from (1/2) to (A) 200% Average power consumed (A) $E_{rms} I_{rms} \cos \phi$ An electric bulb is des gives normal brightne A resistor of resistance consumed by the bulb In an ac circuit the inst (250 π s ⁻¹)t and ε = (14) at t = $\frac{2}{3}$ ms and its av A 2000 Hz, 20 volt source capacitance of 500/ π m joule/°C) will get heated	eries circuit consists of 3 (B) 0.6 capacitor are connected htness of the bulb : ad e impedance in an AC s (1/4) (when R is cosnta (B) 100% med in an A.C. series of (B) $(I_{rms})^2 R$ signed to operate at 12 ss. What would be the p e 100 Ω is connected to antaneous values of cur 0V) sin ((250 π s ⁻¹)t + $\frac{\pi}{3}$ erage value. urce is connected to a r of all in series. Calculated d by 10° C	c ohm resistance and 4 of (C) 0.8 in series with an AC source (B) decreases (D) sometimes increases eries circuit should be indent (C) 50% ircuit is given by (symbol (C) $\frac{E_0^2 R}{2(z)^2}$ volts DC. If this bulb is of the source $\varepsilon = (12V)$ erent and applied voltage (C) Find the instantaneous esistance of 20 ohm, and the time in which the resistance of 20 ohm.	hm reactance. The power factor (D) 1.0 rce. On increasing the frequency (D) 400% ols have their usual meaning) : (D) $\frac{I_0^2 z \cos \phi}{2}$ connected to an AC source and the power factor of 2^{10} (D) $\frac{I_0^2 z \cos \phi}{2}$ connected to an AC source and the power factor of 2^{10} are respectively $i = 2(Amp) \sin \phi$ are respectively $i = 2(Amp) \sin \phi$ inductance of $0.125/\pi$ H and a sistance (thermal capacity = 100

 π Hz. Find (a) the rms current in the circuit and (b) the rms potential differences across the capacitor, the resistor and the inductor.

5

page

7779,

ц.

<u>v</u>

- C 13. Consider the situation of the previous problem find the average electric field energy stored in the capacitor and the average magnetic field energy stored in the coil .
- A circuit has a coil of resistance 50 ohms and inductance $\frac{3}{\pi}$ henry. It is connected in series with a con-C 14.

 μF and AC supply voltage of 200 V and 50 cycles/sec. Calculate denser of

- (i) the impedance of the circuit, (ii) the p.d. across inductance coil and condenser. An inductor $2/\pi$ Henry, a capacitor $100/\pi \mu$ F and a resistor 75 Ω are connected in series across a source of EMF V = 10 sin 100π t. (a) find the impedance of the circuit.(b) find the energy dissipated in the circuit in 20 minutes. **ON (D) : RESONANCE** C 15.

SECTION (D) : RESONANCE

- D 1*. (D) An LCR circuit (A) pure inductor (B) pure capacitor (C) pure resistor D 2. The value of power factor $\cos\phi$ in series LCR circuit at resonance is : (A) zero (B) 1 (C) 1/2 (D) 1/2 ohm
- A series LCR circuit containing a resistance of 120 ohm has angular resonance frequency 4×10^3 rad $\overset{\circ}{0}_{0}_{0}$ s⁻¹. At resonance, the voltage across resistance and inductance are 60V and D 3. 903 40 V respectively. The values of L and C are respectively : (A) 20 mH, 25/8 μF (B) 2mH, 1/35 μF (C) 20 mH, 1/40 μF (D) 2mH, 25/8 nF 0
- D 4. In an LCR circuit, the capacitance is made one-fourth, when in resonance. Then what should be the Phone change in inductance, so that the circuit remains in resonance? (A) 4 times (B) 1/4 times (C) 8 times (D) 2 times
- A resistor R, an inductor L and a capacitor C are connected in series to an oscillator of frequency n. If Bhopal D 5. the resonant frequency is n,, then the current lags behind voltage, when : (A) n = 0(B) n < n, (C) $n = r_{.}$ (D) n > n
- A series circuit consists of a resistance, inductance and capacitance. The applied voltage and the current at D 6. any instant are given by Ł.

and

- $E = 141.4 \cos(5000 t 10^{\circ})$ $I = 5 \cos (5000 t - 370^{\circ})$
- The inductance is 0.01 henry. Calculate the value of capacitance and resistance.
- An inductance of 2.0 H, a capacitance of 18μ F and a resistance of $10k \Omega$ are connected to an AC source of 20 V with adjustable frequency (a) What frequency should be chosen to maximise the current(RMS) in the circuit ? (b) What is the value of this maximum current (RMS) ? D 7. current(RMS) in the circuit? (b) What is the value of this maximum current (RMS)?
- An inductor-coil a capacitor and an AC source of rms voltage 24 V are connected in series. When the D 8. : Suhag frequency of the source is varied a maximum rms current of 6.0 A is observed. If this inductor coil is connected to a battery of emf 12 V and internal resistance 4.0 Ω , what will be the steady current ?
- D 9. A wave of wavelength 300 metre can be transmitted by a transmission centre. A condenser of capacity 2.5 µF is available. Calculate the inductance of the required coil for a resonant circuit. Use $\pi^2=10$.

SECTION (E) : TRANSFORMER

- Classes, Maths E1. A power (step up) transformer with an 1:8 turn ratio has 60 Hz, 120 V across the primary; the load in the secondary is $10^4 \Omega$. The current in the secondary is (A) 96 A (B) 0.96 A (C) 9.6 A (D) 96 mA Teko E 3. A transformer is used to light a 140 watt, 24 volt lamp from 240 V AC mains. The current in the main cable is 0.7 amp. The efficiency of the transformer is : (A) 48% (B) 63.8% (D) 90% (C) 83.3%
- E4. In a step-up transformer the voltage in the primary is 220 V and the current is 5A. The secondary voltage is found to be 22000 V. The current in the secondary (neglect losses) is (A) 5 A (C) 500 A (B) 50 A (D) 0.05 A
- E 5. The core of a transformer is laminated to reduce

Get	Solution of These Packages & Learn by	Video Tutorials on www.MathsBySuhag.com	l		
	(A) eddy current loss (B) hysteresis loss	(C) copper loss (D) magnetic loss			
E1 E	A transformer has 50 turns in the primary and 1 V DC supply, what will be the voltage across t	00 in the secondary. If the primary is connected to a 22 he secondary ?	20		
ပ ပ် ပ် ဥ	In a transformer ratio of secondary turns (N_2) ar	nd primary turns (N ₁) i.e. $\frac{N_2}{N_1} = 4$. If the voltage applied	in		
uha	primary is 200 V, 50 Hz, find (a) voltage induced in secondary if the transformer is (i) ideal and (ii)	in secondary (b) If current in primary is 1A, find the curre 80% efficient and there is no air loss.	nt 12		
	ION (F) : MISCELLANEOUS		age		
က် * Marl	ked are more than one correct options.		ä		
√.Math ⊾1	A capacitor is a perfect insulator for : (A) direct current (C) direct as well as alternating current	(B) alternating current (D) None of the above	58881.		
₹ F 2.	A choke coil sould have : (A) high inductance and high resistance (C) high inductance and low resistance	(B) low inductance and low resistance(D) low inductance and high resistance) 98930		
E F 3.	A choke coil is preferred to a rheostat in AC c (A) it consumes almost zero power (C) it increases power	ircuit as : (B) it increases current (D) it increases voltage	7779, 0		
Səse Səsse	With increase in frequency of an AC supply, th (A) decreases (C) increases as square of frequency	e inductive reactance : (B) increases directly proportional to frequency (D) decreases inversely with frequency	903 903		
O Y O Y O Y O Y O Y O Y O Y O Y O Y O Y	With increase in frequency of an AC supply, th (A) varies inversely with frequency (C) varies directly as square of frequency	ne capacitive reactance : (B) varies directly with frequency (D) remains constant	one : 0 (
<u>Г.</u> _{F 6.}	An AC ammeter is used to measure current in a circuit. When a given direct constant current passes through the circuit, the AC ammeter reads 3 ampere. When another alternating current passes through the circuit, the AC ammeter reads 4 ampere. Then the reading of this ammeter if DC and AC flow through the circuit simultaneously, is : (A) 3 ampere (B) 4 ampere (C) 7 ampere (D) 5 ampere				
ebsite E 2.	In an a.c. circuit consisting of resistance R and across L is 80 volt. The total voltage across th (A) 140 V (B) 20 V	d inductance L, the voltage across R is 60 volt and the combination is (C) 100 V (D) 70 V	at Ö. Y. Y		
≥ _{F 8.}	In the AC circuit shown below, the supply volta variable frequency f. At resonance, the circuit	age has constant rms value V but	/a (S. I		
je frc	(A) has a current I given by I = $\frac{V}{R}$	$\begin{bmatrix} R & \frac{1}{\pi}OF & \frac{1}{\pi}H \\ R & \frac{1}{\pi}OF & \frac{1}{\pi}H \end{bmatrix}$	Rariy		
ackaç	(B) has a resonance frequency 500 Hz(C) has a voltage across the capacitor whic across the inductor	h is 180º out of phase with that	Suhag F		
Study F	(D) has a current given by I = $\frac{V}{\sqrt{R^2 + (\frac{1}{\pi} + \frac{1}{\pi})^2}}$	C = 500 μF	es, Maths :		
peolny F 9.	In the circuit shown in figure, if both the bulbs (A) their brightness will be the same	B ₁ and B ₂ are identical : (B) B ₂ will be brighter than B ₁ $\begin{array}{c} L = 10 \text{mH} \\ \hline 0000 \text{mH} \\ 220 \text{ V}, 50 \text{ Hz} \end{array}$	ko Class		
Dov	(C) as frequency of supply voltage is increased decrease.	I the brightness of bulb B_1 will increase and that of B_2 w	∕ill ⊢		
田 田 F10*. ピ	An AC source rated 100 V (rms) supplies a $($	current of 10 A (rms) to a circuit. The average pow	er		

	Get S	Solution of These Packages & Learn by \	/ideo Tutorials on www.MathsBySuhag.com			
c		delivered by the source : (A) must be 1000 W (C) may be greater than 1000 W	(B) may be 1000 W (D) may be less than 1000 W			
ihag.con	F 11.	An inductor coil having some resistance is conner have zero average value over a cycle ? (A) current (C) joule heat	ected to an AC source. Which of the following quantities (B) induced emf in the inductor (D) magnetic energy stored in the inductor			
sBySu	F 12*.	A town situated 20 km away from a power hous The resistance of line source carrying power is 0 a 3000 V–220 V step-down transformer at a s correct	e at 440 V, requires 600 KW of electric power at 220 V. \Box 0.4 Ω per km. The town gets power from the line through B_{0} substitution in the town. Which of the following is/are			
Math		(A) The loss in the form of heat is 640 kW(C) Plant should supply 1240 kW	(B) The loss in the form of heat is 1240 kW . (D) Plant should supply 640 kW			
n website: www.TekoClasses.com & www.N	F 13.	11 kW of electric power can be transmitted to a distant station at (i) 220 V or (ii) 22000 V. Which of the following is correct(A) first mode of transmission consumes less power(B) second mode of transmission consumes less power(C) first mode of transmission draws less current(D) second mode of transmission draws less current				
	F 14.	In a series LCR circuit with an AC source(E_{rm} L = 1.0 H, Which of the following is correct (A) the rms current in the circuit is 0.1 A (B) the rms potential difference across the cap (C) the rms potential difference across the cap (D) the rms current in the circuit is 0.14 A	$_{\rm s}$ = 50 V and v = 50/ π Hz), R = 300 Ω , C = 0.02 mF, $\hfill \ensuremath{E}\en$			
	F 15.	A circuit is set up by connecting $L = 100 \text{ mH}$, C	$C = 5 \ \mu F$ and R =100 Ω in series. An alternating emf of Θ			
	\langle	(150 $\sqrt{2}$) volt, $\frac{500}{\pi}$ Hz is applied across this set (A) the impedance of the circuit is 141.4 Ω (B) the average power dissipated across resists (C) the average power dissipated across induct (D) the average power dissipated across capacity	ries combination. Which of the following is correct ance 225 W tor is zero.			
	F 16*.	In a series RC circuit with an AC source(peak μ F. Then : (A) the peak current is 0.1 A (C) the average power dissipated is 1.5 W	voltage $E_0 = 50 \text{ V}$ and $f = 50 / \pi \text{ Hz}$, $R = 300 \Omega$, $C = 25 \times$ (B) the peak current is 0.7 A $\dot{\Omega}$ (D) the average power dissipated is 3 W $\dot{\Omega}$			
age fron	F 17.	A coil of inductance 5.0 mH and negligible rest voltage E = (10V) sin ω t. Which of the following (A) for ω = 100 s ⁻¹ current is 20 A (C) for ω = 1000 s ⁻¹ current is 2 A	sistance is connected to an oscillator giving an output (B) for $\omega = 500 \text{ s}^{-1}$ current is 4 A (D) for $\omega = 1000 \text{ s}^{-1}$ current is 4 A			
ackage	F 18.	A pure inductance of 1 henry is connected acro $\pi = 22/7$).	ss a 110 V, 70Hz source. Then correct option are (Use			
dy P;		(A) reactance of the circuit is 440 Ω (C) reactance of the circuit is 880 Ω	(B) current of the circuit is 0.25 A (D) current of the circuit is 0.5 A			
Stu		EXERC	CISE-2			
ownload	1.	An LCR series circuit with 100 Ω resistant angular frequency 300 radians per second. We behind the voltage by 60°. When only the induct Calculate the current and power dissipated in L	nce is connected to an AC source of 200 V and $\frac{100}{100}$ nen only the capacitance is removed, the current lags $\frac{100}{100}$ tance is removed, the current leads the voltage by 60°. $\frac{200}{100}$ CR circuit. [REE - 90]			
FREE D	2. 3.	A 100 volt AC source of frequency 500 hertz is 12.5 microfarad and $R = 10$ ohm, all connect resistance. The current in a coil of self inductance 2.0 Henry amount of energy spend during the period wher	connected to a LCR circuit with L = 8.1 millihenry, C = ed in series. Find the potential difference across the [REE - 91] / is increasing according to i = 2 sin t ² ampere. Find the the current changes from zero to 2 ampere [REF- 91]			
		sine sine en energy openia asinig tile period wild				

4. The current in a circuit containing a capacitance C and a resistance R in series leads over the applied

	voltage of frequency	$\frac{\omega}{2\pi}$ by.		[REE - 91]		
)	(A) $\tan^{-1}\left(\frac{1}{\omega CR}\right)$	(B) tan⁻¹ (ωCR)	(C) $\tan^{-1}\left(\omega\frac{1}{R}\right)$	(D) cos⁻¹ (∞CR)		
5.	An alternating pot	ential V = V_0 sin ωt is	applied across a ci	rcuit. As a resu	It the current	t %
•	$I = I_0 \sin\left(\omega t - \frac{\pi}{2}\right) float$	ows in it. The power cons	umed in the circuit per	cycle is	[REE - 92]	page
	(A) zero	(B) 0.5 V ₀ I ₀	(C) 0.707 V ₀ I ₀	(D) 1.414 V ₀ I ₀		
6.	In a purely resistive a (A) Lags behind the (B) Is in phase with t (C) Leads the EMF i (D) Leads the EMF i	AC circuit, the current EMF in phase he e.mf. n phase n half the cycle and lags b	behind it in the other ha	[REE - alf.	92]	98930 58881
7.	A current of 4 A flows a 12 V, 50 rad/s, AC s Also, find the power	s in a coil when connecte source, a current of 2.4 A f developed in the circuit if	d to a 12 V d.c. source. lows in the circuit. Dete a 2500 μF condenser	If the same coil i ermine the inducta is connected in se	is connected to ance of the coil. eries with coil. [REE - 93]	3 7779, 0
8.	The current and volt power consumed in	age in an AC circuit are i the circuit is -	respectively given by I	= $I_0 \cos \omega t$, V = V	V _o sin ωt. The [REE - 93]	903 903
	(A) zero	(B) $\frac{V_0 I_0}{2}$	(C) $\frac{V_0 I_0}{\sqrt{2}}$	(D) $\sqrt{2} V_0 I_0$		ле : 0
9.	If a resistance of $(3, 60\Omega)$ are connected if (A) A current of 2.0 A (C) Power factor of t	30Ω , a capacitor reacta n series to a 100 V, 50 Hz flows he circuit is zero	nce 20 Ω , and an in z power source, then - (B) A current of 3.33 μ (D) Power factor of th	ductor of induct [REE - A flows ne circuit is 3/5	tive reactance • 94]	iopal Phor
10.	A series LCR circuit s ⁻¹ . At resonance, th the values of L and C	containing a resistance of e voltage across resistan C. At what frequency the c	f 120 ohm has angular i ce and inductance are surrent in the circuit lag	resonance freque 60V and 40 V res s the voltage by 4	ency 4 × 10 ⁵ rad spectively. Find 45°? [REE - 95]	Sir), Bh
11.	In a circuit, an induct source of voltage V = (A) π	ctance of 0.1 Henry and a = 5 sin 10 t. The phase dif (B) 2π	a resistance of 1Ω are ference between the cu (C) $\pi/4$ (D	connected in ser irrent and applied) 0	ries with an AC I voltage will be [REE - 96]	(S. R. K.
12.)	An inductive reacta $R = 100 \Omega$, are con- statements are correc (A) The maximum volume (B) The net impedant (C) The maximum volume (D) The maximum volume	ance, $X_{L} = 100 \Omega$, a can nected in series with a sect? obtage across the capacito ice of the circuit is 100Ω . obtage across the inductar obtage across the series is	apacitive reactance, > source of 100 sin (50 pr is 100 V. nce is 100 V. s 100 V.	K _c = 100 Ω, and t) volts. Which o [REE - 96]	d a resistance f the following	: Suhag R. Kariya
, 13 .	A series LCR circuit (A) Voltage across R (C) Power transferre	is operated at resonance. I is minimum d is maximum	Then (B) Impedance is min (D) Current amplitude	[REE - 97] imum e is minimum		, Maths
14. 15.	A box P and a coil C source is constant a Coil Q has a self ind maximum current flo voltage across P and An inductor 20×10^{-1} source of EMF V = 1	are connected in series t 10 V. Box P contains a c uctance 4.9 mH and a re- ows in P and Q. Find the Q respectively. Henry, a capacitor 100 0 sin 314 t. Find the energ	with an AC source of v capacitance of 1 μ F in s sistance of 68 Ω . The f impedance of P and C μ F and a resistor 50 Ω a gy dissipated in the circ	variable frequence series with a resist requency is adjust at this frequence [REE - 98] are connected in uit in 20 minutes.	cy. The EMF. of stance of 32 $Ω$. sted so that the y. Also find the series across a If resistance is	Teko Classes

ANŚWER

SECTION (A) : E1. D E2. C E3. D A1. B A2. D A3. B E4. A E5 zero O A* 4. C A5. D A6. D E6. (a) 800 V (b) (i) 0.25 A (ii) 0.2 A. O A7. ABC A8. B A9. D SECTION (F) : F1. F2. C F3. A	
CO_{A1} B A 2. D A 3. B E 4. A E 5 zero O_{A}^{*} A. C A 5. D A 6. D E 6. (a) 800 V (b) (i) 0.25 A (ii) 0.2 A. $O_{A7.}^{*}$ ABC A 8. B A 9. D SECTION (F) : F 1. F 2. C F 3. A	
D $A* 4.$ C $A 5.$ D $A 6.$ D $E 6.$ $(a) 800 \lor (b) (i) 0.25 \land (ii) 0.2 \land A.$ $A 7.$ ABC $A 8.$ B $A 9.$ D $E C TION (F) :$ $F 1.$ $A F 2.$ $C F 3.$ A	
A7. ABC A8. B A9. D SECTION (F): F1. A F2. C F3. A	
<u> ア F1. A F2. C F3. A </u>	
$\frac{1}{10}$ A 10. $\frac{1}{6}\sqrt{(e^2-1)/2}$ A 11. $\frac{\sqrt{0}}{\sqrt{3}}$ F 4. B F 5. A F 6. D	
F7. C	
* Marked are more than one correct options	5.
\mathbf{F} B A B B C B	
C B 7 C B 8 B B 9 B F11. AB F12*. AC F13. BD	
\bigcirc B 10 A B 11 B B 12* ABCD F 14. AB F 15. ABCD F 16*. AC	
F17. ABC F18. AB	
6 B 13. $12\sqrt{2}$ volts B 14. 0.72 W 6 B 15. 10 W 5 W B 16. 50 sec EXERCISE 2	
O D I	14
\overrightarrow{O} C 1. A C 2. D C 3. ABD 3 4 iouto	м
$\overrightarrow{\mathbf{A}}$ C4. C C5. B C6. B 5 $\overrightarrow{\mathbf{A}}$ 6 B	
\Box C7. A C8. D C9. B 7 08 H 17 28 watt 8 A	
\leq C10. A C11. $\frac{2.2\sqrt{3}}{\pi}$ = 1.2 H	
10. 2×10^{-4} Henry; $\frac{1}{32}$ µF; 8×10^{5} rad/s	
sum of the rms potential differences across 11. C 12. ABCD	
the three elements is greater that the rms 13. B, C	
14. $P=76.96 \Omega, Q=97.59 \Omega, P=7.6 V; Q=13$	= 9.8 V,
E C 13. 25 mJ, 5mJ C 14. Z = $50\sqrt{2}$ ohm, $V_{0} = 500\sqrt{2}$ volt and impedance = 100Ω	
$V_{L} = 600 \sqrt{2}$ volt 15. 952 J; 0.52 cos 314 t	
$\frac{\Theta}{O}$ C 15. 125 Ω , 288 J 16. T/8 or $\frac{\pi}{4\pi}$ 17. D	
4ω 4ω SECTION (D):	
$\begin{array}{c} \square & \square $	
$504.$ A D 5. D D 6. 4μ	
$\vec{5}$ D 7. (a) $\frac{250}{3\pi}$ Hz (b) 2 mA	
O D 8. 1.5 A D 9. 1×10 ⁻⁸ henry	
Ω	