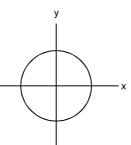
S

SECTION (A) : KINEMATICS OF CIRCULAR MOTION A 1.


- Figure shows a circular path taken by a particle. If the instantaneous velocity of the particle is
 - $v = (2m/s)\hat{i} (2m/s)\hat{j}$. Through which quadrant is the particle moving when it is travelling (a) clockwise and

15

page

0 98930 58881.

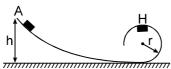
(b) counter clockwise around the circle?

SECTION (B) : RADIAL AND TANGENTIAL ACCELERATION

7779, B 1. A car is moving with speed 30 m/sec on a circular path of radius 500 m. Its speed is increasing at the rate of 2 m/sec². What is the acceleration of the car at that moment? 903

SECTION (C) : RADIUS OF CURVATURE AND DYNAMICS OF CIRCULAR MOTION

- A mass is kept on a horizontal frictionless surface. It is attached to a string and rotates about a fixed 8 C 1. centre at an angular velocity ω_0 . If the length of the string and angular velocity are doubled, find the otension in the string which was initially T₀.
- A simple pendulum oscillates in a vertical plane. When it passes through the mean position, the tension in the string is 3 times the weight of the pendulum bob. What is the maximum displacement of $\frac{1}{6}$ C 2. the pendulum of the string with respect to the vertical.
- Bhopal C 3 What is the radius of curvature of the parabola traced out by the projectile in the previous problem in the previous problem at a point where the particle velocity makes an angle $\theta/2$ with the horizontal?
- C 4. A ceiling fan has a diameter (of the circle through the outer edges of the three blades) of 120 cm and to rpm 1500 at full speed. Consider a particle of mass 1g sticking at the outer end of a blade. How much Ŀ. forcedoes it experience when the fan runs at full speed ? Who exerts this force on the particle ? How сĿ. much force does the particle exert on the blade along its surface? Ś


SECTION (D) : CIRCULAR MOTION IN HORIZONTAL PLANE

- Kariya D 1. A string breaks if its tension exceeds 10 newtons. A stone of mass 250 gm tied to this string of length 10 cm is rotated in a horizontal circle. Find the maximum angular velocity of rotation.
- сĿ. D 2. A body of mass m hangs at one end of a string of length a, the other end of which is fixed. It is given a hag horizontal velocity u at its lowest position so that the string would just become slack, when it makes an angle of 60° with the upward drawn vertical line. Find the tension in the string at point of projection \overline{a}
- D 3. A ball is moving to and fro about the lowest point A of a smooth hemispherical bowl. If it is able to rise S Math up to a height of 20 cm on either side of A, find its speed at A. (Take = 10 m/s^2 , mass of the body 5 g)
- A motorcyclist wants to drive on the vertical surface of wooden 'well' of radius 5 m, with a minimum speed of D4.

Teko Classes, $5\sqrt{5}$ m/s. Find the minimum value of coefficient of friction between the tyres and the wall of the well $(take g = 10 m/s^{2})$

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com SECTION (E) : CIRCULAR MOTION IN VERTICAL PLANE

E 1. A small body of mass m is allowed to slide on an inclined frictionless track from rest position as shown in the figure.

(i) Find the minimum height h, so that body may successfully complete the loop of radius 'r'. (ii) If h is double of that minimum height, find the resultant force on the block at position H

page : A nail is located at a certain distance voluce..., The pendulum bob is released from the position where the string makes an angle of our mean vertical. Calculate the distance of the nail from the point of suspension such that the bob will just to be any the nail as centre. Assume the length of pendulum to be 1m. E 2.

16

0

Bhopal

A bucket tied at the end of a 1.6 m long string is whirled in a vertical circle with constant speed. What $\tilde{0}$ should be the minimum speed so that the water from the bucket does not spill, when the bucket is at $\tilde{0}$ E 3.

SECTION (F) : MOTION OF A VEHICLE, CENTRIFUGAL FORCE AND ROTATION OF EARTH of

- F 1. A train has to negotiate a curve of radius 400 m. By how much height should the outer rail be raised with \gtrsim 903 respect to inner rail for a speed of 48 km/hr? The distance between the rails is 1 m :
- A particle of mass m is constrained to move along a groove which is being rotated about a vertical axis $\overset{\circ}{0}$ through its centre with a constant angular velocity ω . If it starts at a distance R from the axis at t = 0, $\overset{\circ}{0}$ find its velocity relative to the groove when it is at a distance r from the centre F 2. Phone
- Sir), A park has a radius of 10m. If a vehicle goes round it at an average speed of 18 km/hr, what should be F 3. the proper angle of banking? сĿ.
- If the road of the previous problem is horizontal (no banking), what should be the minimum friction in F 4. coefficient so that a scotter going at 18 km/hr does not skid.
- A person stands on a spring balance at the equator. (A) By what fraction is the balance reading less than his true weight ? (B) If the speed of earth's rotation is increased by such an amount that the F 5. balance reading is half the true weight, what will be the length of the day in this case? Ē
- A turn of radius 20 m is banked for the vehicles going at a speed of 36 km/h. If the coefficient of static priction between the road and the tyre is 0.4, what are the possible speeds of a vehicle so that is neither slips down nor skids up? **EXERCISE-2 ION (A) : KINEMATICS OF CIRCULAR MOTION** The average acceleration vector for a particle having a uniform circular motion in one complete revolution: see (A) A constant vector of magnitude $\frac{v^2}{r}$ (B) $\frac{v^2}{r}$ in magnitude and perpendicular to the plane of circle F 6.

SECTION (A) : KINEMATICS OF CIRCULAR MOTION

A 1.

- (B) $\frac{v^2}{r}$ in magnitude and perpendicular to the plane of circle
- (C) Equal to the instantaneous acceleration vector at the start of the motion
- (D) A null vector

_	A 2.	A particle moves along a circle of radius $\left(\frac{20}{\pi}\right)$ m with constant tangential acceleration. It the velocity of the							
com.		particle is 80 m/s at the (A) 160 π m/s ²	end of the second revo (B) 40 π m/s ²	lution after motion has be (C) 40 m/s²	gun, the tangential acceleration is (D) 640 π m/s ²	:			
www.TekoClasses.com & www.MathsBySuhag.com	A 3. A 4.	 When a particle moves in a circle with a uniform speed (A) its velocity and acceleration are both constant (B) its velocity is constant but the acceleration changes (C) its acceleration is constant but the velocity changes (D) its velocity and acceleration both change An object follows a curved path. The following quantities may remain constant during the motion (A) speed (B) velocity (C) acceleration (D) magnitude of acceleration 							
	A 5.	Assume that the earth g (A) The average velocit (B) The average accele (C) The average speed	goes round the sun in a y of the earth from 1st ration during the above from 1st Jan , 90 to 31	circular orbit with a cons Jan , 90 to 30th June , 90 period is 60 km/s².	stant speed of 30 km/s.	0 98930 58881.			
	A 6.	The position vector of a (A) velocity remains cor (C) acceleration remain	nstant (B) s	tion about the origin swee peed remains constant angential acceleration ren	ps out equal area in equal time. ⊥ts nains constant				
sec	SECTION (B) : RADIAL AND TANGENTIAL ACCELERATION								
Download Study Package from website: www.TekoClass	Β1.	P Q	the same acceleration		from the centre of a rotating disc not have any acceleration celeration than P	0			
	B 2.	In uniform circular mo (A) linear velocity	tion, the quantity that (B) centripetal force		(D) speed	al Phone			
	В 3.	When a particle move (A) Its velocity and acc (B) Its velocity is cons (C) Its acceleration is ((D) Its velocity and acc	celeration are both con tant but the accelerati constant but the veloc	nstant on changes hty changes		K. Sir), Bhopal			
	В4.	For a particle in a uniformly accelerated (speed increasing uniformly) circular motion : (A) velocity is radial and acceleration is tangential only							
ackage	B 5.	 (B) velocity is tangential and acceleration is radial only (C) velocity is radial and acceleration has both radial and tangential components (D) velocity is tangential and acceleration has both radial and tangential components A motor cyclist going round in a circular track at constant speed has (A) constant linear velocity (B) constant acceleration (C) constant angular velocity (D) constant force For a body in circular motion with a constant angular velocity, the magnitude of the average acceleration over a period of half a revolution is 							
dy Pa	B 6.	For a body in circular m over a period of half a	notion with a constant a revolution ist	ingular velocity, the magr imes the magnitude of it	nitude of the average acceleratior is instantaneous acceleration.	ths : S			
Stuc		(A) $\frac{2}{\pi}$	(B) <u>π</u> 2	(C) π	(D) 2	es, Ma			
load	Β7.	For a body in circular motion with a constant angular velocity, the magnitude of the average acceleration over a period of half a revolution istimes the magnitude of its instantaneous acceleration (A) $\frac{2}{\pi}$ (B) $\frac{\pi}{2}$ (C) π (D) 2 A car of mass m moves in a horizontal circular path of radius r metre. At an instant its speed is v m/s are increasing at a rate a m/s ² , then the acceleration of the car is : (A) $\sqrt{a\left(\frac{v^2}{r}\right)}$ (B) $\sqrt{a^2 + \left(\frac{v^2}{r}\right)^2}$ (C) $\frac{v^2}{r}$ (D) a							
E Dowr		(A) $\sqrt{a\left(\frac{v^2}{r}\right)}$	(B) $\sqrt{a^2 + \left(\frac{v^2}{r}\right)^2}$	(C) $\frac{v^2}{r}$	(D) a	Teko			
FREE									

- B 8. The second's hand of a watch has length 6 cm. Speed of end point and magnitude of difference of velocities at two perpendicular positions will be :
 - (B) 8.88 & 4.44 mm/s (A) 6.28 & 0 mm/s (C) 8.88 & 6.28 mm/s
 - (D) 6.28 & 8.88 mm/s
- B 9. A particle is going in a spiral path as shown in figure with constant speed.

(A) The velocity of the particle is constant

(B) The acceleration of the particle is constant

- (C) The magnitude of accleration is constant
- (D) The magnitude of accleration is decreasing continuously.

SECTION (C) : RADIUS OF CURVATURE AND DYNAMICS OF CIRCULAR MOTION

98930 58881. C 1. A particle of mass m is executing uniform circular motion on a path of radius r. If p is the magnitude of its linear momentum. The radial force acting on the particle is : 0

(A) p m r (B)
$$\frac{rm}{p}$$
 (C) $\frac{m}{r}$

$$r = \frac{mp^2}{r}$$

(D) $\frac{p^2}{rm}$

18 page

Phone : 0 903 903 7779,

Kariya (S.

- C 2. A train is moving towards north. At one place it turns towards north-east, here we observe that (A) the radius of curvature of outer rail will be greater than that of the inner rail (B) the radius of the inner rail will be greater than that of the outer rail
 - (C) the radius of curvature of one of the rails will be greater (D) The radius of curvature of the outer and inner rails will be the same

SECTION (D) : CIRCULAR MOTION IN HORIZONTAL PLANE

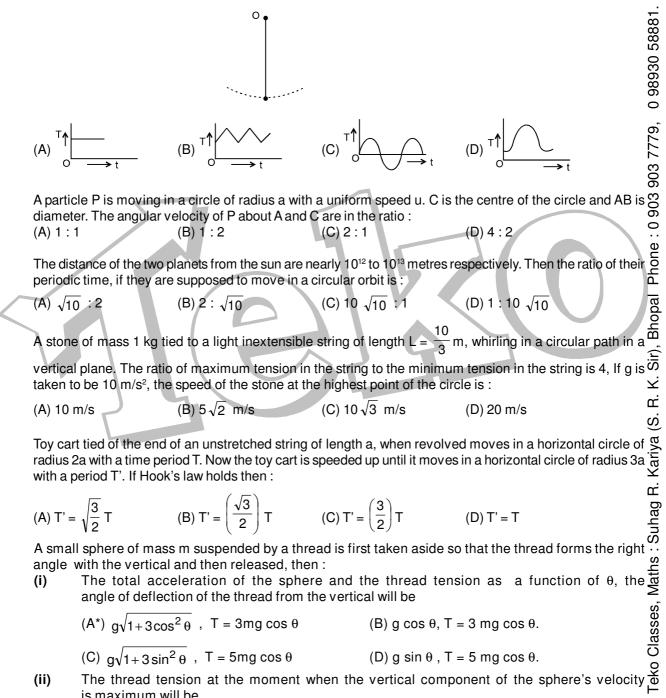
- A stone of mass of 16 kg is attached to a string 144 m long and is whirled in a horizontal circle. The maximum tension the string can withstand is 16 newton. The maximum speed of revolution of the stone D1. without breaking it, will be : 풥 (C) 14 ms⁻¹ (D) 12 ms⁻¹ (A) 20 ms⁻¹ (B) 16 ms⁻¹
- Three identical particles are joined together by a thread as shown in figure. All the three particles are $\overline{\overline{o}}$ D 2. moving on a smooth horizontal plane about point O. If the velocity of the outermost particle is v_{a} , then \checkmark the ratio of tensions in the three sections of the string is : сĿ.

(A)
$$3:5:7$$
 (B) $3:4:5$ (C) $7:11:6$ (D) $3:5:6$

- Ċ A particle is kept fixed on a turnatable rotating uniformly. As seen from the ground, the particle goes in a bruch circle, its speed is 20 cm/s and acceleration is 20 cm/s². The particle is now shifted to a new position to make the radius half of the original value. The new values of the speed and acceleration will be (A) 10 cm/s, 10 cm/s² (B) 10 cm/s, 80 cm/s² (C) 40 cm/s, 10 cm/s² (D) 40 cm/s,40 cm/s² ... D 3.
- D4. velocity of the turntable is doubled, it will just slip at a distance of asses, (D) 8 cm (A) 1 cm (B) 2 cm (C) 4 cm
- D 5. A rod of length L is pivoted at one end and is rotated with a uniform angular velocity in a horizontal plane . Let \overline{O} Teko T_1 and T_2 be the tensions at the points L/4 and 3L/4 away from the pivoted ends. (A) $T_1 > T_2$ $(B) T_2 > T_1$ $(C) T_1 = T_2$ (D) The relation between T, and T, depends on whether the rod rotates clockwise or anticlockwise

SECTION (E) : CIRCULAR MOTION IN VERTICAL PLANE

E1. When a particle is rotated in a vertical plane with constant angular velocity, magnitude of centripetal force is :


	Geta	Solution of These	i achayes a Leann	by video rutoriais	on www.iviali.ioDyCanag.	com		
		(A) Maximum at hig	ghest point	(B) Maximum at	lowest point			
		(C) Same at all poir	nts	(D) zero				
F	E 2.	A motorcycle is goi	ing on an overbridge o	f radius R. The driver	maintains a constant speed.	As the		
2		motorcycle is ascending on the overbridge, the normal force on it :						
õ		(A) increase		(B) decreases	(B) decreases			
Ď		(C) remains constant		(D) first increase	(D) first increases then decreases.			
ງສ	E 3.	A hoovy partiala ha	naina vortically from a	naint by a light inavtan	sible string of length Lie storte			
'n	E J.	A heavy particle hanging vertically from a point by a light inextensible string of length l is started so as n to make a complete revolution in a vertical plane. The sum of the magnitude of tension at the ends of \Box						
Ń		any diameter :		i plane. The sum of the	e magnitude of tension at the	enus or e		
m		(A) first increase th	en decreases	(B) is constant		page		
<u>IS</u>		(C) first decrease then increases			(D) decreases continuously			
Ę		. ,						
19	E 4.	R in the vertical plane. The mi						
~		speed at highest point of track will be :						
≶		(A) $\sqrt{2gR}$	(B) 2gR	(C) $\sqrt{3}$ gR	(D) \sqrt{qR}	0		
Ş				() (0		63		
>	E 5.	In a circus stuntman rides a motorbike in a circular track of radius R in the vertical plane. The minimum $\frac{1}{500}$ speed at highest point of track will be : (A) $\sqrt{2gR}$ (B) $2gR$ (C) $\sqrt{3gR}$ (D) \sqrt{gR} (D) \sqrt{gR} A heavy mass is attached to a thin wire and is whirled in a vertical circle. The wire is most likely to $\frac{66}{600}$						
∞		break						
F		 (A) when the mass is at the highest point of the circle (B) when the mass is at the lowest point of the circle 						
8			77					
		(C) when the wire is		and a central		~ ~		
Ő		. ,	os^{-1} (1/3) from the upwa			903 7779 [,]		
SC	E 6.	A particle is moving	g in a vertical circle. Th	e tensions in the string	when passing through two	e e		
<u>ש</u>		A particle is moving in a vertical circle. The tensions in the string when passing through two positions at angles 30° and 60° from vertical (lowest positions) are T_1 and T_2 respectively. Then (A) $T_1 = T_2$ (B) $T_2 > T_1$ (C) $T_1 > T_2$ (D) Tension in the string always remains the same A car moves at a constant speed on a road as shown in figure. The normal force by the road on the car in N_A and N_B when when it is at the points A and B respectively.						
Q		(A) $T_1 = T_2$	(B	$T_{2} > T_{1}$		0		
Š		(C) $T_1 > T_2$ (D) Tension in the string always remains the same $\underline{\phi}$						
ē	E 7.	A car moves at a cor	nstant speed on a road as	s shown in figure. The ne	ormal force by the road on the c	ar in N. È		
<u> </u>	\sim and N _B when when it is at the points A and B respectively.							
~		LIS ALLINE POINTS A AND D	respectively.					
Ş	~	and N _B when when h	A and B					
Ŵ	\langle			respectively.				
	\langle		A A A A A A A A A A A A A A A A A A A					
	\langle		A and B					
	\langle		A A A A A A A A A A A A A A A A A A A			Sir), Bhopal		
site:	\langle		(B) $N_A > N_B$		(D) insufficient	. K. Sir), Bhopal		
site:	<	(A) $N_A = N_B$	$(B) N_A > N_B$	(C) N _A < N _B	(D) insufficient	R. K. Sir), Bhopal		
site:	E 8.	(A) $N_A = N_B$ Water in a bucket is	(B) $N_A > N_B$ whirled in a vertical circl	(C) $N_A < N_B$ e with a string attached	(D) insufficient to it. The water does not fall dow	R. K. Sir), Bhopal		
site:	E 8.	(A) $N_A = N_B$ Water in a bucket is	$(B) N_A > N_B$	(C) $N_A < N_B$ e with a string attached	(D) insufficient to it. The water does not fall dow	(S. R. K. Sir), Bhopal		
site:	E 8.	(A) $N_A = N_B$ Water in a bucket is when the bucket is in	(B) $N_A > N_B$ whirled in a vertical circl	(C) $N_A < N_B$ e with a string attached bath. We conclude that	(D) insufficient to it. The water does not fall dow in this position.	(S. R. K. Sir), Bhopal		
site:	E 8.	(A) $N_A = N_B$ Water in a bucket is when the bucket is in	(B) $N_A > N_B$ whirled in a vertical circl	(C) $N_A < N_B$ e with a string attached bath. We conclude that	(D) insufficient to it. The water does not fall dow in this position.	(S. R. K. Sir), Bhopal		
site:	E 8.	(A) $N_A = N_B$ Water in a bucket is	(B) $N_A > N_B$ whirled in a vertical circl	(C) $N_A < N_B$ e with a string attached bath. We conclude that (B) mg is greater t	(D) insufficient to it. The water does not fall dow in this position. than $\frac{mv^2}{r}$	(S. R. K. Sir), Bhopal		
site:	E 8.	(A) $N_A = N_B$ Water in a bucket is in when the bucket is in (A) $mg = \frac{mv^2}{r}$	(B) $N_A > N_B$ whirled in a vertical circl nverted at the top of its p	(C) $N_A < N_B$ e with a string attached bath. We conclude that (B) mg is greater t	(D) insufficient to it. The water does not fall dow in this position. than $\frac{mv^2}{r}$	(S. R. K. Sir), Bhopal		
site:	E 8.	(A) $N_A = N_B$ Water in a bucket is when the bucket is in	(B) $N_A > N_B$ whirled in a vertical circl nverted at the top of its p	(C) $N_A < N_B$ e with a string attached bath. We conclude that	(D) insufficient to it. The water does not fall dow in this position. than $\frac{mv^2}{r}$	(S. R. K. Sir), Bhopal		
site:		(A) $N_A = N_B$ Water in a bucket is in when the bucket is in (A) $mg = \frac{mv^2}{r}$ (C) mg is not greater	(B) $N_A > N_B$ (B) $N_A > N_B$ whirled in a vertical circles of the top of its particular the top of its particular the top of top	(C) $N_A < N_B$ e with a string attached bath. We conclude that (B) mg is greater to (D) mg is not less	(D) insufficient to it. The water does not fall dow in this position. than $\frac{mv^2}{r}$ than $\frac{mv^2}{r}$	so uano Suhag R. Kariya (S. R. K. Sir), Bhopal		
ly Package from website: www.TekoClasses.com & www.MathsBySuhag.com	E 8.	(A) $N_A = N_B$ Water in a bucket is when the bucket is in (A) $mg = \frac{mv^2}{r}$ (C) mg is not greater A simple pendulum	(B) $N_A > N_B$ (B) $N_A > N_B$ whirled in a vertical circle nverted at the top of its p r than $\frac{mv^2}{r}$ having a bob of mass r	(C) N _A < N _B e with a string attached bath. We conclude that (B) mg is greater to (D) mg is not less m is suspended from th	(D) insufficient to it. The water does not fall dow in this position. than $\frac{mv^2}{r}$ than $\frac{mv^2}{r}$ ne ceiling of a car used in a stu	un in tim und und und und und und und und und und		
site:		(A) $N_A = N_B$ Water in a bucket is in when the bucket is in (A) $mg = \frac{mv^2}{r}$ (C) mg is not greater A simple pendulum shotting. The car mo	(B) $N_A > N_B$ whirled in a vertical circle nverted at the top of its provide the top of its provide the top of the provide the providet the providet the providet the providet the provi	(C) N _A < N _B e with a string attached bath. We conclude that (B) mg is greater to (D) mg is not less m is suspended from the cliff at a speed v and m	(D) insufficient to it. The water does not fall dow in this position. than $\frac{mv^2}{r}$ than $\frac{mv^2}{r}$ ne ceiling of a car used in a str akes a jump to leave the cliff an	spuel puration of the second state of the seco		
site:		(A) $N_A = N_B$ Water in a bucket is in when the bucket is in (A) $mg = \frac{mv^2}{r}$ (C) mg is not greater A simple pendulum shotting. The car mo at some distance. Let	(B) $N_A > N_B$ whirled in a vertical circle nverted at the top of its provided at the top of its provided at the top of its provided at the top of the temperature of tempera	(C) N _A < N _B e with a string attached bath. We conclude that (B) mg is greater to (D) mg is not less m is suspended from the cliff at a speed v and m	(D) insufficient to it. The water does not fall dow in this position. than $\frac{mv^2}{r}$ than $\frac{mv^2}{r}$ ne ceiling of a car used in a stu	, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal		
site:		(A) $N_A = N_B$ Water in a bucket is in when the bucket is in (A) $mg = \frac{mv^2}{r}$ (C) mg is not greater A simple pendulum shotting. The car mo	(B) $N_A > N_B$ whirled in a vertical circle nverted at the top of its provided at the top of its provided at the top of its provided at the top of the temperature of tempera	(C) N _A < N _B e with a string attached bath. We conclude that (B) mg is greater to (D) mg is not less m is suspended from the cliff at a speed v and m	(D) insufficient to it. The water does not fall dow in this position. than $\frac{mv^2}{r}$ than $\frac{mv^2}{r}$ ne ceiling of a car used in a str akes a jump to leave the cliff an	, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal		
site:		(A) $N_A = N_B$ Water in a bucket is in when the bucket is in (A) $mg = \frac{mv^2}{r}$ (C) mg is not greater A simple pendulum shotting. The car mo at some distance . Le when the car is in air	(B) $N_A > N_B$ whirled in a vertical circle nverted at the top of its provided at the top of its provided at the top of its provided at the top of the p	(C) N _A < N _B e with a string attached bath. We conclude that (B) mg is greater to (D) mg is not less m is suspended from the cliff at a speed v and m right of the car from the st	(D) insufficient to it. The water does not fall dow in this position. than $\frac{mv^2}{r}$ than $\frac{mv^2}{r}$ ne ceiling of a car used in a strate akes a jump to leave the cliff and top of the cliff. The tension is the	, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal		
site:	E 9.	(A) $N_A = N_B$ Water in a bucket is in when the bucket is in (A) $mg = \frac{mv^2}{r}$ (C) mg is not greater A simple pendulum shotting. The car mo at some distance . Le when the car is in air (A) mg	(B) $N_A > N_B$ whirled in a vertical circle nverted at the top of its provide the top of its provide the top of the provide the top of the provide the top of top of the top of the top of the top of top	(C) N _A < N _B e with a string attached bath. We conclude that (B) mg is greater to (D) mg is not less m is suspended from the cliff at a speed v and m sight of the car from the (C) mg +	(D) insufficient to it. The water does not fall dow in this position. than $\frac{mv^2}{r}$ than $\frac{mv^2}{r}$ ne ceiling of a car used in a str akes a jump to leave the cliff an top of the cliff. The tension is th $\frac{mv^2}{r}$ (D) zero	Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal		
site:	E 9.	(A) $N_A = N_B$ Water in a bucket is in when the bucket is in (A) $mg = \frac{mv^2}{r}$ (C) mg is not greater A simple pendulum shotting. The car mo at some distance . Le when the car is in air (A) mg	(B) $N_A > N_B$ whirled in a vertical circle nverted at the top of its provide the top of its provide the top of the provide the top of the provide the top of top of the top of the top of the top of top	(C) N _A < N _B e with a string attached bath. We conclude that (B) mg is greater to (D) mg is not less m is suspended from the cliff at a speed v and m sight of the car from the (C) mg +	(D) insufficient to it. The water does not fall dow in this position. than $\frac{mv^2}{r}$ than $\frac{mv^2}{r}$ ne ceiling of a car used in a str akes a jump to leave the cliff an top of the cliff. The tension is th $\frac{mv^2}{r}$ (D) zero	Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal		
site:	E 9.	(A) $N_A = N_B$ Water in a bucket is in when the bucket is in (A) $mg = \frac{mv^2}{r}$ (C) mg is not greater A simple pendulum shotting. The car mo at some distance . Le when the car is in air (A) mg	(B) $N_A > N_B$ whirled in a vertical circle nverted at the top of its provide the top of its provide the top of the provide the top of the provide the top of top of the top of the top of the top of top	(C) N _A < N _B e with a string attached bath. We conclude that (B) mg is greater to (D) mg is not less m is suspended from the cliff at a speed v and m sight of the car from the (C) mg +	(D) insufficient to it. The water does not fall dow in this position. than $\frac{mv^2}{r}$ than $\frac{mv^2}{r}$ ne ceiling of a car used in a str akes a jump to leave the cliff an top of the cliff. The tension is th $\frac{mv^2}{r}$ (D) zero	Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal		
site:	E 9. SECTI	(A) $N_A = N_B$ Water in a bucket is in when the bucket is in (A) $mg = \frac{mv^2}{r}$ (C) mg is not greater A simple pendulum shotting. The car mo at some distance . Le when the car is in air (A) mg ON (F) : MOTION	whirled in a vertical circles whirled in a vertical circles r than $\frac{mv^2}{r}$ having a bob of mass re- boyes up along an inclined et R be the maximum here r is (B) mg- $\frac{mv^2}{r}$ N OF A VEHICLE, C	(C) N _A < N _B e with a string attached bath. We conclude that (B) mg is greater f (D) mg is not less m is suspended from the cliff at a speed v and m sight of the car from the (C) mg +	(D) insufficient to it. The water does not fall dow in this position. than $\frac{mv^2}{r}$ than $\frac{mv^2}{r}$ he ceiling of a car used in a str akes a jump to leave the cliff an top of the cliff. The tension is the $\frac{mv^2}{r}$ (D) zero CE AND ROTATION OF E	Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal		
site:	E 9.	(A) $N_A = N_B$ Water in a bucket is in when the bucket is in (A) $mg = \frac{mv^2}{r}$ (C) mg is not greater A simple pendulum shotting. The car mo at some distance . Le when the car is in air (A) mg ON (F) : MOTION The driver of a car	whirled in a vertical circles whirled in a vertical circles r than $\frac{mv^2}{r}$ having a bob of mass re- boyes up along an inclined et R be the maximum here r is (B) mg- $\frac{mv^2}{r}$ N OF A VEHICLE, C	(C) N _A < N _B e with a string attached bath. We conclude that (B) mg is greater f (D) mg is not less m is suspended from the cliff at a speed v and m sight of the car from the (C) mg +	(D) insufficient to it. The water does not fall dow in this position. than $\frac{mv^2}{r}$ than $\frac{mv^2}{r}$ ne ceiling of a car used in a str akes a jump to leave the cliff an top of the cliff. The tension is th $\frac{mv^2}{r}$ (D) zero	Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal		
site:	E 9. SECTI	(A) $N_A = N_B$ Water in a bucket is in when the bucket is in (A) $mg = \frac{mv^2}{r}$ (C) mg is not greater A simple pendulum shotting. The car mo at some distance . Le when the car is in air (A) mg ON (F) : MOTION	$\frac{A}{(B) N_A > N_B}$ whirled in a vertical circle nverted at the top of its provide the top of its provide the top of its provide the top of top	(C) N _A < N _B e with a string attached bath. We conclude that (B) mg is greater to (D) mg is not less m is suspended from the cliff at a speed v and m right of the car from the (C) mg +	(D) insufficient to it. The water does not fall dow in this position. than $\frac{mv^2}{r}$ than $\frac{mv^2}{r}$ he ceiling of a car used in a str akes a jump to leave the cliff an top of the cliff. The tension is the $\frac{mv^2}{r}$ (D) zero CE AND ROTATION OF E	Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal		
	E 9. SECTI	(A) $N_A = N_B$ Water in a bucket is in when the bucket is in (A) $mg = \frac{mv^2}{r}$ (C) mg is not greater A simple pendulum shotting. The car mo at some distance . Le when the car is in air (A) mg ON (F) : MOTION The driver of a car avoid collision, (A) he should apply	$\frac{A}{(B) N_A > N_B}$ whirled in a vertical circle nverted at the top of its provide the top of its provide the top of its provide the top of top	(C) N _A < N _B e with a string attached bath. We conclude that (B) mg is greater the (D) mg is not less m is suspended from the cliff at a speed v and m sight of the car from the cliff at a speed v and m sight of the car from the denly sees a wall at a (B) he sh	(D) insufficient to it. The water does not fall dow in this position. than $\frac{mv^2}{r}$ than $\frac{mv^2}{r}$ than $\frac{mv^2}{r}$ ne ceiling of a car used in a str akes a jump to leave the cliff an top of the cliff. The tension is th $\frac{mv^2}{r}$ (D) zero CE AND ROTATION OF E distance r directly in front of I ould turn the car sharply	Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal		

- **F 2.** A curved section of a road is banked for a speed v. If there is no friction between road and tyres of the car, then:
 - (A) car is more likely to slip at speeds higher than \boldsymbol{v} than speeds lower than \boldsymbol{v}
 - (B) car cannot remain in static equilibrium on the curved section
 - (C) car will not slip when moving with speed \boldsymbol{v}
 - (D) none of the above
- **F 3.** A particle of mass m is observed from an inertial frame of reference and is found to move in a circle of radius r with a unifrom speed v. The centrifugal force on it is

(A)
$$\frac{mv^2}{r}$$
 towards the centre (B) $\frac{mv^2}{r}$ away from the centre (C) $\frac{mv^2}{r}$ along the tangent through the particle (D) zero
F4. A train A runs from east to west and another train B of the same mass runs from west to east at the same speed along the equator. A presses the track with a force F_r and B presses the track with a force F_z . (A) $F_r > F_z$.
(B) $F_r < F_r^{-1}$
(D) the information is insufficient to find the relation between F, and B presses the track with a force F_z .
(A) The acceleration of the car is towards the centre of the path
(B') The magnitude of the frictional force on the car is greater than $\frac{mv^2}{r}$
(C') The friction coefficient between the ground and the car is not less than arg.
(D) The friction coefficient between the ground and the car is $\mu = \tan \frac{v^2}{r}$
(D) The friction coefficient between the ground and the car is $\mu = \tan \frac{v^2}{r}$
(C') The friction coefficient between the ground and the car is $\mu = \tan \frac{v^2}{r}$
(D) The friction coefficient between the ground and the car is not less than arg.
(A) The car cannot make a turn without skidding.
(B') The tracer cannot make a turn without skidding.
(B') If the car turns at the current speed of 40 km/hr. A car of mass attempts to go on the circular read. The friction coefficient between the two and the roce by the road on the car is greater than $\frac{mv^2}{r}$
(D') If the car turns at the current speed of 40 km/hr, the force by the road on the car is greater than $\frac{mv^2}{r}$
(D) The resultant of the other forces is $\frac{mv^2}{r}$ towards the centre.
(D) The resultant of the other forces is $\frac{mv^2}{r}$ towards the centre.
(D) The resultant of the other forces is $\frac{mv^2}{r}$ towards the centre.
(D) The resultant of the other forces is in magnitude as well as in direction .
EXERCISEE-33
1. A particle of mass m begins to slide down a fixed smooth sphere from the top. What is its tangential acceleration when it breaks off the sphere ?
(A) $\frac{2}{3}$ (B) $\frac{\sqrt{5}}{3}$ (C) g (D) $\frac{9}{3}$

- A 1 kg stone at the end of 1 m long string is whirled in a vertical circle at constant speed of 4 m/sec. The tension in the string is 6 N when the stone is at $(g = 10 \text{ m/sec}^2)$: (B) bottom of the circle (C) halfway down (D) none of these (A) top of the circle
- 3. A boy whirls a stone in a horizontal circle 1.8 m above the ground by means of a string 1.2 m long. The string breaks and stone flies off horizontally, striking the ground 9.1 m away. The centripetal acceleration during the circular motion was: (use $g = 9.8 \text{ m/s}^2$) (C) 188 m/s² (D) 282 m/s² (A) 94 m/s² (B) 141 m/s²
 - A particle of mass m is suspended from a fixed point O by a string of length ℓ . At t = 0, it is displaced from $\frac{\Phi}{\Phi}$ equilibrium position and released. The graph, which shows the variation of the tension T in the string with $\frac{\Phi}{\Phi}$ time the maximum basis. time 't', may be :

21

(ii) is maximum will be

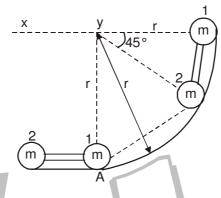
(A) mg (B) mg
$$\sqrt{2}$$
 (C*) mg $\sqrt{3}$ (D) $\frac{119}{\sqrt{3}}$

(iii) The angle θ between the thread and the vertical at the moment when the total acceleration

2.

vector of the sphere is directed horizontally will be

(A)
$$\cos \theta = \frac{1}{\sqrt{3}}$$
 (B) $\cos \theta = \frac{1}{3}$ (C) $\sin \theta = \frac{1}{\sqrt{3}}$ (D) $\sin \theta = \frac{1}{\sqrt{2}}$


The kinetic energy k of a particle moving along a circle of radius R depends on the distance covered s as $k = as^2$ where a is a constant. The total force acting on the particle is :

(A)
$$2a\frac{s^2}{R}$$
 (B) $2as\left(1+\frac{s^2}{R^2}\right)^{1/2}$ (C) $2as$ (D) $2a\frac{R^2}{s}$

0 98930 58881.

Phone : 0 903 903 7779,

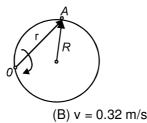
Two small spheres, each of mass m are rigidly connected by a rod of negligible mass and are released 11. from rest in the position shown and slide down a smooth circular guide in the vertical plane.

(i) Their common velocity as they reach the horizontal dashed position will be :

(A)
$$\sqrt{2gr - \frac{1}{\sqrt{2}}gr}$$
 (B) $10\sqrt{2gr - \frac{1}{\sqrt{2}}gr}$ (C) \sqrt{gr}

Bhopal (ii) The force R between sphere 1 and the supporting surface at an instant just before the sphere reaches the bottom position A will be : (D) mg/2 (A) 22.9 mg (B) 2.29 mg (C) mg

(D) √gr /2


Sir), A particle moves with deceleration along the circle of radius R so that at any moment of time its tangential щ. К and normal accelerations are equal in moduli. At the initial moment t = 0 the speed of the particle equals v_n then : R. Kariya (S.

(i) the speed of the particle as a function of the distance covered s will be
(A)
$$v = v_0 e^{-s/R}$$
 (B) $v = v_0 e^{s/R}$ (C) $v = v_0 e^{-R/s}$ (D) $v = v_0 e^{R/s}$

(ii) the total acceleration of the particle as function of velocity and distance covered

(A)
$$a = \sqrt{2} \frac{v^2}{R}$$
 (B) $a = \sqrt{2} \frac{v}{R}$ (C) $a = \sqrt{2} \frac{R}{v}$ (D) $a = \frac{2R}{v}$

the modulus of its total acceleration will be Teko Classes, Maths

(A) $v = 0.4 \text{ m/s}, w = 0.4 \text{ m/s}^2$ (C) $v = 0.32 \text{ m/s}, w = 0.4 \text{ m/s}^2$

- (B) v = 0.32 m/s, $w = 0.32 \text{ m/s}^2$ (D) v = 0.4 m/s, w = 0.32 m/s²
- 14. A spot light S rotates in a horizontal plane with a constant angular velocity of 0.1 rad/s. The spot of light P moves along the wall at a distance 3 m. What is the velocity of the spot P when $\theta = 45^{\circ}$? (A) 0.6 m/s (B) 0.5 m/s (C) 0.4 m/s (D) 0.3 m/s

XERCISE-4

A smooth rod PQ rotates in a horizontal plane about its mid point M which is h = 0.1 m vertically below a fixed point A at a constant angular velocity 14 rad/s. A light elastic string of natural length 0.1 m requiring 1.47 N/cm has one end fixed at A and its other end attached to a ring of mass m = 0.3 kg which is free to slide along the rod. When the ring is stationary relative to rod, then inclination of string with vertical, tension in string, force exerted by ring on the rod will be

///////

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com (A) $\cos \theta = 3/5$, T = 9.8 N, N = 2.88 N (C) $\cos \theta = 2/5$, T = 4.9 N, N = 1.44 N 2. Figure shows the total acceleration and velocity of a particle moving clockwise in a circle of radius 2.5 m at a given instant of time. At this instant, find : (a) the radial acceleration, (b) the speed of the particle and (c) its tangential acceleration 3. 4 with the road. bridge? A 4 kg block is attached to a vertical rod by means of two strings of equal 5. length. When the system rotates about the axis of the rod, the strings are extended as shown in figure. 20 kaf? 6.

(a) How many revolutions per minute must the system make in order for the tension in the upper chord to be

- (b) What is the tension in the lower chord then?
- A metallic chain with a length ℓ and whose ends are joined together is fitted onto a wooden disc as shown in the figure. The disc rotates with a speed of n revolutions per second. Find the tension of the chain T if its mass is m.

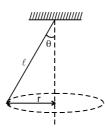
(B) $\theta = 60$, T = 0, N = 1.44 N (D) $\theta = 30$, T = 0, N = 2.88 N Two particle A and B move anticlockwise with the same speed v in a circle of radius R and are diametrical in which A collides with B, the angle traced by A, its angular velocity and radial acceleration at the time of Collision. A motorcycle has to many with A motorcycle has to move with a constant speed on an overbridge which is in the form of a circular arc of radius R and has a total length L. Suppose the motorcycle starts from the highest point. (a) What can its maximum velocity be for which the contact with the road is not broken at the highest point. (b) If the motorcycle goes at speed $1/\sqrt{2}$ times the maximum found in part (a) where will it lose the contact $\sqrt{2}$ (c) What maximum uniform speed can it maintain on the bridge if it does not lose contact anywhere on the <u>v</u>

Teko Classes, Maths : Suhag R. Kariya

23 page

0 98930 58881.

903 903 7779.


0

Bhopal

сĿ.

a=25 m/s²

7. A small object of mass m is tied to a string of length I and is whirled round in a horizontal circle of radius r at constant speed v (figure). The centre of the circle is vertically below the point of support. [This arrangement is called conical pendulum.]

Calculate v in terms of g, r and θ . Also calculate the period of revolution.

58881 A car goes on a horizontal circular road of radius R, the speed increasing at a constant rate

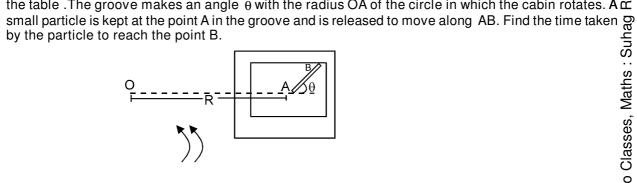
24 page:

0

Phone

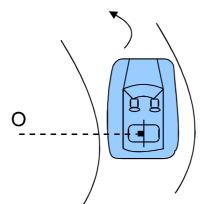
Ľ.

Ľ.


Ś

dt skid.

- A track consists of two circular parts ABC and CDE of equal radius 100 m and joined smoothly as $^{\circ}$ 9. shown in fig. Each part subtends a right angle at its centre. A cycle weighing 100 kg together with the rider travels at a constant speed of 18 km/h on the rack. (A) Find the normal contact force by the road on the cycle when it is at B and D. (B) Find the corce of friction exerted by the track on the tyres when here are the cycle in at B. C and D. (c) Find the cycle is at B. (c) Find the c the cycle is at B, C and D. (c) Find the normal force between the road and the cycle just, before and giust after the cycle crosses C. (D) What should be the minimum friction coefficient between the road 903 and the tyre, which will ensure that the cyclist can move with constant speed ? Take $g = 10m/s^2$.
 - A block of mass 'm' moves on a horizontal circle against the wall of a cylindrical room of radius R. The G floor of the room on which the block moves is smooth but the friction coefficient between the wall and the block is μ . The block is given an initial speed v_0 . As a function of the instantaneous speed 'v' write \overline{c}
 - the normal force by the wall on the block, (A)
 - (B) the frictional force by the wall and
 - (C) the tangential acceleration of the block.
 - (D) obtain the speed of the block after one revolution.


B

(D) obtain the speed of the block after one revolution. A table with smooth horizontal surface is fixed in a cabin that rotates with a uniform angular velocity ω 11. in a circular path of radius R (figure). A smooth groove AB of length L(< < R) is made on the surface of the table . The groove makes an angle θ with the radius OA of the circle in which the cabin rotates. A \dot{c}

- A car moving at a speed of 36 km/hr is taking a turn on a circular road of radius 50 m. A small wodden plate is kept on the seat with its plane perpendicular to the radius of the circular road figure. A small block of mass 100g is kept on the seat which rests against the plate. The friction coefficient between the block and the plate is $\mu = 0.58$.
 - (A) Find the normal contact force exerted by the plate on the block.
 - (B) The plate is slowly turned so that the angle between the normal to the plate and radius of the angle

between the normal to the plate and the radius of the road slowly increases. Find the angle at which the block will just start sliding on the plate.

A table with smooth horizontal surface is placed in a cabin which moves in a circle of a large radius R (figure). A smooth pulley of small radius is fastended to the table. Two masses m and 2m placed on the table are conneted through a string over the pulley. Initially the masses are held by a person with the string along the outward radius and the string between the pulley. string along the outward radius and then the system is released from rest (with respect to the cabin). string along the outward radius and then the system is released from rest (with respect to the cabin). Find the magnitude of the initial acceleration of the masses as seen from the cabin and the tension in of the string.

ERCISE-5

A hemispherical bowl of radius r = 0.1m is rotating about its axis (which is vertical) with an angular velocity $\frac{2}{m}$ ω . A particle of mass 10⁻²kg on the frictionless inner surface of the bowl is also rotating with the same ω . the $\widehat{}$ particle is at a height h from the bottom of the bowl. (a) Obtain the relation between h and ω . What is the $\overline{\mathcal{O}}$ minimum value of ω needed in order to have a nonzero value of h. (b) It is desired to measure 'g' using this \mathbf{Y} setup by measuring h accurately. Assuming that r and ω are known precisely and that the least count in the m measurement of h is 10⁴ m. What is minimum error Δg in the measured value of g.[g = 9.8m/s²] S,

[JEE 1993]

25 page:

58881.

opal

- **[JEE 1993]** A particle of mass m is moving in a circular path of constant radius r such that is centripetal acceleration $a_c \stackrel{\text{red}}{\doteq}$ is varying with time t as $a_c = k^2 rt^2$ where k is a constant. The power delivered to the particle by the force acting [JEE 1994] on it isġ
 - (C) $\frac{(mk^4r^2t^5)}{}$ (A) $2 \pi mk^2 r^2$ (B) mk² r² t (D) Zero
- uhag A smooth semicircular wire track of radius R is fixed in a vertical plane (figure). On end of a massless spring o of natural length 3R/4 is attached to the lowest point O of the wire track. A small ring of mass m which can ω slide on the track is attached to the other end of the spring. The ring is held stationary at point P such that $\frac{1}{2}$ the spring make an angle 60° with the vertical. The spring constant K = mg/R. Consider the instant when the $\frac{1}{2}$ ring is released Classes,
 - (i) Draw the free body diagram of the ring.
 - (ii) Determine the tangential acceleration of the ring and the normal reaction. [JEE 1996]
- Two blocks of mass $m_1 = 10$ Kg and $m_2 = 5$ Kg connected to each other by a massless inextensible string of length 0.3 m are placed along a diameter of turn table. The coefficient of friction between the table and m, 🗟 is 0.5 while there is no friction between m₂ and the table. The table is rotating with an angular velocity of 10⁺ rad/s about a vertical axis passing through its centre O. The masses are placed along the diameter of the table on either side of the centre O such that the mass m, is at a distance of 0.124 m from O. The masses are observed to be at rest with respect to an observer on the turn table.
 - Calculate the frictional force on m.
 - (i) (ii) What should be the minimum angular speed of the turn table so that the masses will slip

from this position.

- (iii) How should the masses by placed with the string remaining taut so that there is no frictional force acting on the mass m₁.
 - [JEE 1997]
- A small block of mass m slides along a smooth frictional track as shown in figure. (i) If it starts from rest at P, when is the resultant force acting on it at Q? (ii) At what height above the bottom of the loop should the block be released so that the force it exerts against the track at the top of the loop equals its weight ?

26

page:

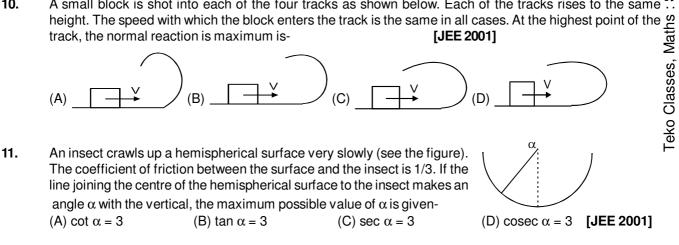
58881.

Sir), Bhopal

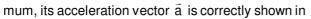
Ŀ. с.

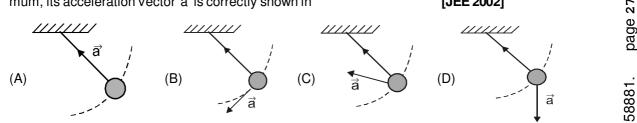
[REE 1997] A stone tied to a string of length L is whirled in a vertical circle with the other end of the string at the centre. At a certain instant of time the stone is at its lowest position and has a speed u. The magnitude of the 80 million and has a speed use of the 80 million and has a speed by the stone of the 80 million and has a speed by the st change in its velocity as it reaches a position, where the string is horizontal, is [JEE 1998] 0

(A)
$$\sqrt{u^2 - 2gL}$$
 (B) $\sqrt{2gL}$ (C) $\sqrt{u^2 - gL}$ (D) $\sqrt{2(u^2 - gL)}$

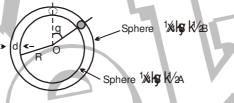

- 7779. A particle at rest starts rolling from the top of a large frictionless sphere of radius R. The sphere is fixed on the or a large friction less sphere of radius R. The sphere is fixed on the or a large friction less sphere of radius R. The sphere is fixed on the or a large friction less sphere of radius R. The sphere is fixed on the or a large friction less sphere of radius R. The sphere is fixed on the or a large friction less sphere of radius R. The sphere is fixed on the or a large friction less sphere of radius R. The sphere is fixed on the or a large friction less sphere of radius R. The sphere is fixed on the or a large friction less sphere of radius R. The sphere is fixed on the or a large friction less sphere of radius R. The sphere is fixed on the or a large friction less sphere of radius R. The sphere is fixed on the or a large friction less sphere of radius R. The sphere is fixed on the or a large friction less sphere of radius R. The sphere is fixed on the or a large friction less sphere of radius R. The sphere is fixed on the or a large friction less sphere of radius R. The sphere is fixed on the or a large friction less sphere of radius R. The sphere is fixed on the or a large friction less sphere of the sphere is fixed on the or a large friction less sphere is fixed on the or a large friction less sphere of the sphere is fixed on the or a large friction less sphere is fixed on the or a large friction less sphere is fixed on the or a large friction less sphere is fixed on the or a large friction less sphere is fixed on the or a large friction less sphere is fixed on the or a large friction less sphere is fixed on the or a large friction less sphere is fixed on the or a large friction less sphere is fixed on the or a large friction less sphere is fixed on the or a large friction less sphere is fixed on the or a large friction less sphere is fixed on the or a large friction less sphere is fixed on the or a large friction less sphere is fixed on the or a large fricting fricting fricting frite less sph [REE 1998]
- 903 A particle is suspended vertically from a point O by an inextensible massless string of length L. A vertical line O AB is at a distance L/8 from O as shown. The object given a horizontal velocity u. At some point, its motion o ceases to be circular and eventually the object passes through the line AB. At the instant of crossing AB, its be velocity is horizontal. Find u.

A long horizontal rod has a bead which can slide along its length and is initially placed at a distance L from 9 one end A of the rod. The rod is set in angular motion about A with a constant angular acceleration, α . If the coefficient of friction between the rod and the bead is μ , and gravity is neglected, then the time after which the bead starts slipping is с.


(A)
$$\sqrt{\frac{\mu}{\alpha}}$$


(A) $\sqrt{\frac{\mu}{\alpha}}$ (B) $\frac{\mu}{\sqrt{\alpha}}$ (C) $\frac{1}{\sqrt{\mu\alpha}}$ (D) Infinitesimal A small block is shot into each of the four tracks as shown below. Each of the tracks rises to the same $\frac{C}{\sqrt{\alpha}}$

(C) $\frac{1}{\sqrt{\mu\alpha}}$

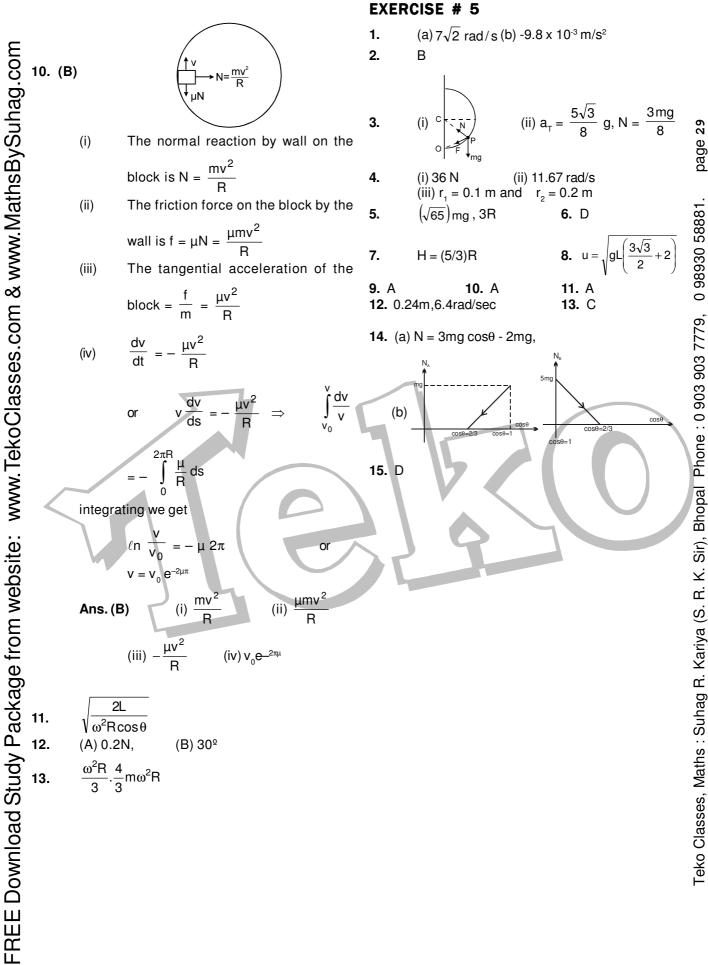

- 12. A block is placed inside a horizontal hollow cylinder. The cylinder starts rotating with one revolution per second about its axis. The angular position of the block at which it begins to slide is 30° below the horizontal level passing through the center. Find the radius of the cylinder if the coefficient of friction is 0.6. What should be the minimum angular speed of the cylinder so that the block reach the highest point of the cylinder? [REE 2001]
- 13. A simple pendulum is oscillating without damping. When the displacements of the bob is less than maxi-

A spherical ball of mass m is kept at the highest point in the space between two fixed, concentric spheres A $\overset{\circ}{0}$ and B (see figure). The smaller sphere A has a radius R and the space between the two spheres has a width $\overset{\circ}{0}$ d. The ball has a diameter very slightly less than d. All surfaces are frictionless. The ball given a gentle push o(towards the right in the figure). The angle made by the radius vector of the ball with the upward vertical is depended by θ (shown in figure)

(a) Express the total normal reaction force exerted by the spheres on the ball as a function of angle θ . (b) Let N_A and N_B denote the magnitudes of the normal reaction force on the ball extorted by the spheres A $\underset{A}{\circ}$ and B, respectively. Sketch the variations of N_A and N_B as functions of $\cos\theta$ in the range $0 \le \theta \le \pi$ by drawing $\underset{A}{\circ}$ two separate graphs in your answer book, taking $\cos\theta$ on the horizontal axis

[JEE 2002]

[JEE 2002]


A double star system consists of two stars A and B which have time period T_A and T_B . Radius R_A and R_B and \overline{c}_B mass M, and M. Choose the correct option 15. mass M_A and M_B . Choose the correct option. [IIT 2006, (3, -1] (A) If $T_A > T_B$ then $R_A > R_B$ (B) If $T_{A} > T_{B}$ then $M_{A} > M_{B}$

(C)
$$\left(\frac{T_A}{T_B}\right)^2 = \left(\frac{R_A}{R_B}\right)^3$$
 (D) $T_A = T_B$

14.

EXERCISE # 1 SECTION (A) : KINEMATICS OF CIRCULAR MOTION E 1. C E 2. A E 3. B					
\underline{O} section (a) : kinematics of circular motion	E1. C E2. A E3. B				
A 1. (b) first (b) third.	E4. D E5. B E6. C				
C SECTION (B) - DADIAL AND TANCENTIAL	E7. C Ε8. C Ε9. D _∞				
SECTION (B) : RADIAL AND TANGENTIAL \mathcal{O} Acceleration					
\sim B 1. 2.7 m/sec ²	SECTION (F) : MOTION OF A VEHICLE, O				
	CENTRIFUGAL FORCE AND ROTATION OF $\frac{100}{100}$				
$\stackrel{\frown}{=}$ SECTION (C) : RADIUS OF CURVATURE AND					
DYNAMICS OF CIRCULAR MOTION	F1. A F2. C F3. D 🐱				
Ξ C 1 . 8T ₀ C 2 . 90°	F4. A F5. BC F6. BD 👸				
$\int u^2 \cos^2 \theta$	F 7. BD				
\leq C 3. $\frac{14.8N}{gcos^{3}(\theta/2)}$ C 4. [14.8N, 14.8N]					
ex a second s	F 1. A F 2. C F 3. D 688 F 4. A F 5. BC F 6. BD 89 F 7. BD 688 66 66 EXERCISE # 3 80 66 66 1. B 2. A 3. C 60				
\subset SECTION (D) : CIRCULAR MOTION IN HORIZONTAL					
	4. D 5. B 6. D 7. A 8. B 9. (i) A (ii) C				
Ö D 1. 20 rad/s D 2. 4.5 mg	9. (i) A (ii) C (iii) A				
D 3. 2 m/s D 4. 0.40	10. B				
$\tilde{\mathcal{O}}$ SECTION (E) : CIRCULAR MOTION IN VERTICAL	11. (i) A (ii) B 5				
CO PLANE	12. (i) A (ii)				
\overline{O} 5	13. D 14. A 0				
Q E1. (i) $h_{min} = \frac{3}{2}r$ (ii) F = 6 mg E2. 0.8 m	10. B $(ii) A$ $(ii) B$ $(ii) A$ $(ii) A$ 12. (i) A (ii) A $(ii) A$ $(ii) A$ $(ii) A$ 13. D 14. A $(ii) A$ $(ii) A$ $(ii) A$ EXERCISE # 4 1. A $(i) 21.65 \text{ m/s}^2$ $(b) 7.35 \text{ m/s}$ $(c) 12.5 \text{ m/s}^2$				
D E 3. 4 m/sec	1. A				
F LJ. 4 11/360	2. (a) 21.65 m/s ² (b) 7.35 m/s (c) 12.5 m/s ² $\overleftarrow{\Box}$				
A 1. (b) first (b) third. SECTION (B) : RADIAL AND TANGENTIAL ACCELERATION B 1. 2.7 m/sec ² SECTION (C) : RADIUS OF CURVATURE AND DYNAMICS OF CIRCULAR MOTION C 1. $8T_0$ C 2. 90° C 3. $\frac{u^2 \cos^2 \theta}{g \cos^3(\theta/2)}$ C 4. [14.8N, 14.8 N] SECTION (D) : CIRCULAR MOTION IN HORIZONTAL PLANE D 1. 20 rad/s D 2. 4.5 mg D 3. 2 m/s D 4. 0.40 SECTION (E) : CIRCULAR MOTION IN VERTICAL PLANE E 1. (i) h _{min} = $\frac{5}{2}$ r (ii) F = 6 mg E 2. 0.8 m E 3. 4 m/sec SECTION (F) : MOTION OF A VEHICLE, CENTRIFUGAL FORCE AND ROTATION OF	5πR 11π 17v 289v ²				
S CENTRIFUGAL FORCE AND ROTATION OF	3. $\frac{5\pi R}{6v}$, $\frac{11\pi}{6}$, $\frac{17v}{5R}$, $\frac{289v^2}{25R}$				
EARTH					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4. (a) $v_{max} = \sqrt{Rg}$,				
\overline{O} F 3. tan ⁻¹ (1/4)] F 4. 0.25	(b) At angle $\theta = 60^{\circ}$ from the vertical position.				
Q F 5. (A) 3.5 × 10 ⁻³ , (B) 2.0 hour] P F 6. Between 14.7 km/h and 54 km/hr]					
	(c) v = $\sqrt{gR\cos\left(\frac{L}{2R}\right)}$				
E EXERCISE # 2					
\mathcal{Q} section (a) : kinematics of circular motion	S (a) 00 0 normin (b) 150 N				
Φ A1. D A2. C A3. D	5. (a) 39.6 per min ., (b) 150 N 6. $T = m\ell n^2$				
A 4 . AD A 5 . D A 6 . BD					
$\stackrel{\leftrightarrow}{\times}$ section (b) : radial and tangential	7. $\sqrt{\operatorname{gr} \tan \theta}$, $2\pi \sqrt{\frac{r}{\operatorname{gtan} \theta}}$				
a ACCELERATION	γ $\sqrt{g} \ln \theta$, $2\pi \sqrt{g} \tan \theta$				
G B1 . C B2 . D B3 . D	8. Net force on car = frictional force f				
→ B4. D B5. C B6. A					
B7. B B8. D B9. C	$\therefore \qquad f = m \sqrt{a^2 + \frac{v^4}{R^2}} \text{ (where m is mass of } \underbrace{f}_{R}$				
\overline{O} section (C) : RADIUS OF CURVATURE AND	V R ² ` gr̂				
DYNAMICS OF CIRCULAR MOTION	the car)(1)				
ÖC1. D C2. A	For skidding to just occur $\frac{\alpha}{\Omega}$				
	5. (a) 39.6 per min ., (b) 150 N 6. $T = m\ell n^2$ 7. $\sqrt{gr \tan \theta}$, $2\pi \sqrt{\frac{r}{gtan \theta}}$ 8. Net force on car = frictional force f \therefore $f = m \sqrt{a^2 + \frac{v^4}{R^2}}$ (where m is mass of the car)(1) For skidding to just occur $f = \mu N = \mu mg$ (2) \therefore From (1) and (2) $= \frac{r^2t^2 + 2r^2}{2r^2} + \frac{2r^2}{r^2}$				
SECTION (D) : CIRCULAR MOTION IN HORIZONTAL	(1) = (1)				
EXERCISE # 2 SECTION (A) : KINEMATICS OF CIRCULAR MOTION A 1. D A 2. C A 3. D A 4. AD A 5. D A 6. BD SECTION (B) : RADIAL AND TANGENTIAL ACCELERATION B 1. C B 2. D B 3. D B 4. D B 5. C B 6. A B 7. B B 8. D B 9. C SECTION (C) : RADIUS OF CURVATURE AND DYNAMICS OF CIRCULAR MOTION C 1. D C 2. A SECTION (D) : CIRCULAR MOTION IN HORIZONTAL PLANE D 1. D D 2. D D 3. A H D 4. A D 5. A SECTION (E) : CIRCULAR MOTION IN VERTICAL	$v = \{R^{2}[\mu^{2}g^{2} - a^{2}]\}^{1/4} \qquad \qquad$				
Ш р4. А р5. А	$\left[(\mu^2 g^2 - a^2)R^2\right]^{\frac{1}{4}}$				
$\prod_{i=1}^{m}$ Section (E) : Circular motion in vertical	9. (A) 975N, 1025 N , (B) 0,707N, 0 , (C) 682N , 732 N , (D) 0 1.037]				
-					

