CENTRE OF MASS

CENTRE OF MASS

Every physical system has associated with it a certain point whose motion characterises the motion of the whole system. When the system moves under some external forces, then this point moves as if the entire mass of the system is concentrated at this point and also the external force is applied at this point for translational motion. This point is called the centre of mass of the system.

Centre of mass of system of N point masses is that point about which moment of mass of the system is zero. It means that if about a particular origin the moment of mass of system of N point masses is zero then that particular origin is the centre of mass of the system.

MOMENT OF POINT MASS 'M’ ABOUT AN ORIGIN ' 0 '

Mass Moment : It is defined as the product of mass of the particle and distance of the particle from the point about which mass moment is taken. It is a vector quantity and its direction is directed from the point about which it is taken to the particle
Let P be the point where mass ' m ' is located. Take position vector of point P with respect to origin O. The moment of point mass m about origin O is defined as

$$
\vec{M}=m \vec{r}
$$

The physical significance of moment of mass is that when differentiated with respect to time it gives momentum of the particle.

It is worth noting that moment of point mass depends on choice of origin.

MOMENT OF SYSTEM OF N POINT MASSES ABOUT AN ORIGIN ' O '

Consider a system of N point masses $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3} \ldots \ldots \ldots . . \mathrm{m}_{\mathrm{n}}$ whose position vectors from origin O are given by $\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}, \ldots \ldots . . . \ldots \ldots . \vec{r}_{n}$ respectively.

The moment of system of point masses about origin O is the sum of individual moment of each point mass about origin O .

$$
\vec{M}=m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+m_{3} \vec{r}_{3}+\ldots \ldots \ldots \ldots .+m_{n} \vec{r}_{n}
$$

CENTRE OF MASS OF A SYSTEM OF 'N' DISCRETE PARTICLES

Consider a system of N point masses $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$,
 position vectors from origin O are given by $\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}, \ldots \ldots \ldots$. \vec{r}_{n} respectively. Then the position vector of the centre of mass C of the system is given by.

$$
\begin{aligned}
& \text { is given by. } \\
& \begin{array}{l}
\vec{r}_{c m}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+\ldots \ldots .+m_{n} \vec{r}_{n}}{m_{1}+m_{2}+\ldots \ldots \ldots .+m_{n}} ; \vec{r}_{c m}=\frac{\sum_{i=1}^{n} m_{i} \vec{r}_{i}}{\sum_{i=1}^{n} m_{i}} \\
\vec{r}_{c m}=\frac{1}{M} \sum_{i=1}^{n} m_{i} \vec{r}_{i}
\end{array}
\end{aligned}
$$

POSITION OF COM OF TWO PARTICLES

Centre of mass of two particles of mass m_{1} and m_{2} separated by a distance r lies in between the two particles. The distance of centre of mass from any of the particle (r) is inversely proportional \sim to the mass of the particle (m)
i.e.

$$
r \propto \frac{1}{m}
$$

$\frac{r_{1}}{r_{2}}=\frac{m_{2}}{m_{1}}$

or $m_{1} r_{1}=m_{2} r_{2}$
or
$r_{1}=\left(\frac{m_{2}}{m_{2}+m_{1}}\right) r$ and $r_{2}=\left(\frac{m_{1}}{m_{1}+m_{2}}\right) r$
Here, $\quad r_{1}=$ distance or COM from m_{1}
and $\quad r_{2}=$ distance or COM from m_{2}
From the above discussion, we see that
$r_{1}=r_{2}=\frac{1}{2}$ if $m_{1}=m_{2}$, i.e., COM lies midway between the two particles of equal masses.
Similarly, $r_{1}>r_{2}$ if $m_{1}<m_{2}$ and $r_{1}<r_{2}$ if $m_{2}<m_{1}$, i.e., COM is nearer to the particle having larger mass.

Illustration :

Two particles of mass 1 kg and 2 kg are located at $\mathrm{x}=0$ and $\mathrm{x}=3 \mathrm{~m}$. Find the position of their centre of mass.
Sol. Since, both the particles lies on x-axis, the COM will also lie on x-axis. Let the COM is located at
$x=x$, then
$\begin{aligned} r_{1} & =\text { distance of COM from the particle of mass } 1 \mathrm{~kg} \\ & =x\end{aligned}$ and $\quad r_{2}=$ distance of COM from the particle of mass 2 kg $=(3-x)$

Using $\frac{r_{1}}{r_{2}}=\frac{m_{2}}{m_{1}}$
or $\quad \frac{x}{3-x}=\frac{2}{1}$ or $x=2 m$
Thus, the COM of the two particles is located at $x=2 \mathrm{~m}$.
Ans.

Illustration :

The position vector of three particles of mass $m_{1}=1 \mathrm{~kg}, m_{2}=2 \mathrm{~kg}$ and $m_{3}=3 \mathrm{~kg}$ are $\vec{r}_{1}=(\hat{i}+4 \hat{j}+\hat{k}) m, \vec{r}_{2}=(\hat{i}+\hat{j}+\hat{k}) m$ and $\vec{r}_{3}=(2 \hat{i}-\hat{j}-2 \hat{k}) m$ respectively. Find the position vector of their centre of mass.
Sol. The position vector of COM of the three particles will be given by

$$
\overrightarrow{\mathbf{r}}_{\mathrm{COM}}=\frac{\mathrm{m}_{1} \overrightarrow{\mathbf{r}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathbf{r}}_{2}+\mathrm{m}_{3} \overrightarrow{\mathbf{r}}_{3}}{\mathrm{~m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}}
$$

Substituting the values, we get

$$
\begin{aligned}
\overrightarrow{\mathrm{r}}_{\mathrm{COM}} & =\frac{(1)(\hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}})+(2)(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})+(3)(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{k})}{1+2+3} \\
& =\frac{9 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}}{6}
\end{aligned}
$$

$$
\overrightarrow{\mathbf{r}}_{\mathrm{COM}}=\frac{1}{2}(3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}) \mathrm{m}
$$

Ans.

Illustration :

Four particles of mass $1 \mathrm{~kg}, 2 \mathrm{~kg}, 3 \mathrm{~kg}$ and 4 kg are placed at the four vertices A, B, C and D of a square of side 1 m . Find the position of centre of mass of the particles.
Sol. Assuming D as the origin, DC as x-axis and DA as y-axis, we have

$$
\begin{aligned}
& \mathrm{m}_{1}=1 \mathrm{~kg},\left(x_{1}, y_{1}\right)=(0,1 \mathrm{~m}) \\
& \mathrm{m}_{2}=2 \mathrm{~kg},\left(\mathrm{x}_{2}, y_{2}\right)=(1 \mathrm{~m}, 1 \mathrm{~m}) \\
& \mathrm{m}_{3}=3 \mathrm{~kg},\left(x_{3}, y_{3}\right)=(1 \mathrm{~m}, 0) \\
& \mathrm{m}_{4}=4 \mathrm{~kg},\left(\mathrm{x}_{4}, y_{4}\right)=(0,0)
\end{aligned}
$$

and

$$
=\frac{(1)(1)+2(1)+3(0)+4(0)}{1+2+3+4}
$$

Three particles of masses $0.5 \mathrm{~kg}, 1.0 \mathrm{~kg}$ and 1.5 kg are placed at the three corners of a right angled triangle of sides $3.0 \mathrm{~cm}, 4.0 \mathrm{~cm}$ and 5.0 cm as shown in figure. Locate the centre of mass of the system.

$$
\begin{aligned}
x_{\text {COM }}= & \frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} m_{3}+m_{4} x_{4}}{m_{1}+m_{2}+m_{3}+m_{4}} \\
& =\frac{(1)(0)+2(1)+3(1)+4(0)}{1+2+3+4} \\
& =\frac{5}{10}=\frac{1}{2} m=0.5 \mathrm{~m}
\end{aligned}
$$

Similarly,

$$
\mathrm{y}_{\text {сом }}=\frac{\mathrm{m}_{1} \mathrm{y}_{1}+\mathrm{m}_{2} \mathrm{y}_{2}+\mathrm{m}_{3} \mathrm{y}_{3}+\mathrm{m}_{4} \mathrm{y}_{4}}{\mathrm{~m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{4}}
$$

Thus, position of COM of the four particles is as shown in figure.

Ques

Ans. The centre of mass is 1.3 cm to the right and 1.5 cm above the 0.5 kg particle.

Illustration :

Consider a two-particle system with the particles having masses m_{1} and m_{2}. If the first particle is pushed towards the centre of mass through a distance d, by what distance should the second particle be moved so as to keep the centre of mass at the same position?
Sol. Consider figure. Suppose the distance of m_{1} from the centre of mass C is x_{1} and that of m_{2} from C is x_{2}. Suppose the mass m_{2} is moved through a distance d^{\prime} towards C so as to keep the centre of mass at C.

Then,

$$
\begin{align*}
& m_{1} x_{2}=m_{2} x_{2} \tag{i}\\
& m_{1}\left(x_{1}-d\right)=m_{2}\left(x_{2}-d^{\prime}\right) . \tag{ii}
\end{align*}
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Subtracting (ii) from (i)

$$
\mathrm{m}_{1} \mathrm{~d}=\mathrm{m}_{2} \mathrm{~d}^{\prime}
$$

or, $\quad d^{\prime}=\frac{m_{1}}{m_{2}} d$,

CENTRE OF MASS OF A CONTINUOUS MASS DISTRIBUTION

For continuous mass distribution the centre of mass can be located by replacing summation sign with an integral sign. Proper limits for the integral are chosen according to the situation

$$
\begin{aligned}
& x_{\mathrm{cm}}=\frac{\int x d m}{\int d m}, y_{c m}=\frac{\int y d m}{\int d m}, z_{c m}=\frac{\int z d m}{\int d m} \\
& \int \mathrm{dm}=M \text { (mass of the body) } \\
& \overrightarrow{\mathrm{r}}_{\mathrm{cm}}=\frac{1}{M} \int \overrightarrow{\mathrm{r}} \mathrm{dm}
\end{aligned}
$$

Note: If an object has symmetric uniform mass distribution about x axis than y coordinate of COM is zero and vice-versa

CENTRE OF MASS OF A UNIFORM ROD
Suppose a rod of mass M and length L is lying along the x-axis with its one end at $x=0$ and the other at $x=1$

Illustration :

A rod of length L is placed along the x-axis between $x=0$ and $x=L$. The linear density (mass/ length) λ of the rod varies with the distance x from the origin as $\lambda=R x$. Here, R is a positive constant. Find the position of centre of mass of this rod.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Sol. Mass of element $d x$ situated at $x=x$ is

$$
d m=\lambda d x=R x d x
$$

The COM of the element has coordinates ($x, 0,0$). Therefore, x-coordinate of COM of the rod will be

$$
\mathrm{x}_{\text {сом }}=\frac{\int_{0}^{\mathrm{L}} x \mathrm{dm}}{\int_{0}^{\mathrm{L}} \mathrm{dm}}
$$

Ques. The density of a straight rod of length L varies as $\rho=A+B x$ where x is the distance from the left end. Locate the centre of mass.

Ans.
Hence, the centre of mass of the rod lies at $\left[\frac{2 L}{3}, 0,0\right]$
The y-coordinate of COM of the rod is $y_{\text {COM }}=\frac{\int y d m}{\int d m}=0 \quad($ as $y=0)$
Similarly,

$$
z_{\text {COM }}=0
$$

CENTRE OF MASS OF A SEMICIRCULAR RING

Figure shows the object (semi circular ring). By observation we can say that the x-coordinate of $\dot{\mathcal{D}}$ the centre of mass of the ring is zero as the half ring is symmetrical on both sides of the origin. Only we are required to find the y-coordinate of the centre of mass.

To find $y_{c m}$ we use $\quad y_{c m}=\frac{1}{M} \int d m y$

Here for $d m$ we consider an elemental arc of the ring at an angle θ from the x-direction of angular width $d \theta$. If radius of the ring is R then its y coordinate will be $R \sin \theta$, here $d m$ is given as

$$
d m=\frac{M}{\pi R} \times R d \theta
$$

So from equation ---(i), we have

$$
\begin{align*}
& y_{c m}=\frac{1}{M} \int_{0}^{\pi} \frac{M}{\pi R} R d \theta(R \sin \theta) \\
& =\frac{R}{\pi} \int_{0}^{\pi} \sin \theta d \theta \\
& y_{c m}=\frac{2 R}{\pi} \tag{ii}
\end{align*}
$$

CENTRE OF MASS OF SEMICIRCULAR DISC

Figure shows the half disc of mass M and radius R. Here, we are only required to find the $y-$ coordinate of the centre of mass of this disc as centre of mass will be located on its half vertical diameter. Here to find $y_{c m}$, we consider a small elemental ring of mass $d m$ of radius x on the disc (disc can be considered to be made up such thin rings of increasing radii) which will be integrated from 0 to R. Here $d m$ is given as

$$
\mathrm{dm}=\frac{2 \mathrm{M}}{\pi \mathrm{R}^{2}}(\pi \mathrm{x}) \mathrm{dx}
$$

Now the y-coordinate of the element is taken as $\frac{2 x}{\pi}$, as in previous section, we have derived that
the centre of mass of a semi circular ring is concentrated at $\frac{2 R}{\pi}$

Illustration :

Sol. Let ρ be the mass per unit area of the object. To find its centre of mass we consider an element as a half ring of mass dm as shown in figure of radius r and width $d r$ and there we have
Now,
$d m=\rho \pi r d r$

Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

$$
\begin{aligned}
& y_{c m}=\frac{1}{M} \int_{R_{1}}^{R_{2}}(\rho \cdot \pi r d r) \cdot \frac{2 r}{\pi} \\
& y_{c m}=\frac{2 \rho}{\rho \frac{\pi}{2}\left(R_{2}^{2}-R_{1}^{2}\right)} \int_{R_{1}}^{R_{2}} r^{2} d r=\frac{4\left(R_{2}^{3}-R_{1}^{3}\right)}{3 \pi\left(R_{2}^{2}-R_{1}^{2}\right)}
\end{aligned}
$$

Alternative solution :

We can also find the centre of mass of this object by considering it to be complete half disc of radius R_{2} and a smaller half disc of radius R_{1} cut from it. If $y_{c m}$ be the centre of mass of this disc \bumpeq we have from the mass moments.

$$
\begin{aligned}
& \left(\rho \cdot \frac{\pi \mathrm{R}_{1}^{2}}{2}\right) \times\left(\frac{4 \mathrm{R}_{1}}{3 \pi}\right)+\left(\rho \cdot \frac{\pi}{2}\left(\mathrm{R}_{2}^{2}-\mathrm{R}_{1}^{2}\right)\right)\left(\mathrm{y}_{\mathrm{cm}}\right)=\left(\rho \cdot \frac{\pi \mathrm{R}_{2}^{2}}{2}\right) \times\left(\frac{4 \mathrm{R}_{2}}{3 \pi}\right) \\
& y_{\mathrm{cm}}=\frac{4\left(\mathrm{R}_{2}^{3}-\mathrm{R}_{1}^{3}\right)}{3 \pi\left(\mathrm{R}_{2}^{2}-\mathrm{R}_{1}^{2}\right)}
\end{aligned}
$$

CENTRE OF MASS OF A SOLID HEMISPHERE

The hemisphere is of mass M and radius R. To find its centre of mass (only y-coordinate), we consider an element disc of width dy, mass dm at a distance y from the centre of the hemisphere. The radius of this elemental disc will be given as

CENTRE OF MASS OF A HOLLOW HEMISPHERE

A hollow hemisphere of mass M and radius R. Now we consider an elemental circular strip of angular width $\mathrm{d} \theta$ at an angular distance θ from the base of the hemisphere. This strip will have an area.

$$
d S=2 \pi R \cos \theta R d \theta
$$

Its mass dm is given as

$$
\mathrm{dm}=\frac{\mathrm{M}}{2 \pi R^{2}} 2 \pi R \cos \theta R d \theta
$$

Here y-coordinate of this strip of mass $d m$ can be taken as $R \sin \theta$. Now we can obtain the centre of mass of the system as.

$$
\begin{aligned}
y_{c m} & =\frac{1}{M} \int_{0}^{\frac{\pi}{2}} d m R \sin \theta \\
& =\frac{1}{M} \int_{0}^{\frac{\pi}{2}}\left(\frac{M}{2 \pi R^{2}} 2 \pi R^{2} \cos \theta d \theta\right) R \sin \theta
\end{aligned}
$$

CENTRE OF MASS OF A SOLID CONE

A solid cone has mass M, height H and base radius R. Obviously the centre of mass of this cone will lie somewhere on its axis, at a height less than $\mathrm{H} / 2$. To locate the centre of mass we consider an elemental disc of width dy and radius r, at a distance y from the apex of the cone. Let the mass of this disc be dm, which can be given as

$$
\mathrm{dm}=\frac{3 \mathrm{M}}{\pi \mathrm{R}^{2} \mathrm{H}} \times \pi \mathrm{r}^{2} \mathrm{dy}
$$

here y_{cm} can be given as

$$
\begin{aligned}
& y_{c m}=\frac{1}{M} \int_{0}^{H} y d m \\
& =\frac{1}{M} \int_{0}^{R}\left(\frac{3 M}{\pi R^{2} H} \pi\left(\frac{R y}{H}\right)^{2} d y\right) y \\
& =\frac{3}{H^{3}} \int_{0}^{H} y^{3} d y \\
& =\frac{3 H}{4}
\end{aligned}
$$

Illustration :

Find out the centre of mass of an isosceles triangle of base length a and altitude b. Assume that the mass of the triangle is uniformly distributed over its area.
Sol. To locate the centre of mass of the triangle, we take a strip of width dx at a distance x from the vertex of the triangle. Length of this strip can be evaluated by similar triangles as

$$
\ell=x .(a / b)
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.Math \AA BySuhag.com
Mass of the strip is $d m=\frac{2 M}{a b} \ell d x$
Distance of centre of mass from the vertex of the triangle is

$$
\begin{aligned}
& x_{C M}=\frac{1}{M} \int x d m \\
& =\int_{0}^{b} \frac{2 x^{2}}{b^{2}} d x \\
& =\frac{2}{3} b
\end{aligned}
$$

page 9

Proceeding in the similar manner, we can find the COM of certain rigid bodies. Centre of mass of some well known rigid bodies are given below :

1. Centre of mass of a uniform rectangular, square or circular plate lies at its centre. Axis of symmetry plane of symmetry.

2. If some mass of area is removed from a rigid body, then the position of centre of mass of the remaining portion is obtained from the following formulae:
and

$$
\begin{align*}
& \vec{r}_{\mathrm{COM}}=\frac{m_{1} \vec{r}_{1}-m_{2} \vec{r}_{2}}{m_{1}-m_{2}} \text { or } \vec{r}_{\mathrm{COM}}=\frac{A_{1} \vec{r}_{1}-A_{2} \vec{r}_{2}}{A_{1}-A_{2}} \tag{i}\\
& x_{\mathrm{COM}}=\frac{m_{1} x_{1}-m_{2} x_{2}}{m_{1}-m_{2}} \text { or } x_{\mathrm{COM}}=\frac{A_{1} x_{1}-A_{2} x_{2}}{A_{1}-A_{2}} \tag{ii}\\
& y_{\mathrm{COM}}=\frac{m_{1} y_{1}-m_{2} y_{2}}{m_{1}-m_{2}} \text { or } y_{C O M}=\frac{A_{1} y_{1}-A_{2} y_{2}}{A_{1}-A_{2}} \\
& z_{\text {COM }}=\frac{m_{1} z_{1}-m_{2} z_{2}}{m_{1}-m_{2}} \text { or } z_{C O M}=\frac{A_{1} z_{1}-A_{2} z_{2}}{A_{1}-A_{2}}
\end{align*}
$$

Here, $m_{1}, A_{1}, \vec{r}_{1}, x_{1}, y_{1}$ and z_{1} are the values for the whole mass while $m_{2}, A_{2}, \vec{r}_{2}, \vec{x}_{2}, y_{2}$ and z_{2} are the values for the mass which has been removed. Let us see two examples in support of the above theory.

Illustration :

Find the position of centre of mass of the uniform lamina shown in figure.

Sol. Here,

$$
\begin{aligned}
& \mathrm{A}_{1}=\text { area of complete circle }=\pi \mathrm{a}^{2} \\
& \mathrm{~A}_{2}=\text { area of small circle }=\pi\left(\frac{\mathrm{a}}{2}\right)^{2}=\frac{\pi \mathrm{a}^{2}}{4}
\end{aligned}
$$

$$
\left(x_{1}, y_{1}\right)=\text { coordinates of centre of mass of large circle }=(0,0)
$$

and $\quad\left(x_{2}, y_{2}\right)=$ coordinates of centre of mass of small circle $=\left(\frac{a}{2}, 0\right)$

Using

$$
\mathrm{x}_{\text {сом }}=\frac{\mathrm{A}_{1} \mathrm{x}_{1}-\mathrm{A}_{2} \mathrm{x}_{2}}{\mathrm{~A}_{1}-\mathrm{A}_{2}}
$$

we get $\quad \mathrm{x}_{\text {сом }}=\frac{-\frac{\pi \mathrm{a}^{2}}{4}\left(\frac{\mathrm{a}}{2}\right)}{\pi \mathrm{a}^{2}-\frac{\pi \mathrm{a}^{2}}{4}}=\frac{-\left(\frac{1}{8}\right)}{\left(\frac{3}{4}\right)} \mathrm{a}=-\frac{\mathrm{a}}{6}$
and $y_{\text {COM }}=0$ as y_{1} and y_{2} both are zero.

Ques.
Half of the rectangular plate shown in figure is made of a material of density ρ_{1} and the other half of density ρ_{2}. The length of the plate is L. Locate the centre of mass of the plate.

Ans. $X=\frac{\left(\rho_{1}+3 \rho_{2}\right)}{4\left(\rho_{1}+\rho_{2}\right)} L$

Ques.

The centre of mass of rigid body always lie inside the body. Is this statement true or false?
Ans. False
Ques.
The centre of mass always lie on the axis of symmetry if it exists. Is this statement true of false? Ans. True

Ques.

If all the particles of a system lie in y-z plane, the x-coordinate of the centre of mass will be zero. Is this statement true or not?
Ans. True

CENTRE OF MASS OF SOME COMMON SYSTEMS

$\Rightarrow \quad$ A system of two point masses $m_{1} r_{1}=m_{2} r_{2}$

The centre of mass lies closer to the heavier mass.
$\Rightarrow \quad$ Rectangular plate (By symmetry)

$$
\mathrm{x}_{\mathrm{c}}=\frac{\mathrm{b}}{2} \quad \mathrm{y}_{\mathrm{c}}=\frac{\mathrm{L}}{2}
$$

$\Rightarrow \quad$ A triangular plate (By qualitative argument)

$\Rightarrow \quad$ A semi-circular ring
$\Rightarrow \quad$ A semi-circular disc

$$
y_{c}=\frac{4 R}{3 \pi}
$$

$$
y_{c}=\frac{R}{2} \quad x_{c}=0
$$

$$
y_{c}=\frac{3 R}{8} \quad x_{c}=0
$$

$\Rightarrow \quad$ A circular cone (solid)
$y_{c}=\frac{h}{4}$
$\Rightarrow \quad$ A circular cone (hollow)
$y_{c}=\frac{h}{3}$

MOTION OF CENTRE OF MASS AND CONSERVATION OF MOMENTUM :

Velocity of centre of mass of system
$\vec{v}_{c m}=\frac{m_{1} \frac{\overrightarrow{d r_{1}}}{d t}+m_{2} \frac{\overrightarrow{d r_{2}}}{d t}+m_{3} \frac{\overrightarrow{d r_{3}}}{d t} \ldots \ldots \ldots \ldots . .+m_{n} \frac{\overrightarrow{d r_{n}}}{d t}}{M}=\frac{m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \vec{v}_{3} \ldots \ldots \ldots .+m_{n} \vec{v}_{n}}{M}$
(1) COM at rest :
If $F_{\text {ext }}=0$ and $V_{c m}=0$, then COM remains at rest. Individual components of the system may move and have non-zero momentum due to mutual forces (internal), but the net momentum of the system remains zero.
(i) All the particles of the system are at rest.
(ii) Particles are moving such that their net momentum is zero.
 example:

(iii) A bomb at rest suddenly explodes into various smaller fragments, all moving in different directions then, since the explosive forces are internal \& there is no external force on the system for explosion therefore, the COM of the bomb will remain at the original position and the fragment fly such that their net momentum remains zero.
(iv) Two men standing on a frictionless platform, push each other, then also their net momentum remains zero because the push forces are internal for the two men system.
(v) A boat floating in a lake, also has net momentum zero if the people on it changes their position, because the friction force required to move the people is internal of the boat system.
(vi) Objects initially at rest, if moving under mutual forces (electrostatic or gravitation)also have net momentum zero.
(vii) A light spring of spring constant k kept copressed between two blocks of masses m_{1} and m_{2} on a smooth horizontal surface. When released, the blocks acquire velocities in opposite directions, such that the net momentum is zero.
(viii) In a fan, all particles are moving but com is at rest

(2) COM moving with uniform velocity:
(ii) Internal explosions / breaking does not change the motion of COM and net momentum remains conserved. A bomb moving in a straight line suddenly explodes into various smaller fragments, all moving in different directions then, since the explosive forces are internal \& there is no external force on the system for explosion therefore, the COM of the bomb will continue the original motion and the fragment fly such that their net momentum remains conserved.
(iii) Man jumping from cart or buggy also exert internal forces therefore net momentum of the system and hence, Motion of COM remains conserved.
(iv) Two moving blocks connected by a light spring of spring constant on a smooth horizontal surface. If the acting forces is only due to spring then COM will remain in its motion and momentum will remain conserved.
(v) Particles colliding in absence of external impulsive forces also have their momentum conserved.
(3) COM moving with acceleration :

If an external force is present then COM continues its original motion as if the external force is acting on it, irrespective of internal forces.
Example:
Projectile motion : An axe is thrown in air at an angle θ with the horizontal will perform a complicated motion of rotation as well as parabolic motion under the effect of gravitation

The motion of axe is complicated but the COM is moving in a parabolic motion.
$H_{\text {com }}=\frac{u^{2} \sin ^{2} \theta}{2 g}$
$R_{c o m}=\frac{u^{2} \sin ^{2} \theta}{g}$
$T=\frac{2 u \sin \theta}{g}$
example:
Circular Motion : A rod hinged at an end, rotates, than its COM performs circular motion. The centripetal force (F_{c}) required in the circular motion is assumed to be acting on the com.

A projectile is fired at a speed of $100 \mathrm{~m} / \mathrm{s}$ at an angle of 37° above the horizontal. At the highest point, the projectile breaks into two parts of mass ratio $1: 3$, the smaller coming to rest. Find the distance from the launching point to the point where the heavier piece lands.

Ques

In a boat of mass 4 M and length ℓ on a frictionless water surface. Two men $A(\operatorname{mass}=M$) and B (mass 2 M) are standing on the two opposite ends. Now A travels a distance $\ell / 4$ relative to boat towards its centre and B moves a distance $3 \ell / 4$ relative to boat and meet A. Find the distance travelled by the boat on water till A and B meet.
Ans. $5 \ell / 28$

Ques

A block A (mass $=4 \mathrm{M}$) is placed on the top of a wedge B of base length ℓ (mass $=20 \mathrm{M}$) as shown in figure. When the system is released from rest. Find the distance moved by the wedge B till the block A reaches ground. Assume all surfaces are frictionless.
Ans. $\ell / 6$

Ques.

An isolated particle of mass m is moving in a horizontal xy plane, along x-axis, at a certain height above ground. It suddenly explodes into two fragments of masses m/4 and 3m/4. An instant later, the smaller fragment is at $y=+15 \mathrm{~cm}$. Find the position of heaver fragment at this instant.
Ans. $y=-5 \mathrm{~cm}$

Momentum Conservation :

The total linear momentum of a system of particles is equal to the product of the total mass of the system and the velocity of its centre of mass. $\vec{P}=M \vec{v}_{c m}$

Illustration :

A shell is fired from a cannon with a speed of $100 \mathrm{~m} / \mathrm{s}$ at an angle 60° with the horizontal (positive x-direction). At the highest point of its trajectory, the shell explodes into two equal fragments. One of the fragments moves along the negative x-direction with a speed of $50 \mathrm{~m} / \mathrm{s}$. What is the speed of the other fragment at the time of explosion.
Sol. As we know in absence of external force the motion of centre of mass of a body remains unaffected. Thus, here the centre of mass of the two fragment will continue to follow the original projectile path. The velocity of the shell at the highest point of trajectory is

$$
v_{M}=u \cos \theta=100 \times \cos 60^{\circ}=50 \mathrm{~m} / \mathrm{s} .
$$

Let v_{1} be the speed of the fragment which moves along the negative x-direction and the other fragment has speed v_{2}, which must be along + ve x-direction. Now from momentum conservation, we have

$$
\begin{array}{ll}
& m v=\frac{-m}{2} v_{1}+\frac{m}{2} v_{2} \\
\text { or } & 2 v=v_{2}-v_{1} \\
\text { or } & v_{2}=2 v+v_{1}=(2 \times 50)+50=150 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Ques

A shell is fired from a cannon with a speed of $100 \mathrm{~m} / \mathrm{s}$ at an angle 30° with the vertical (y-direction). At the highest point of its trajectory, the shell explodes into two fragments of masses in the ratio $1: 2$. The lighter fragments moves vertically upwards with an initial speed of $200 \mathrm{~m} / \mathrm{s}$. What is the speed of the heavier fragment at the time of explosion.

Ans. 125 m/sec

Ques.

A shell at rest at origin explodes into three fragments of masses $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and mkg . The fragments of masses 1 kg and 2 kg fly off with speeds $12 \mathrm{~m} / \mathrm{s}$ along x -axis and $8 \mathrm{~m} / \mathrm{s}$ along y -axis respectively. If mkg files off with speed $40 \mathrm{~m} / \mathrm{s}$ then find the total mass of the shell.
Ans. $\quad 3.5 \mathrm{~kg}$

Ques.

Ans. $10 \sqrt{2} \mathrm{~m} / \mathrm{s} 135^{\circ}$ below the X -axis.

Ques.

A boy of mass 25 kg stands on a board of mass 10 kg which in turn is kept on a frictionless horizontal ice surface. The boy makes a jump with a velocity component $5 \mathrm{~m} / \mathrm{s}$ in horizontal direction with respect to the ice. With what velocity does the board recoil? With what rate are the boy and the board separating from each other?
Sol. $\quad v=12.5 \mathrm{~m} / \mathrm{s} ; 17.5 \mathrm{~m} / \mathrm{s}$.

Illustration

A man of mass m is standing on a platform of mass M kept on smooth ice. If the man starts moving on the platform with a speed v relative to the platform, with what velocity relative to the ice does the platform recoil?
Sol. Consider the situation shown in figure. Suppose the man moves at a speed w towards right and the platform recoils at a speed V towards left, both relative to the ice. Hence, the speed of the man relative to the platform is $V+w$. By the question,

A block moving horizontally on a smooth surface with a speed of $20 \mathrm{~m} / \mathrm{s}$ bursts into two equal parts continuing in the same direction. If one of the parts moves at $30 \mathrm{~m} / \mathrm{s}$, with what speed does the second part move and what is the fractional change in the kinetic energy?

Ans. $\quad v=10 \mathrm{~m} / \mathrm{s}, \frac{1}{4}$.
Ques.
A block at rest explodes into three equal parts. Two parts starts moving along X and Y axes respectively with equal speeds of $10 \mathrm{~m} / \mathrm{s}$. Find the initial velocity of the third part.

Initially, the system was at rest, thus according to momentum conservation, momentum after jump must be zero, as

$$
\begin{aligned}
& m(u-v)=M v \\
& v=\frac{m u}{m+M}
\end{aligned}
$$

Illustration :

A flat car of mass M with a child of mass m is moving with a velocity v_{1}. The child jumps in the \mathscr{R}° direction of motion of car with a velocity u with respect to car. Find the final velocities of the child and that of the car after jump.
Sol. This case is similar to the previous example, except now the car is moving before jump. Here also no external force is acting on the system in horizontal direction, hence momentum remains conserved in this direction. After jump car attains a velocity v_{2} in the same direction, which is less os than v_{1}, due to backward push of the child for jumping. After jump child attains a velocity $u+v_{2}$ in \bigcirc the direction of motion of car, with respect to ground.

According to momentum conservation

$$
(M+m) v_{1}=M v_{2}+m\left(u+v_{2}\right)
$$

Velocity of car after jump is

Two persons A and B, each of mass m are standing at the two ends of rail-road car of mass M. The person A jumps to the left with a horizontal speed u with respect to the car. Thereafter, the person B jumps to the right, again with the same horizontal speed u with respect to the car. Find the velocity of the car after both the persons have jumped off.

Ans. $\frac{m^{2} u}{(M+2 m)(M+m)}$
Ques.
Two identical buggies move one after the other due to inertia (without friction) with the same velocity v_{0}. A man of mass m jumps into the front buggy from the rear buggy with a velocity u relative to his buggy. Knowing that the mass of each huggy is equal to M , find the velocities with which the buggies will move after that.
Ans. $\quad v_{F}=v_{0}+\frac{M m u}{(M+m)^{2}} ; v_{A}=v_{0}-\frac{m u}{(M+m)}$

Illustration :

Each of the blocks shown in figure has mass 1 kg . The rear block moves with a speed of $2 \mathrm{~m} / \mathrm{s}$ towards the front block kept at rest. The spring attached to the front block is light and has a spring constant $50 \mathrm{~N} / \mathrm{m}$. Find the maximum compression of the spring.

Maximum compression will take place when the blocks move with equal velocity. As no net external horizontal force acts on the system of the two blocks, the total linear momentum will remain constant. If V is the common speed at maximum compression, we have,

$$
\begin{aligned}
& =\frac{1}{2}(1 \mathrm{~kg})(1 \mathrm{~m} / \mathrm{s})^{2}+\frac{1}{2}(1 \mathrm{~kg})(1 \mathrm{~m} / \mathrm{s})^{2} \\
& =1 \mathrm{~J}
\end{aligned}
$$

The kinetic energy lost is stored as the elastic energy in the spring.
Hence, $\frac{1}{2}(50 \mathrm{~N} / \mathrm{m}) \mathrm{x}^{2}=2 \mathrm{~J}-1 \mathrm{~J}=1 \mathrm{~J}$
or, $\quad x=0.2 \mathrm{~m}$.

Illustration :

Figure shows two blocks of masses 5 kg and 2 kg placed on a frictionless surface and connected with a spring. An external kick gives a velocity $14 \mathrm{~m} / \mathrm{s}$ to the heavier block in
 the direction of lighter one. Deduce (a) velocity gained by the centre of mass and (b) the separate velocities of the two blocks with respect to centre of mass just after the kick.
Sol. (a) Velocity of centre of mass is
(b) Due to kick on 5 kg block, it starts moving with a velocity $14 \mathrm{~m} / \mathrm{s}$ immediately, but due to inertia 2 kg block remains at rest, at that moment. Thus
Velocity of 5 kg block with respect to the centre of mass is $\mathrm{v}_{1}=14-10=4 \mathrm{~m} / \mathrm{s}$ and the velocity of 2 kg block w.r.t. to centre of mass is $\mathrm{v}_{2}=0-10=-10 \mathrm{~m} / \mathrm{s}$

Illustration :

A light spring of spring constant k is kept compressed between two blocks of masses m and M on a smooth horizontal surface. When released, the blocks acquire velocities in opposite directions. The spring loses contact with the blocks when it acquires natural length. If the spring was initially compressed through a distance x, find the final speeds of the two blocks.
Sol. Consider the two blocks plus the spring to be the system. No external force acts on this system in horizontal direction. Hence, the linear momentum will remain constant. Suppose, the block of mass M moves with a speed V and the other block with a speed v after losing contact with the spring. From conservation of linear momentum in horizontal direction we have

$$
\begin{equation*}
M V-m v=0 \quad \text { or } \quad V=\frac{m}{M} v \tag{i}
\end{equation*}
$$

Initially,

$$
\text { the energy of the system }=\frac{1}{2} \mathrm{kx}^{2}
$$

Finally, \quad the energy of the system $=\frac{1}{2} m v^{2}+\frac{1}{2} M V^{2}$
As there is no friction, mechanical energy will remain conserved.
Therefore, $\quad \frac{1}{2} m v^{2}+\frac{1}{2} M V^{2}=\frac{1}{2} k x^{2}$
Solving Eqs. (i) and (ii), we get

Ques.

Blocks A and B have masses 40 kg and 60 kg respectively. They are placed on a smooth surface and the spring connected between them is stretched by 2 m . If they are released from rest, determine the speeds of both blocks at the instant the spring becomes unstretched.

Ans. $\quad 3.2 \mathrm{~m} / \mathrm{s}, 2.19 \mathrm{~m} / \mathrm{s}$

Illustration :

A block of mass m is connected to another block of mass M by a massless spring of spring constant k. The blocks are kept on a smooth horizontal plane and are at rest. The
 spring is unstretched when a constant force F starts acting on the block of mass M to pull it. Find the maximum extension of the spring.
Sol. We solve the situation in the reference frame of centre of mass. As only F is the external force

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
acting on the system, due to this force, the acceleration of the centre of mass is $F /(M+m)$. Thus with respect to centre of mass there is a Pseudo force on the two masses in opposite direction, the free body diagram of m and M with respect to centre of mass (taking centre of mass at rest) is shown in figure.

Taking centre of mass at rest, if m moves maximum by a distance x_{1} and M moves maximum by a distance x_{2}, then the work done by external forces (including Pseudo force) will be

$$
\begin{aligned}
& W=\frac{m F}{m+M} \cdot x_{1}+\left(F-\frac{M F}{m+M}\right) \cdot x_{2} \\
& =\frac{m F}{m+M} \cdot\left(x_{1}+x_{2}\right)
\end{aligned}
$$

This work is stored in the form of potential energy of the spring as

$$
U=\frac{1}{2} k\left(x_{1}+x_{2}\right)^{2}
$$

Thus on equating we get the maximum extension in the spring, as after this instant the spring starts contracting.

$$
\begin{aligned}
& \frac{1}{2} k\left(x_{1}+x_{2}\right)^{2}=\frac{m F}{m+M} \cdot\left(x_{1}+x_{2}\right) \\
& x_{\max }=x_{1}+x_{2}=\frac{2 m F}{k(m+M)}
\end{aligned}
$$

Illustration :

Two blocks of equal mass m are connected by an unstretched spring and the system is kept at rest on a frictionless horizontal surface. A constant force F is applied on one of the blocks pulling it away from the other as shown in figure (a) Find the displacement of the centre of mass at time t (b) if the extension of the spring is x_{0} at time t, find the displacement of the two blocks at this instant.

Sol. (a) The acceleration of the centre of mass is

$$
a_{\text {cOM }}=\frac{F}{2 m}
$$

The displacement of the centre of mass at time t will be

$$
x=\frac{1}{2} a_{\mathrm{COM}} t^{2}=\frac{\mathrm{Ft}^{2}}{4 \mathrm{~m}}
$$

Ans.
(b) Suppose the displacement of the first block is x_{1} and that of the second is x_{2}. Then,

$$
\begin{align*}
& x=\frac{m x_{1}+m x_{2}}{2 m} \\
& \frac{\mathrm{Ft}^{2}}{4 m}=\frac{x_{1}+x_{2}}{2} \\
& x_{1}+x_{2}=\frac{F t^{2}}{2 m} \tag{i}
\end{align*}
$$

Further, the extension of the spring is $x_{1}-x_{2}$. Therefore,

$$
\begin{equation*}
x_{1}-x_{2}=x_{0} \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii),

$$
\begin{aligned}
& x_{1}=\frac{1}{2}\left(\frac{F t^{2}}{2 m}+x_{0}\right) \\
& x_{2}=\frac{1}{2}\left(\frac{\mathrm{Ft}^{2}}{2 m}-x_{0}\right)
\end{aligned}
$$

Ans.

IMPULSE

Impulse of a force F action on a body is defined as :-

$$
\begin{aligned}
& \overrightarrow{\mathbf{J}}=\int_{\mathrm{t}_{\mathrm{i}}}^{\mathrm{t}_{\mathrm{t}}} F d t \\
& \overrightarrow{\mathbf{J}}=\int F d t=\int \mathrm{m} \frac{d v}{d t} d t=\int \mathrm{mdv} \\
& \overrightarrow{\mathbf{J}}=\mathrm{m}\left(\mathrm{v}_{2}-v_{1}\right)
\end{aligned}
$$

It is also defined as change in momentum

$$
\overrightarrow{\mathrm{J}}=\Delta \overrightarrow{\mathrm{P}} \quad \text { (impulse - momentum theorem) }
$$

Instantaneous Impulse :

There are many occasions when a force acts for such a short time that the effect is instantaneous, e.g., a bat striking a ball. In such cases, although the magnitude of the force and the time for which it acts may each be unknown but the value of their product (i.e., impulse) can be known by measuring the initial and final momenta. Thus, we can write.

$$
\overrightarrow{\mathbf{J}}=\int \overrightarrow{\mathrm{F}} \mathrm{dt}=\Delta \overrightarrow{\mathrm{P}}=\vec{P}_{f}-\vec{P}_{i}
$$

Regarding the impulse it is important to note that impulse applied to an object in a given time interval can also be calculated from the area under force time ($\mathrm{F}-\mathrm{t}$) graph in the same time interval.
Important Points :
(1) It is a vector quantity.
(2) Dimensions $=\left[\right.$ MLT $\left.^{-1}\right]$
(3) SI unit $=\mathrm{kg} \mathrm{m} / \mathrm{s}$
(4) Direction is along change in momentum.
(5) Magnitude is equal to area under the F-t. graph.

$$
\begin{equation*}
\mathrm{J}=\int \mathrm{Fdt}=\mathrm{F}_{\mathrm{av}} \int \mathrm{dt}=\mathrm{F}_{\mathrm{av}} \Delta \mathrm{t} \tag{6}
\end{equation*}
$$

(7) It is not a property of any particle, but it is a measure of the degree, to which an external force changes the momentum of the particle.

Illustration :

5-

The hero of a stunt film fires 50 g bullets from a machine gun, each at a speed of $1.0 \mathrm{~km} / \mathrm{s}$. If he fires 20 bullets in 4 seconds, what average force does he exert against the machine gun during this period?

Sol. The momentum of each bullet

$$
=(0.050 \mathrm{~kg})(1000 \mathrm{~m} / \mathrm{s})=50 \mathrm{~kg}-\mathrm{m} / \mathrm{s} .
$$

The gun is imparted this much of momentum by each bullet fired. Thus, the rate of change of momentum of the gun

$$
=\frac{(50 \mathrm{~kg}-\mathrm{m} / \mathrm{s}) \times 20}{4 \mathrm{~s}}=250 \mathrm{~N} .
$$

In order to hold the gun, the hero must exert a force of 250 N against the gun.

Impulsive force :

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
A force, of relatively higher magnitude and acting for relatively shorter time, is called impulsive force. An impulsive force can change the momentum of a body in a finite magnitude in a very short time interval. Impulsive force is a relative term. There is no clear boundary between an impulsive and NonImpulsive force.
Note: Usually colliding forces are impulsive in nature.
Since, the application time is very small, hence, very little motion of the particle takes place.
Important points :

1. Gravitational force and spring force are always non-Impulsive.
2. Normal, tension and friction are case dependent.
3. An impulsive force can only be balanced by another impulsive force.
4. Impulsive Normal : In case of collision, normal forces at the surface of collision are always impulsive
eq.

$$
\mathrm{N}_{\mathrm{i}}=\text { Impulsive; } \mathrm{N}_{\mathrm{g}}=\text { Non-impulsive }
$$

2. Impulsive Friction : If the normal between the two objects is impulsive, then the friction between the two will also be impulsive.

Both normals are Impulsive

Friction at both surfaces is impulsive

Friction due to N_{2} is non-impulsive and due to N_{3} is impulsive
3. Impulsive Tensions: When a string jerks, equal and opposite tension act suddenly at each end. Consequently equal and opposite impulses act on the bodies attached with the string in the direction of the string. There are two cases to be considered.
(a) One end of the string is fixed: The impulse which acts at the fixed end of the string cannot change the momentum of the fixed object there. The object attached to the free end however will undergo a change in momentum in the direction of the string. The momentum remains unchanged in a direction perpendicular to the string where no impulsive forces act.
(b) Both ends of the string attached to movable objects: In this case equal and opposite impulses act on the two objects, producing equal and opposite changes in momentum. The total momentum of the system therefore remains constant, although the momentum of each individual object is changed in the direction of the string. Perpendicular to the string however, no impulse acts and the momentum of each particle in this direction is unchanged.

Note : In case of rod Tension is always impulsive In case of spring Tension is always non-impulsive.

Illustration :

A block of mass m and a pan of equal mass are connected by a string going over a smooth light pulley. Initially the system is at rest when a particle of mass m falls on the pan and sticks to it. If
the particle strikes the pan with a speed v, find the speed with which the system moves just after the collision.

Sol. Let the required speed is V.
Further, let and

For particle
For pan
For block
Solving, these three equation, we get
$J_{1}=$ impulse between particle and pan
$J_{2}=$ impulse imparted to the block and the pan by the string Using impulse $=$ change in momentum

$$
\begin{align*}
& J_{1}=m v-m V \tag{i}\\
& J_{1}-J_{2}=m V \tag{ii}\\
& J_{2}=m V \tag{iii}\\
& V=\frac{v}{3}
\end{align*}
$$

Illustration :

Two identical block A and B , connected by al massless string are placed on a frictionless horizontal plane. A bullet having same mass, moving with speed u strikes block B from behind as shown. If the bullet gets embedded into the block B then find:

(a) The velocity of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ after collision.
(b) Impulse on A due to tension in the string
(c) Impulse on C due to normal force of collision.
(d) Impulse on B due to normal force of collision.

Sol. (a) By Conservation of linear momentum $v=\frac{u}{3}$
(b) $\int \mathrm{Tdt}=\frac{\mathrm{mu}}{3}$
(c) $\int N d t=m\left(\frac{u}{3}-u\right)=\frac{-2 m u}{3}$
(d) $\int(N-T) d t=\int N d t-\int T d t=\frac{m u}{3}$
$\Rightarrow \quad \int \mathrm{Ndt}=\frac{2 \mathrm{mu}}{3}$

COLLISION OR IMPACT

Collision is an isolated event in which a strong force acts between two or more bodies for a short time, which results in change of their velocities.
Note :
(a) In collision particles may or may not come in physical contact.
(b) The duration of collision, Δt is negligible as compared to the usual time intervals of observation of motion.
(c) In a collision the effect of external non impulsive forces such as gravity are not taken into a account as due to small duration of collision ($\Delta \mathrm{t}$) average impulsive force responsible for collision is much larger than external forces acting on the system.
The collision is in fact a redistribution of total momentum of the particles. Thus, law of conservation of linear momentum is indispensable in dealing with the phenomenon of collision between particles.

Line of Impact

The line passing through the common normal to the surfaces in contact during impact is called line of impact. The force during collision acts along this line on both the bodies.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Direction of Line of impact can be determined by:
(a) Geometry of colliding objects like spheres, discs, wedge etc.
(b) Direction of change of momentum.

If one particle is stationary before the collision then the line of impact will be along its motion after collision.

Classification of collisions

(a) On the basis of line of impact
(i) Head-on collision : If the velocities of the particles are along the same line before and after the collision.
(ii) Oblique collision : If the velocities of the particles are along different lines before and after the collision.
(b) On the basis of energy :
(i) Elastic collision : In an elastic collision, the particle regain their shape and size completely after collision. i.e., no fraction of mechanical energy remains stored as deformation potential energy in the bodies. Thus, kinetic energy of system after collision is equal to kinetic energy of system before collision. Thus in addition to the linear momentum, kinetic energy also remains conserved before and after collision.
(ii) Inelastic collision : In an inelastic collision, the particle do not regain their shape and size completely after collision. Some fraction of mechanical energy is retained by the colliding particles in the form of deformation potential energy. Thus, the kinetic energy of the particles no longer remains conserved. However, in the absence of external forces, law of conservation of linear momentum still holds good.
(iii) Perfectly inelastic: If velocity of separation just after collision becomes zero then the collision is perfectly inelastic. Collision is said to be perfectly inelastic if both the particles stick together after collision and move with same velocity,
Note : Actually collision between all real objects are neither perfectly elastic nor perfectly inelastic, its inelastic in nature.

Illustrations of line of impact and collisions based on line of impact

(i) Two balls A and B are approaching each other such that their centres are moving along line $C D$.
(iii) Ball is falling on a stationary wedge.

COEFFICIENT OF RESTITUTION (e)

The coefficient of restitution is defined as the ratio of the impulses of recovery and deformation of either body.
$e=\frac{\text { Impulse of reformation }}{\text { Impulse of deformation }}=\frac{\int F_{r} d t}{\int F_{d} d t}=\frac{\text { Velocity of seperation along line of impact }}{\text { Velocity of approach along line of impact }}$
The most general expression for coefficient of restitution is

$$
e=\frac{\text { velocity of separation of points of contact along line of impact }}{\text { velocity of approach of point of contact along line of impact }}
$$

Illustration for calculation of e

Two smooth balls A and B approaching each other such that their centres are moving along line $C D$ in absence of external impulsive force. The velocities of A and B just before collision be u_{1} and u_{2} respectively. The velocities of A and B just after collision be v_{1} and v_{2} respectively.

$\because \quad \mathrm{F}_{\text {ext }}=0$ momentum is conserved for the system.
$\Rightarrow \quad m_{1} u_{1}+m_{2} u_{2}=\left(m_{1}+m_{2}\right) v=m_{1} v_{1}+m_{2} v_{2}$
$\Rightarrow \quad v=\frac{m_{1} u_{1}+m_{2} u_{2}}{m_{1}+m_{2}}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}$

Impulse of Deformation :

$$
\begin{array}{ll}
J_{D} & =\text { change in momentum of any one body during deformation. } \\
& =m_{2}\left(v-u_{2}\right) \\
& =m_{1}\left(-v+u_{1}\right)
\end{array}
$$

Impulse of Reformation :

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
$J_{R}=$ change in momentum of any one body during Reformation.

$$
\begin{array}{ll}
=m_{2}\left(v_{2}-v\right) & \text { for } m_{2} \\
=m_{1}\left(v-v_{1}\right) & \text { for } m_{1}
\end{array}
$$

$e=\frac{\text { Impulse of Reformation }\left(\vec{J}_{R}\right)}{\text { Impulse of Deformation }\left(\vec{J}_{\mathrm{D}}\right)}=\frac{\mathrm{v}_{2}-\mathrm{v}}{\mathrm{v}-\mathrm{v}_{1}}=\frac{\mathrm{v}_{2}-\mathrm{v}_{1}}{\mathrm{u}_{1}-\mathrm{u}_{2}}$
(substituting v from (1))

Velocity of separation along line of impact

Note: e is independent of shape and mass of object but depends on the material.
The coefficient of restitution is constant for two particular objects.
(a) $\quad \mathrm{e}=1 \quad \Rightarrow$ Impulse of Reformation $=$ Impulse of Deformation
\Rightarrow Velocity of separation $=$ Velocity of approach
\Rightarrow Kinetic Energy may be conserved
\Rightarrow Elastic collision.
(b) $\quad \mathrm{e}=0 \quad \Rightarrow$ Impulse of Reformation $=0$
\Rightarrow Velocity of separation $=0$
\Rightarrow Kinetic Energy is not conserved
\Rightarrow Perfectly Inelastic collision.
(c) $0<\mathrm{e}<1 \Rightarrow$ Impulse of Reformation $<$ Impulse of Deformation \Rightarrow Velocity of separation < Velocity of approach
\Rightarrow Kinetic Energy is not conserved
\Rightarrow Inelastic collision.
Note: In case of contact collisions e is always less than unity.

Important Point :
In case of elastic collision, if rough surface is present then

A particle 'B' moving along the dotted line collides with a rod also in state of motion as shown in the figure. The particle B comes in contact with point C on the rod.
To write down the expression for coefficient of restitution e, we first draw the line of impact. Then we resolve the components of velocities of points of contact of both the bodies along line of impact just before and just after collision.

Then $\quad e=\frac{v_{2 x}-v_{1 x}}{u_{1 x}-u_{2 x}}$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Collision in one dimension (Head on)

(a)
Before Collision
$u_{1}>u_{2}$
$e=\frac{v_{2}-v_{1}}{u_{1}-u_{2}} \quad \Rightarrow \quad\left(u_{1}-u_{2}\right) e=\left(v_{2}-v_{1}\right)$
By momentum conservation,

$$
\begin{aligned}
& m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2} \\
& v_{2}=v_{1}+e\left(u_{1}-u_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& v_{1}=\frac{m_{1} u_{1}+m_{2} u_{2}-m_{2} e\left(u_{1}-u_{2}\right)}{m_{1}+m_{2}} \\
& v_{2}=\frac{m_{1} u_{1}+m_{2} u_{2}+m_{1} e\left(u_{1}-u_{2}\right)}{m_{1}+m_{2}}
\end{aligned}
$$

Special Case :

(1) $\quad \mathrm{e}=0 \Rightarrow \mathrm{v}_{1}=\mathrm{v}_{2}$
$\Rightarrow \quad$ for perfectly inelastic collision, both the bodies, move with same vel. after collision.
(2)

$$
\begin{aligned}
& e=1 \\
& \text { and } m_{1}=m_{2}=m
\end{aligned}
$$

we get $v_{1}=u_{2}$ and $v_{2}=u_{1}$
i.e., when two particles of equal mass collide elastically and the collision is head on, they exchange their velocities., e.g.

(3) $m_{1} \ggg>m_{2}$

$$
\begin{aligned}
& \mathrm{m}_{1}+\mathrm{m}_{2} \approx \mathrm{~m}_{1} \text { and } \frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}} \approx 0 \\
& \Rightarrow \quad v_{1}=u_{1} \text { No change } \\
& v_{2}=u_{1}+e\left(u_{1}-u_{2}\right)
\end{aligned}
$$

Illustration :

Two identical balls are approaching towards each other on a straight line with velocity $2 \mathrm{~m} / \mathrm{s}$ and $4 \mathrm{~m} / \mathrm{s}$ respectively. Find the final velocities, after elastic collision between them.

Sol. The two velocities will be exchanged and the final motion is reverse of initial motion for both.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

Illustration :

Three balls A, B and C of same mass ' m ' are placed on a frictionless horizontal plane in a straight line as

A collides elastically with B and comes to rest but B starts moving with velocity u

After a while B collides elastically with C and comes to rest but C starts moving with velocity u

\therefore Final velocities $\mathrm{V}_{\mathrm{A}}=0 ; \mathrm{V}_{\mathrm{B}}=0$ and $\mathrm{V}_{\mathrm{C}}=\mathrm{u}$

Ans.

Illustration :

Four identical balls $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are placed in a line on a frictionless horizontal surface. A and D are moved with same speed ' u ' towards the middle as shown. Assuming elastic collisions, find the final velocities.

Now, B and C collides elastically with A and D respectively and come to rest but A and D starts moving with velocity u away from each other as shown
A and D collides elastically with B and C respectively and come to rest but B and C starts moving with velocity y towards each other as shown

B and C collides elastically and exchange their velocities to move in opposite directions

\therefore Final velocities $\mathrm{V}_{\mathrm{A}}=\mathrm{u}(\leftarrow) ; \mathrm{V}_{\mathrm{B}}=0 ; \mathrm{V}_{\mathrm{C}}=0$ and $\mathrm{V}_{\mathrm{D}}=\mathrm{u}(\rightarrow)$
Ans.
Ques :
If A is moved with velocity u and D is moved with $2 u$ as shown. What will be the final velocities now be?

Ans

Illustration :

Two particles of mass m and $2 m$ moving in opposite directions collide elastically with velocity $\mathrm{v} \stackrel{\text { ? }}{\varrho}$
and $2 v$ respectively. Find their velocities after collision.

Sol.

Let the final velocities of m and $2 m$ be v_{1} and v_{2} respectively as shown in the figure:

By conservation of momentum:
$m(2 v)+2 m(-v)=m\left(v_{1}\right)+2 m\left(v_{2}\right)$
$0=m v_{1}+2 m v_{2}$
$v_{1}+2 v_{2}=0$
and since the collision is elastic:

Solving the above two equations, we get,
$v_{2}=v$ and $v_{1}=-2 v \quad$ Ans.

Ques. Three balls A, B and C are placed on a smooth horizontal surface. Given that $m_{A}=m_{C}=4 m_{B}$. Ball B collides with ball C with an initial velocity v as shown in figure. Find the total number of collisions between the balls. All collisions are elastic.

A $\quad B \rightarrow V \quad C$
Ans. 2 collisions

Ques. Find the fraction of kinetic energy lost by the colliding particles after collision in the above situation.
Ans. The collision was elastic therefore, no kinetic energy is lost,
$K E$ loss $=K E_{i}-K E_{i}$ $\left(\frac{1}{2} m(2 v)^{2}+\frac{1}{2}(2 m)(-v)^{2}\right)-\left(\frac{1}{2} m(-2 v)^{2}+\frac{1}{2}(2 m) v^{2}\right)=0$

Ques. Two balls shown in figure are identical. Ball A is moving towards right with a speed v and the second ball is at rest. Assume all collisions to be elastic. Show that the speeds of the balls remains unchanged after all the collisions have taken place.

$$
v_{1}^{\prime}=\left(\frac{1+e}{2}\right) v \quad \text { and } \quad v_{2}^{\prime}=\left(\frac{1-e}{2}\right) v
$$

Given that

$$
\mathrm{K}_{\mathrm{f}}=\frac{3}{4} \mathrm{~K}_{\mathrm{i}}
$$

or $\quad \frac{1}{2} m v_{1}{ }^{\prime 2}+\frac{1}{2} m v_{2}{ }^{2}=\frac{3}{4}\left(\frac{1}{2} m v^{2}\right)$
Substituting the value, we get
or $\quad(1+e)^{2}+(1-e)^{2}=3$
or $\quad 2+2 e^{2}=3$
or

$$
\begin{aligned}
& \left(\frac{1+e}{2}\right)^{2}+\left(\frac{1-e}{2}\right)^{2}=\frac{3}{4} \\
& (1+e)^{2}+(1-e)^{2}=3 \\
& e^{2}=\frac{1}{2} \quad \text { or } \\
& e=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Ans.

Ques

A block of mass m moving at speed v collides with another block of mass 2 m at rest. The lighter block comes to rest after the collision. Find the coefficient of restitution.
Ans. $\frac{1}{2}$
Illustration :
A block of mass 2 kg is pushed towards a very heavy object moving with $2 \mathrm{~m} / \mathrm{s}$ closer to the block (as shown). Assuming elastic collision and frictionless surfaces, find the final velocities of the blocks.

Sol. Let v_{1} and v_{2} be the final velocities of 2 kg block and heavy object respectively then,

Illustration :

A ball is moving with velocity $2 \mathrm{~m} / \mathrm{s}$ towards a heavy wall moving towards the ball with speed $1 \mathrm{~m} /$ s as shown in fig. Assuming collision to be elastic, find the velocity of the ball immediately after the collision.

Sol. The speed of wall will not change after the collision. So, let v be the velocity of the ball after collision in the direction shown in figure. Since collision is elastic $(e=1)$,

separation speed $=$ approach sped

$$
\begin{aligned}
& v-1=2+1 \\
& v=4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Ans.

Illustration :

Two balls of masses 2 kg and 4 kg are moved towards each other with velocities $4 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~m} / \mathrm{s}$ respectively on a frictionless surface. After colliding the 2 kg balls returns back with velocity $2 \mathrm{~m} / \mathrm{s}$. Then find:
(a) velocity of 4 kg ball after collision
(b) coefficient of restitution e.
(c) Impulse of deformation J_{D}.
(d) Maximum potential energy of deformation.
(e) Impulse of reformation J_{R}.

By momentum conservation,
$2(4)-4(2)=2(-2)+4\left(v_{2}\right)$
(b) $\quad e=\frac{\text { velocity of separation }}{\text { velocity of approach }}=\frac{1-(-2)}{4-(-2)}=\frac{3}{6}$

$$
=0.5
$$

(c) At maximum deformed state, by conservation of momentum, common velocity is $\mathrm{v}=0$.

$$
\begin{aligned}
J_{D} \quad & =m_{1}\left(v-u_{1}\right)=m_{2}\left(v-u_{2}\right) \\
& =2(0-4)=-8 \mathrm{~N}-s \\
& =4(0-2)=-8 \mathrm{~N}-\mathrm{s}
\end{aligned}
$$

$$
\text { or } \quad=4(0-2)=-8 \mathrm{~N}-\mathrm{s}
$$

(d) Potential energy at maximum deformed state $U=$ loss in kinetic energy during deformation.

$$
\begin{aligned}
& \text { or } U=\left(\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}\right)-\frac{1}{2}\left(m_{1}+m_{2}\right) v^{2} \\
& =\left(\frac{1}{2} 2(4)^{2}+\frac{1}{2} 4(2)^{2}\right)-\frac{1}{2}(2+4)(0)^{2} \\
& \text { or } U=24 \text { Joule }
\end{aligned}
$$

(e)

$$
\begin{aligned}
J_{R} & =m_{1}\left(v_{1}-v\right)=m_{2}\left(v-v_{2}\right) \\
& =2(-2-0)=-4 \mathrm{~N}-\mathrm{s} \\
& =4(0-1)=-4 \mathrm{~N}-\mathrm{s} \\
\text { or } \quad & \\
\text { or } \quad \mathrm{e} & =\frac{J_{R}}{J_{D}} \\
\Rightarrow \quad J_{R} & =e J_{D}
\end{aligned}
$$

$$
\begin{aligned}
& =(0.5)(-8) \\
& =-4 \mathrm{~N}-\mathrm{s}
\end{aligned}
$$

Ques.
A block of mass m moving at a speed v collides with another block of mass $2 m$ at rest. The lighter block comes to rest after the collision. Find the coefficient of restitution.
Ans. $\frac{1}{2}$
Ques.
A block of mass 1.2 kg moving at a speed of $20 \mathrm{~cm} / \mathrm{s}$ collides head-on with a similar block kept at rest. The coefficient of restitution is $3 / 5$. Find the loss of the kinetic energy during the collision.
Ans. $7.7 \times 10^{-3} \mathrm{~J}$.
Ques
The sphere of mass m_{1} travels with an initial velocity u_{1} directed as shown and strikes the stationary sphere of mass m_{2} head on. For a given coefficient of restitution e, what condition on the mass
ratio $\frac{m_{1}}{m_{2}}$ ensures that the final velocity of m_{2} is greater than u_{1} ?

Ans.

1. A pair of equal and opposite impulses act along common normal direction. Hence, linear momentum of individual particles do change along common normal direction. If mass of the colliding particles remain constant during collision, then we can say that linear velocity of the individual particles change during collision in this direction.

Relative speed of separation $=e$ (relative speed of approach) along common normal direction, we get

$$
v=e v_{0} \cos \alpha
$$

Thus, after collision components of velocity v^{\prime} are $v_{0} \sin \alpha$ and $e v_{0} \cos \alpha$
$\therefore \quad \mathrm{v}^{\prime}=\sqrt{\left(\mathrm{v}_{0} \sin \alpha\right)^{2}+\left(\mathrm{ev}_{0} \cos \alpha\right)^{2}}$
Ans.
and

$$
\tan \beta=\frac{\mathrm{v}_{0} \sin \alpha}{\mathrm{ev}_{0} \cos \alpha}
$$

Note: For elastic collision, $\mathrm{e}=1$

$$
\therefore \quad \mathrm{v}^{\prime}=\mathrm{v}_{0} \quad \text { and } \quad \beta=\alpha
$$

Ans.

Illustration :

A ball of mass makes an elastic collision with another identical ball at rest. Show that if the collision is oblique, the bodies go at right angles to each other after collision.
Sol. In head on elastic collision between two particles, they exchange their velocities. In this case, the component of ball 1 along common normal direction, $\mathrm{v} \cos \theta$
 becomes zero after collision, while that of 2 becomes $v \cos \theta$. While the components along common tangent direction of both the particles remain unchanged. Thus, the components along common tangent and common normal direction of both the balls in tabular form are given below.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

Ball	Component along common tangent direction		Compoent along common normal direction	
	Before collision	After collision	Before collision	After collision
1	$\mathrm{v} \sin \theta$	$\mathrm{v} \sin \theta$	$\mathrm{v} \cos \theta$	0
2	0	0	0	$\mathrm{v} \cos \theta$

From the above table and figure, we see that both the balls move at right angle after collision with ${ }_{m}$ velocities $v \sin \theta$ and $v \cos \theta$.

Note : When two identical bodies have an oblique elastic collision, with one particle at rest before collision, then the two particles will go in \perp directions.

Illustration :

Two spheres are moving towards each other. Both have same radius but their masses are 2 kg and 4 kg . If the velocities are $4 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~m} / \mathrm{s}$ respectively and coefficient of restitution is $e=1 / 3$, find.

Maximum Deformed State

Just Before Collision Along LOI

$$
2\left(4 \cos 30^{\circ}\right)-4\left(2 \cos 30^{\circ}\right)=(2+4) v
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
or $\quad \mathrm{v}=0 \quad$ (common velocity along LOI)
(b)

Just After Collision Along LOI
Let v_{1} and v_{2} be the final velocity of A and B respectively then, by conservation of momentum along line of impact,
$2\left(4 \cos 30^{\circ}\right)-4\left(2 \cos 30^{\circ}\right)=2\left(v_{1}\right)+4\left(v_{2}\right)$
or $\quad 0=v_{1}+2 v_{2} \ldots \ldots .$.
By coefficient of restitution,
$e=\frac{\text { velocity of separation along LOI }}{\text { veloctiy of approach along LO I }}$
or $\quad \frac{1}{3}=\frac{v_{2}-v_{1}}{4 \cos 30^{\circ}+2 \cos 30^{\circ}}$
or $\quad v_{2}-v_{1}=\sqrt{3}$ \qquad
from the above two equations,

$$
v_{1}=\frac{2}{\sqrt{3}} \mathrm{~m} / \mathrm{s} \text { and } v_{2}=\frac{1}{\sqrt{3}} \mathrm{~m} / \mathrm{s} .
$$

(c) $\quad J_{D}=m_{1}\left(v-u_{1}\right)$
$=2\left(0-4 \cos 30^{\circ}\right)=-4 \sqrt{3} \mathrm{~N}-\mathrm{S}$
(d) $J_{R}=e J_{D}=\frac{1}{3}(-4 \sqrt{3})=-\frac{4}{\sqrt{3}} \mathrm{~N}-\mathrm{s}$

(e) Maximum potential energy of deformation is equal to loss in kinetic energy during deformation upto
$U=\frac{1}{2} m_{1}\left(u_{1} \cos \theta\right)^{2}+\frac{1}{2} m_{2}\left(u_{2} \cos \theta\right)^{2}-\frac{1}{2}\left(m_{1}+m_{2}\right) v^{2}$
$=\frac{1}{2} 2\left(4 \cos 30^{\circ}\right)^{2}+\frac{1}{2} 4\left(-2 \cos 30^{\circ}\right)^{2}-\frac{1}{2}(2+4)(0)^{2}$
or $\quad U=18$ Joule.
(f) Loss in kinetic energy,

$$
\begin{aligned}
& \Delta K E=\frac{1}{2} m_{1}\left(u_{1} \cos \theta\right)^{2}+\frac{1}{2} m_{2}\left(u_{2} \cos \theta\right)^{2}-\left(\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}\right) \\
& =\frac{1}{2} 2\left(4 \cos 30^{\circ}\right)^{2}+\frac{1}{2} 4\left(-2 \cos 30^{\circ}\right)^{2}-\left(\frac{1}{2} 2\left(\frac{2}{\sqrt{3}}\right)^{2}+\frac{1}{2} 4\left(\frac{1}{\sqrt{3}}\right)^{2}\right) \\
& \Delta K E=16 \text { Joule }
\end{aligned}
$$

Illustration :

Two point particles A and B are placed in line on a friction less horizontal plane. If particle A (mass 1 kg) is moved with velocity $10 \mathrm{~m} / \mathrm{s}$ towards stationary particle B (mass 2 kg) and after collision the two move at an angle of 45° with the initial direction of motion, then find :

(a) Find velocities of A and B just after collision.
(b) Coefficient of restitution.

Sol. The very first step to solve such problems is to find the line of impact which is along the direction of force applied by A on B, resulting the stationary B to move. Thus, by watching the direction of motion of B, line of impact can be determined. In this case line of impact is along the direction of motion of B. i.e. 45° with the initial direction of motion of A .

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0903903 7779, 098930 58881. page 37

Illustration :

Ans.

A smooth sphere of mass m is moving on a horizontal plane with a velocity $3 \hat{i}+\hat{j}$ when it collides with a vertical wall which is parallel to the vector \hat{j}. If the coefficient of restitution between the sphere and the wall is $\frac{1}{2}$, find
(a) the velocity of the sphere after impact,
(b) the loss in kinetic energy caused by the impact.
(c) the impulse \vec{J} that acts on the sphere.

Sol. Let \vec{v} be the velocity of the sphere after impact.
To find \vec{v} we must separate the velocity components parallel and perpendicular to the wall. Using the law of restitution the component of velocity parallel to the wall remains unchanged while component perpendicular to the wall becomes e times in opposite direction.

Thus,

$$
\vec{v}=-\frac{3}{2} \hat{i}+\hat{j}
$$

(a) Therefore, the velocity of the sphere after impact is $=-\frac{3}{2} \hat{i}+\hat{j} \quad$ Ans.

8ε əదеd •L888G 0ع686 0 ‘6LLL E06 ع06 0: əuoud jedoug
Two smooth spheres, A and B, having equal radii, lie on a horizontal table. A is of mass m and B is of mass 3 m . The spheres are projected towards each other with velocity vector $5 \hat{i}+2 \hat{j}$ and $2 \hat{i}-\hat{j}$ respectively and when they collide the line joining their centres is parallel to vector \hat{i}. If the coefficient of restitution between A and B is $\frac{1}{3}$, find the velocities after impact and the loss in kinetic energy caused by the collision. Find also the magnitude of the impulses that act at the instant of impact.

Ans.

Ques.

Ans.
(c)

The loss in K.E. $=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=\frac{1}{2} m\left(3^{2}+1^{2}\right)-\frac{1}{2} m\left(\left\{\frac{3}{2}\right\}^{2}+1^{2}\right)=\frac{27}{8} m$

$$
\vec{J}=\Delta \vec{P}=\vec{P}_{f}-\vec{P}_{i}=m(\vec{v})-m(\vec{u})=m\left(-\frac{3}{2} \hat{i}+\hat{j}\right)-m(3 \hat{i}+\hat{j})=-\frac{9}{2} m \hat{i}
$$

A sphere of mass m is moving with a velocity $4 \hat{i}-\hat{j}$ when it hits a wall and rebounds with velocity $\hat{i}+3 \hat{j}$. Find the impulse it receives. Find also the coefficient of restitution between the sphere and the wall.

Sol. $\vec{j}=m(-3 \hat{i}+4 \hat{j}) \quad$ and $e=\frac{9}{16} \quad$ Ans.

Illustration

Sol. The line of centres at impact, is parallel to the vector \hat{i}, the velocity components of A and B perpendicular to \hat{i} are unchanged by the impact.

Applying conservation of linear momentum and the law of restitution, we have
in x direction $5 m+(3 m)(2)=m u+3 m v$
and

$$
\begin{equation*}
\frac{1}{3}(5-2)=v-u \tag{i}
\end{equation*}
$$

Solving these equations, we have $u=2$ and $v=3$
The velocities of A and B after impact are therefore,

Before impact the kinetic energy of A is
and of B is
Ans.

$$
2 \hat{i}+2 \hat{j} \text { and } 3 \hat{i}-\hat{j} \quad \text { respectively }
$$

After impact the kinetic energy of A is

$$
\frac{1}{2} m\left(2^{2}+2^{2}\right)=4 m
$$

and of B is

$$
\begin{aligned}
& \frac{1}{2} m\left(5^{2}+2^{2}\right)=\frac{29}{2} m \\
& \frac{1}{2}(3 m)\left(2^{2}+1^{2}\right)=\frac{15}{2} m
\end{aligned}
$$

Therefore, the loss in K.E. at impact is

$$
\frac{29}{2} m+\frac{15}{2} m-4 m-15 m=3 m
$$

Ans.
To find value of J , we consider the change in momentum along $\hat{\mathrm{i}}$ for one sphere only.

$$
\begin{array}{ll}
\text { For sphere B } & J=3 \mathrm{~m}(3-2) \\
\text { or } & J=3 \mathrm{~m}
\end{array}
$$

Ans.

Illustration :

A small steel ball A is suspended by an inextensible thread of length $\ell=1.5$ from O . Another identical ball is thrown vertically downwards such that its surface remains just in contact with thread during downward motion and collides elastically with the suspended ball. If the suspended ball just completes vertical circle after collision, calculate the velocity of the falling ball just before collision. ($\mathrm{g}=10 \mathrm{~ms}^{-2}$)

or

$$
\begin{equation*}
v_{1}=\frac{\mathrm{J}}{\mathrm{~m}}-\mathrm{v}_{0} \cos 30^{\circ} \tag{i}
\end{equation*}
$$

Horizontal velocity v_{2} of ball A is given by $\mathrm{J} \sin 30^{\circ}=m v_{2}$
or

$$
\begin{equation*}
v_{2}=\frac{\mathrm{J}}{2 \mathrm{~m}} \tag{ii}
\end{equation*}
$$

Suppose at some moment $t=t$ mass of a body is m and its velocity is \vec{v}. After some time at $t=$ $t+d t$ its mass becomes ($m-d m$) and velocity becomes $\vec{v}+d \vec{v}$. The mass $d m$ is ejected with relative velocity \vec{v}_{r}. Absolute velocity of mass ' $d m$ ' is therefore ($\vec{v}+\vec{v}_{r}$). If no external forces are acting on the system, the linear momentum of the system will remain conserved, or

$$
\vec{P}_{i}=\vec{P}_{f}
$$

or

$$
m=(m-d m)(\vec{v}+d \vec{v})+d m\left(\vec{v}+\vec{v}_{r}\right)
$$ The term $(d m)(d \vec{v})$ is too small and can be neglected.

$$
\begin{array}{ll}
\therefore \quad m d \vec{v}=-\vec{v}_{r} d m \\
& m\left(\frac{d \vec{v}}{d t}\right)=\vec{v}_{r}\left(-\frac{d m}{d t}\right)
\end{array}
$$

VARIABLE MASS SYSTEM :

Solving Eqs. (i), (ii), and (iii), $J=1.6 \mathrm{mv}_{0} \cos 30^{\circ}$
$\therefore \quad v_{1}=0.6 \mathrm{v}_{0} \cos 30^{\circ}$ and $\mathrm{v}_{2}=0.8 \mathrm{v}_{0} \cos 30^{\circ}$
Since, ball A just completes vertical circle, therefore $v_{2}=\sqrt{5 g \ell}$

If a mass is added or ejected from a system, at rate $\mu \mathrm{kg} / \mathrm{s}$ and relative velocity $\overrightarrow{\mathrm{v}}_{\text {rel }}$ (\mathbf{w}.r.t. the system), then the force exerted by this mass on the system has magnitude $\mu \overrightarrow{\mathrm{v}}_{\text {rel }} \mid$

Thrust Force (\vec{F}_{t})

$$
\overrightarrow{\mathrm{F}}_{\mathrm{t}}=\overrightarrow{\mathrm{v}}_{\mathrm{rel}}\left(\frac{\mathrm{dm}}{\mathrm{dt}}\right)
$$

$$
m \vec{v}=m \vec{v}+m d \vec{v}-(d m) \vec{v}-(d m)(d \vec{v})+(d m) \vec{v}+\vec{v}_{r} d m
$$

or

Here,
$m\left(-\frac{d \vec{v}}{d t}\right)=$ thrust force $\left(\vec{F}_{t}\right)$
and
$-\frac{\mathrm{dm}}{\mathrm{dt}}=$ rate at which mass is ejecting
$\vec{F}_{t}=\vec{v}_{r}\left(\frac{d m}{d t}\right)$

1. Make a list of all the forces acting on the main mass and apply them on it.
2. Apply an additional thrust force \vec{F}_{t} on the mass, the magnitude of which is $\left|\vec{v}_{r}\left(\pm \frac{d m}{d t}\right)\right|$ and direction is given by the direction of \vec{v}_{r} in case the mass is increasing and otherwise the direction of $-\vec{v}_{r}$ if it is decreasing.
3. Find net force on the mass and apply

$$
\overrightarrow{\mathrm{F}}_{\mathrm{net}}=\mathrm{m} \frac{\mathrm{~d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}} \quad(\mathrm{~m}=\text { mass at the particular instant })
$$

4. Integrate it with proper limits to find velocity at any time t.

Note : Problems of one-dimensional motion (which are mostly asked in JEE) can be solved in easier manner just by assigning positive and negative signs to all vector quantities. Here are few example in support of the above theory.

Illustration

A flat car of mass m_{0} starts moving to the right due to a constant horizontal force F. Sand spills on the flat car from a stationary hopper. The rate of loading is constant and equal to $\mu \mathrm{kg} / \mathrm{s}$. Find the time dependence of the velocity and the acceleration of the flat car in the process of loading. The friction is negligibly small.

At $t=0, v=0$ and $m=m_{0}$ at $t=t, v=v$ and $m=m_{0}+\mu t$
Here,

$$
v_{r}=v
$$

(backwards)
Sol. Initial velocity of the flat car is zero. Let v be its velocity at time t and m its mass at that instant. Then

$$
\frac{\mathrm{dm}}{\mathrm{dt}}=\mu
$$

$\therefore \quad F_{t}=v_{r} \frac{d m}{d t}=\mu v$ (backwards)

Net force on the flat car at time t is $F_{\text {net }}=F-F_{t}$
or
$m \frac{d v}{d t}=F-\mu v$
or
$\left(m_{0}+\mu t\right) \frac{d v}{d t}=F-\mu v$

Ans.

Illustration :

A cart loaded with sand moves along a horizontal floor due to a constant force F coinciding in direction with the cart's velocity vector. In the process sand spills through a hole in the bottom $\underbrace{-}$ with a constant rate $\mu \mathrm{kg} / \mathrm{s}$. Find the acceleration and velocity of the cart at the moment t , if at the initial moment $t=0$ the cart with loaded sand had the mass m_{0} and its velocity was equal to zero. Friction is to be neglected.
Sol. In this problem the sand through a hole in the bottom of the cart. Hence, the relative velocity of the sand v_{r} will be zero because it will acquire the same velocity as that of the cart at the moment.

$$
v_{r}=0
$$

Thus,

$$
F_{t}=0
$$

$$
\left(\text { as } F_{t}=v_{r} \frac{d m}{d t}\right)
$$

and the net force will be F only.

$$
\begin{array}{ll}
\therefore & F_{n e t}=F \\
\text { or } & m\left(\frac{d v}{d t}\right)=F \\
\text { But here } & m=m_{0}-\mu t
\end{array}
$$

$$
\begin{array}{ll}
\therefore & \left(m_{0}-\mu t\right) \frac{d v}{d t}=F \\
\text { or } & \int_{0}^{v} d v=\int_{0}^{t} \frac{F d t}{m_{0}-\mu t} \\
\therefore & v=\frac{F}{-\mu}\left[\ln \left(m_{0}-\mu t\right)\right]_{0}{ }^{t} \\
\text { or } & v=\frac{F}{\mu} \ln \left(\frac{m_{0}}{m_{0}-\mu t}\right)
\end{array}
$$

Ans.

Ans.

Rocket propulsion :

Let m_{0} be the mass of the rocket at time $t=0 . m$ its mass at any time t and v its velocity at that moment. Initially, let us suppose that the velocity of the rocket is u.
gases with respect to rocket. Usually $\left(\frac{-d m}{d t}\right)$ and v_{r} are kept constant throughout the journey of $\underset{\sim}{\text { ■ }}$ the rocket. Now, let us write few equations which can be used in the problems of rocket propulsion. At time $t=t$,

1. Thrust force on the rocket
2. Weight of the rocket
3. Net force on the rocket
or
4. Net acceleration of the rocket

$$
\begin{aligned}
& F_{t}=v_{r}\left(\frac{-d m}{d t}\right) \\
& W=m g \\
& F_{n e t}=F_{t}-W \\
& F_{n e t}=v_{r}\left(\frac{-d m}{d t}\right)-m g \\
& a=\frac{F}{m} \\
& \frac{d v}{d t}=\frac{v_{r}}{m}\left(\frac{-d m}{d t}\right)-g \\
& d v=\frac{v_{r}}{m}(-d m)-g d t \\
& \int_{u}^{v} d v=v_{r} \int_{m_{0}}^{m} \frac{-d m}{m}-g \int_{0}^{t} d t
\end{aligned}
$$

(upwards)
(downwards) (upwards)
or
or
or

$$
\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{F}}{\mathrm{~m}}
$$

Further, let $\left(\frac{-d m}{d t}\right)$ be the mass of the gas ejected per unit time and v_{r} the exhaust velocity of the

Thus,

$$
\begin{equation*}
v=u-g t+v_{r} \ell n\left(\frac{m_{0}}{m}\right) \tag{i}
\end{equation*}
$$

Note : 1. $F_{t}=v_{r}\left(-\frac{d m}{d t}\right)$ is upwards, as v_{r} is downwards and $\frac{d m}{d t}$ is negative.
2. If gravity is ignored and initial velocity of the rocket $u=0$, Eq. (i) reduces to $v=v_{r} \ln \left(\frac{m_{0}}{m}\right)$.

Illustration :

A rocket, with an initial mass of 1000 kg , is launched vertically upwards from rest under gravity. The rocket burns fuel at the rate of 10 kg per second. The burnt matter is ejected vertically downwards with a speed of $2000 \mathrm{~ms}^{-1}$ relative to the rocket. If burning after one minute. Find the maximum velocity of the rocket. (Take g as at $10 \mathrm{~ms}^{-2}$)

Sol. Using the velocity equation

$$
\begin{aligned}
& v=u-g t+v_{r} \ln \left(\frac{m_{0}}{m}\right) \\
& \text { Here } u=0, t=60 \mathrm{~s}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}, v_{r}=2000 \mathrm{~m} / \mathrm{s}, \mathrm{~m}_{0}=1000 \mathrm{~kg} \\
& \text { and } \\
& \text { We get } \\
& m=1000-10 \times 60=400 \mathrm{~kg} \\
& v=0-600+2000 \ln \left(\frac{1000}{400}\right) \\
& v=2000 \ln 2.5-600
\end{aligned}
$$

The maximum velocity of the rocket is $200(10 \ln 2.5-3)=1232.6 \mathrm{~ms}^{-1} \quad$ Ans.
Ques Find the mass of the rocket as a function of time, if it moves with a constant accleration a, in absence of external forces. The gas escaps with a constant velocity u relative to the rocket and its mass initially was m_{0}.

Illustration :

A uniform chain of mass m and length ℓ hangs on a thread and touches the surface of a table by its lower end. Find the force exerted by the table on the chain when half of its length has fallen on the table. The fallen part does not form heap.

1. Weight of the portion BC of the chain

$$
\text { lying on the table, } \mathrm{W}=\frac{\mathrm{mg}}{2} \text { (downwards) }
$$

Using $\mathrm{v}=\sqrt{2 \mathrm{gh}}$
2. Thrust force $F_{t}=v_{r}\left(\frac{d m}{d t}\right)$

$$
\begin{aligned}
v_{r} & =v \\
\frac{d m}{d t} & =\lambda v
\end{aligned}
$$

$$
\begin{aligned}
& \quad \mathrm{F}_{\mathrm{t}}=\lambda \mathrm{v}^{2} \quad \text { (where, } \lambda=\frac{\mathrm{m}}{\ell} \text {, is mass per unit length of chain) } \\
& \mathrm{v}^{2}=\left((\sqrt{\mathrm{g} \ell})^{2}=\mathrm{g} \ell\right.
\end{aligned}
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
$\therefore \quad \mathrm{F}_{\mathrm{t}}=\left(\frac{\mathrm{m}}{\ell}\right)(\mathrm{g} \ell)=\mathrm{mg} \quad$ (downwards)
$\therefore \quad$ Net force exerted by the chain on the table is

$$
F=W+F_{t}=\frac{m g}{2}+m g=\frac{3}{2} m g
$$

So, from Newton's third law the force exerted by the table on the chain will be $\frac{3}{2} \mathrm{mg}$ (vertically upwards).

Ques If the chain is lowered at a constant speed $v=1.2 \mathrm{~m} / \mathrm{s}$, determine the normal reaction exerted on the floor as a function of time. The chain has a mass of 80 kg and a total length of 6 m .

Ans. $\quad(19.2+16 \mathrm{t}) \mathrm{N}$

LINEAR MOMENTUM CONSERVATION IN PRESENCE OF EXTERNAL FORCE.

$F_{\text {ext }} d t=d P$
$d P=F e x t$) impulsive $d t$
If $\left.F_{\text {ext }}\right)_{\text {impulisive }}=0$
$\mathrm{dP}=0$
P is constant

Momentum is conserved if the external force present is non-Impulsive. eg. Gravitation or Spring force

Illustration :

Two balls are moving towards each other on a vertical line collides with each other as shown. Find their velocities just after collision.

Sol. Let the final velocity of 4 kg ball just after collision be v . Since, external force is gravitational which is non - impulsive, hence, linear momentum will be conserved.

(a) the velocity just after collision.

Ans
(a) v.

Illustration :

(a) $v=e u$;
(b) $J=m u(1+e)$

A bullet of mass 50 g is fired from below into the bob of mass 450 g of a long simple pendulum as shown in figure. The bullet remains inside the bob and the bob rises through a height of $\mathfrak{\sim}$ 1.8 m . Find the speed of the bullet. Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

Sol. Let the speed of the bullet be v . Let the common velocity of the bullet and the bob, after the bullet is embedded into the bob, is V. By the principle of conservation of the linear momentum,

$$
V=\frac{(0.05 \mathrm{~kg}) \mathrm{v}}{0.45 \mathrm{~kg}+0.05 \mathrm{~kg}}=\frac{\mathrm{v}}{10}
$$

The string becomes loose and the bob will go up with a deceleration of $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$. As it comes to rest at a height of 1.8 m , using the equation $v^{2}=u^{2}+2 a x$,

$$
1.8 \mathrm{~m}=\frac{(\mathrm{v} / 10)^{2}}{2 \times 10 \mathrm{~m} / \mathrm{s}^{2}}
$$

or, $\quad v=60 \mathrm{~m} / \mathrm{s}$.

Illustration :

A small ball of mass m collides with a rough wall having coefficient of friction μ at an angle θ with the normal to the wall. If
after collision the ball moves with angle α with the normal to the wall and the coefficient of restitution is e then find the reflected velocity v of the ball just after collision.

Sol.

$$
\begin{array}{ll}
& m v \cos \alpha-(m(-u \cos \theta))=\int N d t \\
& m v \sin \alpha-m u \sin \theta=-\mu \int N d t \\
\text { and } \quad & e=\frac{v \cos \alpha}{u \cos \theta} \quad \Rightarrow \quad v \cos \alpha=e u \cos \theta \\
\text { or } \quad m v \sin \alpha-m u \sin \theta=-\mu(m v \cos \alpha+m u \cos \theta) \\
\text { or } \quad v=\frac{u}{\sin \alpha}[\sin \theta-\mu \cos \theta(e+1)] \quad \text { Ans. }
\end{array}
$$

ol.

