# MAGNETIC EFFECT OF CURRENT AND MAGNETIC FORCE ON CHARGE/CURRENT 

## 1. MAGNET :

Two bodies even after being neutral (showing no electric interaction) may attract / repel strongly if they have a special property. This property is known as magnetism. This force is called magnetic force. Those bodies are called magnets. Later on we will see that it is due to circulating currents inside the atoms. Magnets are found in different shape but for many experimental purposes as bar magnet is frequencies used. When a bar magnet is suspended at its middle, as shown, and it is free to rotate in the horizontal plane it always comes to equilibrium in a fixed direction.

One end of the magnet (say A) is directed approximately towards north and the other end (say B) approximately towards south. This observation is made everywhere on the earth. Due to this reason the end A, which points towards north direction is called NORTH POLE and the other end which points towards south direction is called SOUTH POLE. They can be marked as ' $N$ ' and ' $S$ ' on the magnet. This property can be used to determine the north or south direction anywhere on the earth and indirectly east and west also if they are not known by other method (like rising of sun and setting of the sun).
This method is used by navigators of ships and aeroplanes. The directions are as shown in the figure. All directions E, W, N, S are in the horizontal plane. The magnet rotates due to the earths magnetic field about which we will discuss later in this chapter.


Know as +ve and -ve poles. North pole is treated as positive pole (or positive magnetic charge) and the south pole is treated as -ve pole (or -ve magnetic charge). They are quantitatively represented by their "POLE STRENGTH" +m and -m respectively (just like we have charges +q and -q in electrostatics). Pole strength is a scalar quantity and represents the strength of the pole hence, of the magnet also).
A magnet can be treated as a dipole since it always has two opposite poles (just like in electric dipole we have two opposite charges $-q$ and $+q$ ).

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com It is called MAGNETIC DIPOLE and it has a MAGNETIC DIPOLE
MOMENT. It is represented by $\overrightarrow{\mathrm{M}}$. It is a vector quantity. It's direction is
from -m to $+\mathrm{m} \ell$ that means from ' s ' to ' $N$ ')

$\mathrm{M}=\mathrm{m} . \ell_{\mathrm{m}}$ here $\ell_{\mathrm{m}}=$ magnetic length of the magnet. $\ell_{\mathrm{m}}$ is slightly less than $\ell_{\mathrm{g}}$ (it is geometrical length of the magnet = end to end distance). The ' N ' and ' S ' are not located exactly at the ends of the magnet. For calculation purposes we can assume $\ell_{\mathrm{m}}=\ell_{g}$ [Actually $\left.\ell_{\mathrm{m}} \ell_{\mathrm{g}} \simeq 0.84\right]$.
The units of m and M will be mentioned after where you can remember and understand.

### 1.2 Magnetic field and strength of magnetic field.

Definition of $\vec{B}$ : The magnetic force experienced by a north pole of unit pole strength at a point due to some other poles (called source) is called the strength of magnetic field at that point due to the source.

$$
\text { Mathematically, } \overrightarrow{\mathbf{B}}=\frac{\overrightarrow{\mathbf{F}}}{\mathbf{m}}
$$

Here $\overrightarrow{\mathbf{F}}=$ magnetic force on pole of pole strength $m$. m may be +ve or -ve and of any value.
S.I. unit of $\overrightarrow{\mathbf{B}}$ is Tesla or Weber/ $\mathbf{m}^{2}$ (abbreviated as T and $\mathrm{Wb} / \mathrm{m}^{2}$ ).

The physical space around a magnetic pole has special influence due to which other pole experience a force. That special influence is called MAGNETIC FIELD and that force is called 'MAGNETIC FORCE'. This field is qualitatively represented by ‘STRENGTH OF MAGNETIC FIELD' or "MAGNETIC INDUCTION" or "MAG-
NETIC FLUX DENSITY". It is represented by $\overrightarrow{\mathbf{B}}$. It is a vector quantity.

We can also write $\overrightarrow{\mathbf{F}}=\mathbf{m} \overrightarrow{\mathbf{B}}$. According to this direction of on +ve pole (North pole) will be in the direction of field and on-ve pole (south pole) it will be opposite to the direction of $\overrightarrow{\mathbf{B}}$.
in vector form $\overrightarrow{\mathbf{B}}=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{\mathrm{m}}{\mathrm{r}^{3}} \overrightarrow{\mathrm{r}}$
here $m$ is with sign and $\vec{r}=$ position vector of the test point with respect to the pole.
(ii) Due to a bar magnet: (Same as the case of electric
dipole in electrostatics) Independent case

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com never found. Always ' $N$ ' and ' $S$ ' exist together as magnet.

## Magnetic lines of force of a bar magnet :



Ex. 1 Find the magnetic force on a short magnet of magnetic dipole moment $M_{2}$ due to another short magnet of magnetic dipole moment $\mathrm{M}_{1}$.


Sol. To find the magnetic force we will use the formula of ' $B$ ' due to a magnet. We will also assume $m$ and -m as pole strengths of ' $N$ ' and ' $S$ ' of $M_{2}$. Also length of $M_{2}$ as $2 a$. $B_{1}$ and $B_{2}$ are the strengths of the magnetic field due to $M_{1}$ at $+m$ and $-m$ respectively. They experience magnetic forces $F_{1}$ and $F_{2}$ as shown.

$$
\begin{aligned}
& F_{1}=2\left(\frac{\mu_{0}}{4 \pi}\right) \frac{M_{1}}{(r-a)^{3}} m \text { and } F_{2}=2\left(\frac{\mu_{0}}{4 \pi}\right) \frac{m_{1}}{(r-a)^{3}} m \\
\therefore \quad & F_{\text {res }}=F_{1}-F_{2}=2\left(\frac{\mu_{0}}{4 \pi}\right) m_{1} m\left[\left(\frac{1}{(r-a)^{3}}\right)-\left(\frac{1}{(r+a)^{3}}\right)\right]=2\left(\frac{\mu_{0}}{4 \pi}\right) \frac{m_{1} m}{r^{3}}\left[\left(1-\frac{a}{r}\right)^{-3}-\left(1+\frac{a}{r}\right)^{-3}\right]
\end{aligned}
$$

By using acceleration, Binomial expansion, and neglecting terms of high power we get

$$
\begin{aligned}
& F_{r e s}=2\left(\frac{\mu_{0}}{4 \pi}\right) \frac{m_{1} m}{r^{3}}\left[1+\frac{3 a}{r}-1+\frac{3 a}{r}\right] \\
& =2\left(\frac{\mu_{0}}{4 \pi}\right) \frac{m_{1} m}{r^{3}} \frac{6 a}{r}=2\left(\frac{\mu_{0}}{4 \pi}\right) \frac{m_{1} 3 m_{2}}{r^{4}}=6\left(\frac{\mu_{0}}{4 \pi}\right) \frac{m_{1} m_{2}}{r^{4}}
\end{aligned}
$$

Direction of $F_{\text {res }}$ is towards right.
Q. 1 Two short magnet $A$ and $B$ of magnetic dipole moments $M_{1}$ and $M_{2}$ respectively are placed as shown. The axis of ' $A$ ' and the

Ans. $\quad F=3\left(\frac{\mu_{0}}{4 \pi}\right) \frac{M_{2} M_{1}}{r^{3}} \quad$ upwards on $M_{1}$
 down wards on $\mathrm{M}_{2}$
Ex. 2 A magnet is 10 cm long and its pole strength is 120 CGS units ( 1 CGS unit of pole strength $=0.1 \mathrm{~A}-\mathrm{m}$ ). Find the magnitude of the magnetic field B at a point on its axis at a distance 20 cm from it.
Sol. The pole strength is $\mathrm{m}=120 \mathrm{CGS}$ units $=12 \mathrm{~A}-\mathrm{m}$.
Magnetic length is $2 \ell=10 \mathrm{~cm}$ or $\ell=0.05 \mathrm{~m}$.
Distance from the magnet is $\mathrm{d}=20 \mathrm{~cm}=0.2 \mathrm{~m}$. The field B at a point in end-on position is

$$
\begin{aligned}
B & =\frac{\mu_{0}}{4 \pi} \frac{2 M d}{\left(d^{2}-\ell^{2}\right)^{2}}=\frac{\mu_{0}}{4 \pi} \frac{4 \mathrm{~m} \ell \mathrm{~d}}{\left(\mathrm{~d}^{2}-\ell^{2}\right)^{2}} \\
& =\left(10^{-7} \frac{\mathrm{~T}-\mathrm{m}}{\mathrm{~A}}\right) \frac{4 \times(12 \mathrm{~A}-\mathrm{m}) \times(0.05 \mathrm{~m}) \times(0.2 \mathrm{~m})}{\left[(0.2 \mathrm{~m})^{2}-(0.05 \mathrm{~m})^{2}\right]^{2}} \quad=3.4 \times 10^{-5} \mathrm{~T} .
\end{aligned}
$$

Ex. 3 Find the magnetic field due to a dipole of magnetic moment $1.2 \mathrm{~A}-\mathrm{m}^{2}$ at a point 1 m away from it in a direction making an angle of $60^{\circ}$ with the dipole-axis.
Sol. The magnitude of the field is

$$
\begin{aligned}
B & =\frac{\mu_{0}}{4 \pi} \frac{M}{r^{3}} \sqrt{1+3 \cos ^{2} \theta} \\
& =\left(10^{-7} \frac{\mathrm{~T}-\mathrm{m}}{\mathrm{~A}}\right) \frac{1.2 \mathrm{~A}-\mathrm{m}^{2}}{1 \mathrm{~m}^{3}} \sqrt{1+3 \cos ^{2} 60^{\circ}}=1.6 \times 10^{-7} \mathrm{~T} .
\end{aligned}
$$

Q. 2 A bar magnet has a pole strength of $3.6 \mathrm{~A}-\mathrm{m}$ and magnetic length 8 cm . Find the magnetic field at (a) a point on the axis at a distance of 6 cm from the centre towards the north pole and (b) a point on the perpendicular bisector at the same distance.
Ans.
(a) $8.6 \times 10^{-4} \mathrm{~T}$ (b) $7.7 \times 10^{-5} \mathrm{~T}$.

צ

Ex. 4 Figure shows two identical magnetic dipoles $a$ and $b$ of magnetic moments $M$ each, placed at a separation d , with their axes perpendicular to each other. Find the magnetic field at the point P midway between the dipoles.


Sol. The point P is in end-on position for the dipole a and in broadside-on position for the dipole b . The magnetic field at $P$ due to $a$ is $B_{a}=\frac{\mu_{0}}{4 \pi} \frac{2 M}{(d / 2)^{3}}$ along the axis of $a$, and that due to $b$ is $B_{b}=\frac{\mu_{0}}{4 \pi} \frac{M}{(d / 2)^{3}}$ parallel to the axis of $b$ as shown in figure. The resultant field at $P$ is, therefore.

$$
B=B=\sqrt{B_{a}^{2}+B_{b}^{2}} \quad=\frac{\mu_{0} M}{4 \pi(d / 2)^{3}} \sqrt{1^{2}+2^{2}} \quad=\frac{2 \sqrt{5} \mu_{0} M}{\pi d^{2}}
$$

The direction of this field makes an angle $\alpha$ with $B_{a}$ such that $\tan \alpha=B_{b} / B_{a}=1 / 2$.

### 1.3 Magnet in an external uniform magnetic field :

(same as case of electric dipole)
Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don' B


Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{res}}=0 \quad \text { (for any angle) } \\
& \tau=\mathrm{MB} \sin \theta
\end{aligned}
$$

*here $\theta$ is angle between $\vec{B}$ and $\vec{M}$
Note: (i) $\quad \vec{\tau}$ acts such that it tries to make $\vec{M} \times \vec{B}$.
(ii) $\vec{\tau}$ is same about every point of the dipole it's potential energy is

$$
\begin{aligned}
& \qquad \begin{array}{l}
\mathrm{U}=-\mathrm{MB} \cos \theta \\
\theta=0^{\circ} \text { is stable equilibrium } \\
\theta=\pi \text { is unstable equilibrium }
\end{array} \\
& \text { for small ' } \theta \text { ' the dipole performs } \mathrm{SHM} \text { about } \theta=0 \text { 呙 position }
\end{aligned}
$$

for small $\theta, \sin \theta \simeq \theta$

$$
\Rightarrow \quad \alpha=-\left(\frac{\mathrm{MB}}{\mathrm{I}}\right) \theta
$$

Angular frequency of SHM
$\omega=\sqrt{\frac{\mathrm{MB}}{\mathrm{I}}}=\frac{2 \pi}{\mathrm{~T}}$
$\Rightarrow \quad \mathrm{T}=\sqrt{\frac{\mathrm{I}}{\mathrm{MB}}}$
here I $=I_{c m}$ if the dipole is free to rotate
$=I_{\text {hinge }}$ if the dipole is hinged
Ex. 5 A bar magnet having a magnetic moment of $1.0 \times 10^{-4} \mathrm{~J} / \mathrm{T}$ is free to rotate in a horizontal plane. A horizontal magnetic field $\mathrm{B}=4 \times 10^{-5} \mathrm{~T}$ exists in the space. Find the work done in rotating the magnet slowly from a direction parallel to the field to a direction $60^{\circ}$ from the field.
Sol. The work done by the external agent = change in potential energy


Ex. 6 A magnet of magnetic dipole moment $M$ is released in a uniform magnetic field of induction $B$ from the position shown in the figure.
Find: (i) Its kinetic energy at $\theta=90^{\circ}$
(ii) its maximum kinetic energy during the motion.
(iii) will it perform SHM? oscillation? Periodic motion? What is its amplitude?

Sol. (i) apply energy conservation at $\theta=120^{\circ}$ and $\theta=90^{\circ}$

$-\mathrm{MB} \cos 120^{\circ}+0=-\mathrm{MB} \cos 90^{\circ}+$ (K.E. $)$
$\Rightarrow \quad K E=\frac{M B}{2}$ Ans.
(ii) K.E. will be maximum where P.E. is minimum. P.E. is minimum at $\theta=0$. Now apply energy conservation between $\theta=120^{\circ}$ and $\theta=0^{\circ}$.
$-\mathrm{mB} \cos 120^{\circ}+0=-\mathrm{mB} \cos 0^{\circ}+(\mathrm{KE})_{\text {max }}$

$$
\Rightarrow \quad(\mathrm{KE})_{\max }=\frac{3}{2} \mathrm{MB}
$$

Ans.
The K.E. is max at $\theta=0$ can also be proved by torque method. From $\theta=1200$ to $\theta=0$ the torque always acts on the dipole in the same direction (here it is clockwise) so its K.E. keeps on increases till $\theta=0^{\circ}$. Beyond that 3 reverses its direction and then K.E. starts decreasing
$\therefore \quad \theta=0^{\circ}$ is the orientation of M to here the maximum K.E.
(iii) Since ' $\theta$ ' is not small.
$\therefore \quad$ the motion is not S.H.M. but it is oscillatory and periodic amplitude is $120^{\circ}$.
Ex. 7 A bar magnet of mass 100 g , length 7.0 cm , width 1.0 cm and height 0.50 cm takes $\pi / 2$ seconds to complete an oscillation in an oscillation magnetometer placed in a horizontal magnetic field of $25 \mu \mathrm{~T}$. (a) Find the

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com magnetic moment of the magnet. (b) If the magnet is put in the magnetometer with its 0.50 cm edge horizontal, what would be the time period?
Sol. (a) The moment of inertia of the magnet about the axis of rotation is

$$
\begin{aligned}
I & =\frac{m^{\prime}}{12}\left(L^{2}+b^{2}\right) \\
& =\frac{100 \times 10^{-3}}{12}\left[\left(7 \times 10^{-2}\right)^{2}+\left(1 \times 10^{-2}\right)^{2}\right] \mathrm{kg}-\mathrm{m}^{2} \\
& =\frac{25}{6} \times 10^{-5} \mathrm{~kg} \mathrm{-m}
\end{aligned}
$$

$$
\text { We have, } \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{MB}}}
$$

$$
\text { or, } \quad M=\frac{4 \pi^{2} I}{B T^{2}}=\frac{4 \pi^{2} \times 25 \times 10^{-5} \mathrm{~kg} / \mathrm{m}^{2}}{6 \times\left(25 \times 10^{-6} \mathrm{~T}\right) \times \frac{\pi^{2}}{4} \mathrm{~s}^{2}}
$$

$$
=27 \mathrm{~A}-\mathrm{m}^{2} .
$$

(b) In this case the moment of inertia becomes

$$
I^{\prime}=\frac{m^{\prime}}{12}\left(L^{2}+b^{2}\right) \text { where } b^{\prime}=0.5 \mathrm{~cm}
$$

The time period would be

$$
\mathrm{T}^{\prime}=\sqrt{\frac{\mathrm{I}^{\prime}}{\mathrm{MB}}}
$$



### 1.4 Magnet in an External Nonuniform Magnetic Field :

No special formula are applied is such problems. Instead see the force on individual poles and calculate the resistant force torque on the dipole.
Ex. 8 Find the torque on $M_{1}$ due to $M_{2}$ in Que. 1
Sol. Due to $M_{2}$, magnetic fields at ' $S$ ' and ' $N$ ' of $M_{1}$ are $B_{1}$ and $B_{2}$ respectively. The forces on $-m$ and $+m$ are $F_{1}$ and $F_{2}$ as shown in the figure. The torque (about the centre of the dipole $m_{1}$ ) will be

$$
\begin{aligned}
& =F_{1} a+F_{2} a=\left(F_{1}+F_{2}\right) a \\
& =\left[\left(\frac{\mu_{0}}{4 \pi}\right) \frac{M_{2}}{(r-a)} m+\frac{\mu_{0}}{4 \pi} \frac{M_{2}}{(r+a)} m\right] a \\
& \cong \frac{\mu_{0}}{4 \pi} M_{2} m\left(\frac{1}{r^{3}}+\frac{1}{r^{3}}\right) a \quad \because a \ll r \\
& =\frac{\mu_{0} M_{2} m}{4 \pi} \frac{2}{r^{3}} a=\frac{\mu_{0} M_{1} M_{2}}{4 \pi r^{3}} \quad \text { Ans. }
\end{aligned}
$$



## 2. MAGNETIC EFFECTS OF CURRENT (AND MOVING GHRGE) :

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com It was observed by OERSTED that a current carrying wire produces magnetic field nearly it. It can be tested by placing a magnet in the near by space, it will show some movement (deflection or rotation of displace-
FREE Download Study Package from website: www.TekoClasses.com \& www.MathsBySuhag.com ment). This observation shows that current or moving charge produces magnetic field.

### 2.1 Frame Dependence of $\vec{B}$.

(a) The motion of anything is a relative term. A charge may appear at rest by an observer (say $\mathrm{O}_{1}$ ) and moving at same velocity $\overrightarrow{\mathbf{v}}_{1}$ with respect to observer $\mathrm{O}_{2}$ and at velocity $\overrightarrow{\mathbf{v}}_{\mathbf{2}}$ with respect to observers $\mathrm{O}_{3}$ then $\vec{B}$ due to that charge w.r.t. $\mathrm{O}_{1}$ will be zero and w.r. to $\mathrm{O}_{2}$ and $\mathrm{O}_{3}$ it will be $\vec{B}_{1}$ and r $\overrightarrow{\mathrm{B}}_{2}$ (that means different).
(b) In a current carrying wire electron move in the opposite direction to that of the current and +ve ions (of the metal) are static w.r.t. the wire. Now if some observer $\left(\mathrm{O}_{1}\right)$ moves with velocity $\mathrm{V}_{\mathrm{d}}$ in the direction of motion of the electrons then electrons will have zero velocity and +ve ions will have velocity $\mathrm{V}_{\mathrm{d}}$ in the downward direction w.r.t. $\mathrm{O}_{1}$. The density ( n ) of +ve ions is same as the density of free electrons and their charges are of the same magnitudes


So, w.r.t. $\mathrm{O}_{1}$ electrons will produce zero magnetic field but +ve ions will produce + ve same $\overrightarrow{\mathbf{B}}$ due to the current carrying wire does not depend on the reference frame (this true for any velocity of the observer).
(c) $\vec{B}$ due to magnet :
$\overrightarrow{\mathbf{B}}$ produced by the magnet does not certain the term of velocity
So, we can say that the $\overrightarrow{\mathbf{B}}$ due magnet does not depend on frame.
2.2 $\vec{B}$ due to a point charge :
$A$ charge particle ' $q$ ' has velocity $v$ as shown in the figure. It is at position ' $A$ ' at some time. $\overrightarrow{\boldsymbol{r}}$ is the position vector of point ' $P$ ' w.r. to position of the charge.
Then $\overrightarrow{\mathbf{B}}$ at P due to g is
$B=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{\text { qv } \sin \theta}{r^{2}}$; here $\theta=$ angle between $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{r}}$
$\vec{B}=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{q \vec{v} \times \vec{r}}{r^{3}}$; with sign
$\vec{B} \perp \overrightarrow{\mathrm{v}}$ and also $\overrightarrow{\mathrm{B}} \perp \overrightarrow{\mathrm{r}}$.

$$
\theta=\text { angle between } \overrightarrow{\mathrm{d} \ell} \text { and } \overrightarrow{\mathrm{r}} \text {. }
$$


here $\vec{r}=$ position vector of the test point w.r.t. $\overrightarrow{\mathrm{d} \ell}$

The resultant $\vec{B}=\int \overrightarrow{\mathrm{dB}}$
Using this fundamental formula we can derive the expression of $\vec{B}$ due a long wire.

### 2.3.1 $\vec{B}$ due to a straight wire :

Get Solution of These Packages \＆Learn by Video Tutorials on www．Mathes．BySuhag．com
Due to a straight wire＇PQ＇carrying a current＇i＇the $\vec{B}$ at $A$ is given by the formula

$$
B=\frac{\mu_{0} I}{4 \pi r}\left(\sin \theta_{1}+\sin \theta_{2}\right) \otimes
$$

（Derivation can be seen in a standard text book like your school book or concept of physics of HCV part－II）


Direction ：Due to every element of＇PQ＇ $\overrightarrow{\mathbf{B}}$ at A is directed in wards．So its resultant is also directed in wards．It is represented by（ x ）

The direction of $\overrightarrow{\mathbf{B}}$ at various points is shown in the figure shown．

At points＇$C$＇and＇$D$＇ $\overrightarrow{\mathbf{B}}=0$（think how）． For the case shown in figure

$$
B \text { at } A=\frac{\mu_{0} i}{4 \pi r}\left(\sin \theta_{2}-\sin \theta_{1}\right)
$$

SHORTCUT FOR DIRECTION ：

＇I888G 08686 0 ＇6LLL E06 E06 0 ：әuoud Jedoug
The direction of the magnetic field at a point $P$ due to a straight wire can be found by a slight variation in the right－hand thumb rule．If we stretch the thumb of the right hand along the current and curl our fingers to pass through the point $P$ ，the direction of the fingers at $P$ gives the direction of the magnetic field there．


ェ

We can draw magnetic field lines on the pattern of electric field lines．A tangent to a magnetic field line given the direction of the magnetic field existing at that point．For a straight wire，the field lines are concentric circles with their centres on the wire and in the plane perpendicular to the wire．There will be infinite number of such lines in the planes parallel to the above mentioned plane．


Ex． 9 Find resultant magnetic field at＇$C$＇in the figure shown．

$$
B_{r e s}=2\left(\frac{\sqrt{3} \mu_{0} i}{2 \pi a}+\frac{\mu_{0} i}{2 \pi a \sqrt{3}}\right)=\frac{4 \mu_{0} i}{\sqrt{3} \pi a}
$$

Q. 3 A loop in the shape of an equilateral triangle of side 'a' carries a current I as shown in the figure. Find out the magnetic field at the centre ' $C$ ' of the triangle.

Ans. $\frac{9 \mu_{0} \mathrm{i}}{2 \pi \mathrm{a}}$
Ex. 10 Figure shows a square loop made from a uniform wire. Find the magnetic field at the centre of the square if a battery is connected between the points $A$ and $C$.

Sol. The current will be equally divided at A . The fields at the centre due to the currents in the wires $A B$ and DC will be equal in magnitude and opposite in direction. The resultant of these two fields will be zero. Similarly, the resultant of the fields due to the wires $A D$ and $B C$ will be zero. Hence, the net field at the centre will be zero.

## SPECIAL CASE:

(i) If the wire is infinitely long then the magnetic field at 'P' (as shown in the figure) is given by (using $\theta_{1}=\theta_{2}=90^{\circ}$ and the formula of ' $B$ ' due to straight wire)

$$
B=\frac{\mu_{0} I}{2 \pi r} \quad \Rightarrow \quad B \propto \frac{I}{r}
$$

The direction of $\vec{B}$ at various is as shown in the figure. The magnetic lines of force will be concentric circles around the wire (as shown earlier)
(ii) If the wire is infinitely long but ' $P$ ' is as shown in the figure. The direction of $\vec{B}$ at various points is as shown in the figure. At ' $P$ '

$$
B=\frac{\mu_{0} I}{4 \pi r}
$$

$$
8-2-2 x
$$



Also due to QR and PS is same

$$
\begin{aligned}
\therefore \quad B_{r e s} & =2\left(B_{P Q}+B_{S P}\right) \\
& B_{P Q}=\frac{\mu_{0} i}{4 \pi \frac{a}{2}}\left(\sin 60^{\circ}+\sin 60^{\circ}\right), B_{s p}=\frac{\mu_{0} i}{4 \pi \frac{\sqrt{3} a}{2}}\left(\sin 30^{\circ}+\sin 30^{\circ}\right)
\end{aligned}
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
plane of paper) are carrying currents $2 I$ and $I$ consider points $A, C, D$ on the line perpendicular to both the wires and also in the plane of the paper. The distances are mentioned. Find (i) $\vec{B}$ at $A, C, D$ (ii) position of point on line $A C D$ where $\vec{B}$ is $O$.

Sol. (i) Let us call $\vec{B}$ due to (1) and (2) as $\vec{B}_{1}$ and $\vec{B}_{2}$ respectively. Then
at $\mathrm{A}: \overrightarrow{\mathrm{B}}_{1}$ is $\odot$ and $\overrightarrow{\mathrm{B}}_{2}$ is $\otimes$


$$
\begin{array}{ll} 
& B_{1}=\frac{\mu_{0} 2 I}{2 \pi a} \text { and } B_{2}=\frac{\mu_{0} I}{2 \pi 2 a} \\
\therefore & B_{\text {res }}=B_{1}-B_{2}=\frac{3}{4} \frac{\mu_{0} I}{\pi \mathrm{a}} \odot \quad \text { Ans. } \\
\text { at } C: & \vec{B}_{1} \text { is } \otimes \text { and } \vec{B}_{2} \text { also } \otimes \\
\therefore & B_{\text {res }}=B_{1}+B_{2}=\frac{\mu_{0} 2 I}{2 \pi \frac{a}{2}}+\frac{\mu_{0} I}{2 \pi \frac{a}{2}}=\frac{6 \mu_{0} I}{2 \pi \mathrm{a}}=\frac{3 \mu_{0} I}{\pi \mathrm{a}} \otimes
\end{array}
$$

Ans.
at $D: \quad \vec{B}_{1}$ is $\otimes$ and $\vec{B}_{2}$ is $\odot$ and both are equal in magnitude.

$$
\therefore \quad \mathrm{B}_{\mathrm{res}}=0
$$

Ans.
(ii) It is clear from the above solution that $B=0$ at point ' $D$ '.

Ex. 12 In the figure shown two long wires $W_{1}$ and $W_{2}$ each carrying current $I$ are placed parallelto each other and parallel to $z$-axis. The direction of current in $W_{1}$ is outward and in $W_{2}$ it is inwards. Find the $\vec{B}$ at ' $P$ ' and ' $Q$ '.


Sol. Let $\vec{B}$ due to $W_{1}$ be $\vec{B}_{1}$ and due to $W_{2}$ be $\vec{B}_{2}$. By symmetry $\left|\vec{B}_{1}\right|=\left|\vec{B}_{2}\right|=B$

$$
\begin{aligned}
& B_{p}=2 B \cos 60^{\circ}=B=\frac{\mu_{0} I}{2 \pi 2 a}=\frac{\mu_{0} I}{4 \pi a} \\
\therefore & \overrightarrow{B_{p}}=\frac{\mu_{0} I}{4 \pi a} \hat{j} \quad \text { Ans. }
\end{aligned}
$$

For $\theta$

$$
\begin{aligned}
& B_{1}= \frac{\mu_{0} I}{2 \pi \sqrt{5} a}, B_{2}=\frac{\mu_{0} I}{2 \pi a} \\
& \tan \theta=\frac{\sqrt{3} a}{2 a}=\frac{\sqrt{3}}{2} \\
& \vec{B}=\left(B_{1} \cos \theta \hat{j}\right)+\left(B_{2}-B_{1} \sin \theta\right) \hat{i} \\
& \sin \theta=\sqrt{\frac{3}{5}} \\
& \quad=\frac{\mu_{0} I}{5 \pi a} \hat{j}+\left(\frac{\mu_{0} I}{2 \pi \sqrt{3} a}-\frac{\sqrt{3} \mu_{0} I}{10 \pi a}\right) \hat{j} \quad \cos \theta=\frac{2}{\sqrt{5}}
\end{aligned}
$$



Ex. 13 In the figure shown a large metal sheet of width ' $w$ ' carries a current I (uniformly
Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsB
distributed in its width ' $w$ '. Find the magnetic field at point ' $P$ ' which lies in the plane of the sheet.

Sol. To find 'B' at 'P' the sheet can be considered as collection of large nunber of infinitely long wires. Take a long wire distance ' $x$ ' from' $P$ ' and of width ' $d x$ '. Due to this the magnetic field at ' $P$ ' is ' $d B$ '

$$
\mathrm{dB}=\frac{\mu_{0}\left(\frac{\mathrm{I}}{\mathrm{w}} \mathrm{dx}\right)}{2 \pi \mathrm{x}} \otimes
$$

due to each such wire $\vec{B}$ will be directed in-wards

$$
\therefore \quad B_{r e s}=\int d B=\frac{\mu_{0} I}{2 \pi w} \int_{x=a}^{a+w} \frac{d x}{x}=\frac{\mu_{0} I}{2 \pi w}=\ln \frac{a+w}{a}
$$

Ans.


Ex. 14 In the figure shown a large metally distributed current I is kept in the $y z$ plane with its centre at the origin. Find magnetic field at a point $P(d, 0,0)$

Sol. Here again the sheet can be considered as made of many infinitely long wires. But in this case they will produced $\vec{B}$ in different direction at the point P. By taking proper components we can solve this problem. A simplified diagram of the situationis shown in the figure.
It can be shown by symmetry that $\mathrm{dB} \cos \theta$ components will cancel out.

$$
\mathrm{B}_{\mathrm{res}}=\frac{\mu_{0} \mathrm{I}}{\pi \mathrm{w}} \int_{0}^{\theta_{0}} \mathrm{~d} \theta=\frac{\mu_{0} \mathrm{I}}{\pi \mathrm{w}}(\theta)_{0}^{\theta_{0}}=\frac{\mu_{0} \mathrm{I}}{\pi \mathrm{w}} \theta_{0}
$$

$$
\mathrm{B}_{\mathrm{res}}=\frac{\mu_{0} \mathrm{I}}{\pi \mathrm{w}} \tan ^{-1} \frac{\mathrm{w}}{2 \mathrm{~d}} \quad \text { Ans. }
$$

Q. 4 Two long wires are kept along $x$ and $y$ axes they carry currents $I_{1}$ and $I_{2}$ respectively in + ve $x$ and + ve $y$ directions respectively. Find $\vec{B}$ at a point $(0,0, d)$.
Ans. $\frac{\mu_{0} I}{2 \pi d}(\hat{i}-\hat{j})$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

### 2.3.2 $\vec{B}$ due to circular loop

FREE Download Study Package from website: www.TekoClasses.com \& www.MathsBySuhag.com
(a) At centre : Due to each $\overrightarrow{\mathrm{d} \ell}$ element of the loop $\overrightarrow{\mathrm{B}}$ at 'c' is inwards (in this case).

$$
\begin{aligned}
& \therefore \quad \overrightarrow{\mathrm{B}_{\text {res }}} \text { at 'c' is } \otimes \quad B=\frac{\mu_{0} \mathrm{NI}}{2 \mathrm{R}}, \\
& \mathrm{~N}=\text { No. of turns in the loop. } \\
& \quad=\frac{\ell}{2 \pi \mathrm{R}} ; \ell=\text { length of the loop. }
\end{aligned}
$$


$N$ can be fraction $\left(\frac{1}{4}, \frac{1}{3}, \frac{11}{3}\right.$ etc. $)$ or integer.
Direction of $\vec{B}$ : The direction of the magnetic field at the centre of a circular wire can be obtained using the right-hand thumb rule. If the fingers are curled along the current, the stretched thumb will point towards the magnetic field (figure).


Another way to find the direction is to look into the loop along its axis. If the current is in anticlockwise direction, the magnetic field is towards the viewer. If the current is in clockwise direction, the field is away from the viewer.

Semicircular and Quarter of a circle :
(b) On the axis of the loop:



$$
N=\text { No. of turns (integer) }
$$



Direction can be obtained by righ hand thumb rule. curl your fingures in the direction of the current then the direction of the thumb points in the direction of $\vec{B}$ at the points on the axis.

79, 09893058881.

The magnetic field at a point not on the axis is mathematically difficult to calculate. We show qualitatively in figure the magnetic field lines due to a circular current which will give some ideal of the field.


Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
2.3.3 A loop as a magnet : The pattern of the magnetic field is compareable with the magnetic field produced by a bar magnet.

the side 'I' (the side from which the $\vec{B}$ energes out) of the loop acts as 'NORTH POLE' and sinde II (the side
in which the $\vec{B}$ enters) acts as the 'SOUTH POLE'. Itcan be verified by studying force on one loop due to a magnet or a loop.


The loop and the magnet attract each other

To be determined by right hand rule which is also used to determine direction of $\vec{B}$ on the axis. It is also from ' S ' side to ' N ' side of the loop.


Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Q. 5 Find ' $B$ ' at centre ' $C$ ' in the following cases :


Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

### 2.3.4 SOLENOID :

(i) Solenoid contains large number of circular loops wrapped around a non-conducting cylinder. (it may be a hollow cylinder or it may be a solid cylinder)

(ii) The winding of the wire is uniform direction of the magnetic field is same at all points of the axis.
(iii) $\vec{B}$ on axis (turns should be very close to each others).
$B=\frac{\mu_{0} n i}{2}\left(\cos \theta_{1}-\cos \theta_{2}\right)$
where n : number of turns per unit length.

$\cos \theta_{1}=\frac{\ell_{1}}{\sqrt{\ell_{1}^{2}+\mathrm{R}^{2}}} ; \quad \cos \beta=\frac{\ell_{2}}{\sqrt{\ell_{2}^{2}+\mathrm{R}^{2}}} \quad=-\cos \theta_{2}$
$\mathrm{B}=\frac{\mu_{0} \mathrm{ni}}{2}\left[\frac{\ell_{1}}{\sqrt{\ell_{1}^{2}+\mathrm{R}^{2}}}+\frac{\ell_{2}}{\sqrt{\ell_{2}^{2}+\mathrm{R}^{2}}}\right]=\frac{\mu_{0} \mathrm{ni}}{2}\left(\cos \theta_{1}+\cos \beta\right)$
Note : Use right hand rule for direction (same as the direction due to loop).

## Derivation :

Take an element of width $d x$ at a distance $x$ from point $P$. [point $P$ is the point on axis at which we are going to calculate magnetic field. Total number of turns in the element $d n=n d x$ where n : number of turns per unit length.

$$
\begin{aligned}
d B & =\frac{\mu_{0} i R^{2}}{2\left(R^{2}+x^{2}\right)^{3 / 2}}(n d x) \quad B=\int d B=\int_{\ell_{1}}^{\ell_{2}} \frac{\mu_{0} i R^{2} n d x}{2\left(R^{2}+x^{2}\right)^{3 / 2}} \\
& =\frac{\mu_{0} n i}{2}\left[\frac{\ell_{1}}{\sqrt{\ell_{1}^{2}+R^{2}}}+\frac{\ell_{2}}{\sqrt{\ell_{2}^{2}+R^{2}}}\right] \quad
\end{aligned}
$$


(v) Comparision between ideal and real solenoid:
(a) Ideal Solenoid

Real Solenoid



Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Ex. 15 A solenoid of length 0.4 m and diameter 0.6 m consists of a single layer of 1000 turns of fine wire carrying a current of $5.0 \times 10^{-3}$ ampere. Find the magnetic field on the axis at the middle and at the ends of the solenoid.

$$
\left(\Leftrightarrow \ldots \mu_{0}=4 \pi \times 10^{-7} \frac{V-s}{A-m}\right)
$$

Sol. $B=\frac{1}{2} \mu_{0} n i\left[\cos \theta_{1}-\cos \theta_{2}\right]$

$$
\begin{aligned}
& \mathrm{n}=\frac{1000}{0.4}=2500 \text { per meter } \quad \mathrm{i}=5 \times 10^{-3} \mathrm{~A} . \\
& \text { (i) } \quad \cos \theta_{1}=\frac{0.2}{\sqrt{(0.3)^{2}+(0.2)^{2}}}=\frac{0.2}{\sqrt{0.13}} \\
& \cos \theta_{2}=\frac{-0.2}{\sqrt{0.13}}
\end{aligned}
$$



$$
B=\frac{1}{2} \times\left(4 \times \pi \times 10^{-7}\right) \times 2500 \times 5 \times 10^{-3} \frac{2 \times 0.2}{\sqrt{0.13}}
$$

(ii) At the end

$$
\begin{aligned}
& \cos \theta_{1}=\frac{0.4}{\sqrt{(0.3)^{2}+(0.4)^{2}}}=0.8 \\
& \cos \theta_{2}=\cos 90^{0}=0 \\
& B=\frac{1}{2} \times\left(4 \times \pi \times 10^{-7}\right) \times 2500 \times 5 \times 10^{-3} \times 0.8 \\
& B=2 \pi \times 10^{-6} \mathrm{~Wb} / \mathrm{m}^{2}
\end{aligned}
$$

Q. 6 A thin solenoid of length 0.4 m and having 500 turns of wire carries a current 1 A ; then find the magnetic field on the axis inside the solenoid.
Ans. $\quad 5 \pi \times 10^{-4} \mathrm{~T}$.
2.4 AMPERE's circuital law :

The line integral $\oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d} \ell}$ on a closed curve of any shape is equal to $\mu_{0}$ (permebility of free space) times the
The line integral $\oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d} \ell}$ on a closed curve of any sh
net current I through the area bounded by the curve.


$$
=\frac{\pi \times 10^{-5}}{\sqrt{13}} \mathrm{~T}
$$

$$
\oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{~d} \ell}=\mu_{0} \mathrm{I}
$$

Note : (a) Line integral is independent of the shape of path and position of wire with in it.
(b) The statement $\oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d} \ell}=0$ does not necessesirlly mean that $\overrightarrow{\mathrm{B}}=0$ everywhere along the path but only that no nett current is passing through the path.
(c) Sign of current : The current due to which $\overrightarrow{\mathrm{B}}$ is produced in the same sense as $\overrightarrow{\mathrm{d} \ell}$ (i.e. $\overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d} \ell}$ positive will be taken positive and the current which produces $\overrightarrow{\mathrm{B}}$ in the sense opposite to $\overrightarrow{\mathrm{d} \ell}$ will be negative.
Ex. 16 Find the values of $\oint \vec{B} \cdot \overrightarrow{d \ell}$ for the loops $L_{1}, L_{2}, L_{3}$ in the figure shown.
The sense of $\overrightarrow{\mathrm{d} \ell}$ is mentioned in the figure.
Sol. for $\mathrm{L}_{1} \quad \oint \overrightarrow{\mathrm{~B}} \cdot \overrightarrow{\mathrm{~d} \ell}=\mu_{0}\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)$ here $\mathrm{I}_{1}$ is taken positve because magnetic lines of force produced by $\mathrm{I}_{1}$ is anti clockwise as seen from top. $I_{2}$ produces lines of $\vec{B}$ in clockwise sense as seen from top. The sense of $\overrightarrow{\mathrm{d} \ell}$ is anticlockwise as seen from top.


$$
\text { for } \mathrm{L}_{2}: \oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{l} \ell}=\mu_{0}\left(\mathrm{I}_{1}-\mathrm{I}_{2}+\mathrm{I}_{4}\right) \quad \text { for } \mathrm{L}_{3}: \oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{~d} \ell}=0
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com Uses :
2.4. $\quad$ To find out magnetic field due to infinite current carrying wire

$$
\therefore \mathrm{B}=\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{r}}
$$

2.4.2. Hollow current carrying infinitely long cylinder : (I is uniformly distributed
$\oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d} \ell}=\oint \mathrm{B} \cdot \mathrm{d} \ell \quad \because \theta=0^{\circ}$ so $\mathrm{B} \oint \mathrm{d} \ell=\mathrm{B} 2 \pi \mathrm{R} \quad(\because \mathrm{B}=$ const. $)$
Now by amperes law :

$$
\mathrm{B} 2 \pi \mathrm{R}=\mu_{0} \mathrm{I}
$$

## on the whole circumference) <br> 

(i) for $r \geq R$

By symmetry the amperian loop is a circle.
(ii) $r<R$

current density $J=\frac{I}{\pi R^{2}}$
take an amperian loop inside the cylinder. By symmetry it should be a circle whose centre is on the axis of cylinder and its axis also coincides with the cylinder axis on the loop.

$$
\begin{aligned}
& \oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{~d} \ell}=\oint \mathrm{B} \cdot \mathrm{~d} \ell=\mathrm{B} \oint \mathrm{~d} \ell=\mathrm{B} \cdot 2 \pi \mathrm{r}=\mu_{0} \frac{\mathrm{I}}{\pi \mathrm{R}^{2}} \pi \mathrm{r}^{2} \\
& \mathrm{~B}=\frac{\mu_{0} \mathrm{Ir}}{2 \pi \mathrm{R}^{2}}=\frac{\mu_{0} \mathrm{Jr}}{2} \quad \Rightarrow \quad \overrightarrow{\mathrm{~B}}=\frac{\mu_{0} \vec{J} \times \vec{r}}{2}
\end{aligned}
$$


$\infty$
$\stackrel{0}{0}$
®
®

Case (II) : $\quad r \geq R$
$=\mathrm{B} \oint \mathrm{d} \ell$
$=B \cdot(2 \pi r)$
$=\mu_{0} . \mathrm{I}$
$\Rightarrow \quad B=\frac{\mu_{0} I}{2 \pi r}$ also $\quad \vec{B} \frac{\mu_{0} I}{2 \pi r}(\hat{J} \times \hat{r})=\frac{\mu_{0} J \pi R^{2}}{2 \pi r}$
$\vec{B}=\frac{\mu_{0} R^{2}}{2 r^{2}}(\vec{J} \times \vec{r})$


Ex. 17 Consider a coaxial cable which consists of an inner wire of radius a surrounded by an outer shell of inner and $\mathcal{O}$ outer radii $b$ and $c$ respectively. The inner wire carries an electric current $i_{0}$ and the outer shell carries an equal current in opposite direction. Find the magnetic field at a distance $x$ from the axis where (a) $x<a$, (b) $\mathrm{a}<\mathrm{x}<\mathrm{b}$ (c) $\mathrm{b}<\mathrm{x}<\mathrm{c}$ and (d) $\mathrm{x}>\mathrm{c}$. Assume that the current density is uniform in the inner wire and also uniform in the outer shell.
Sol.

(a)

(b)

(c)

(d) oे

A cross-section of the cable is shown in figure. Draw a circle of radius x with the centre at the axis of the cable. The parts a, b, c and d of the figure correspond to the four parts of the problem. By symmetry, the magnetic field at each point of a circle will have the same magnitude and will be tangential to it. The circulation of B along this circle is, therefore,

$$
\oint \overrightarrow{\mathrm{B}} \cdot \mathrm{~d} \vec{\ell}=\mathrm{B} 2 \pi \mathrm{x}
$$

젤
in each of the four parts of the figure.
(a) The current enclosed within the circle in part b is $i_{0}$ so that

$$
\frac{\mathrm{i}_{0}}{\pi \mathrm{a}^{2}} \cdot \pi \mathrm{x}^{2}=\frac{\mathrm{i}_{0}}{\mathrm{a}^{2}} \mathrm{x}^{2} .
$$

Ampere's law

$$
\begin{aligned}
& \oint \vec{B} \cdot d \vec{\ell}=\mu_{0} \mathrm{i} \text { gives } \\
& \text { B. } 2 \pi x=\frac{\mu_{0} \dot{i}_{0} x^{2}}{a^{2}} \text { or, } B=\frac{\mu_{0} \dot{i}_{0} x}{2 \pi a^{2}} .
\end{aligned}
$$

The direction will be along the tangent to the circle.
(b) The current enclosed within the circle in part b is $\mathrm{i}_{0}$ so that

$$
\mathrm{B} 2 \pi \mathrm{x}=\mu_{0} \mathrm{i}_{0} \quad \text { or, } \quad \mathrm{B}=\frac{\mu_{0} \mathrm{i}_{0} \mathrm{x}}{2 \pi \mathrm{a}^{2}} .
$$

(c) The area of cross-section of the outer shell is $\pi \mathrm{c}^{2}-\pi \mathrm{b}^{2}$. The area of cross-section of the outer shell with in the circle in part c of the figure is $\pi \mathrm{x}^{2}-\pi \mathrm{b}^{2}$.
Thus, the current through this part is $\frac{i_{0}\left(x^{2}-b^{2}\right)}{\left(c^{2}-b^{2}\right)}$. This is in the opposite direction to the current $i_{0}$ in the inner wire. Thus, the net current enclosed by the circle is

$$
i_{0}=\frac{i_{0}\left(x^{2}-b^{2}\right)}{c^{2}-b^{2}}=\frac{i_{0}\left(c^{2}-x^{2}\right)}{c^{2}-b^{2}}
$$

Form Ampere's law,

$$
B 2 \pi x=\frac{\mu_{0} i_{0}\left(c^{2}-x^{2}\right)}{c^{2}-b^{2}} \quad \text { or, } \quad B=\frac{\mu_{0} i_{0}\left(c^{2}-x^{2}\right)}{2 \pi x\left(c^{2}-b^{2}\right)}
$$

(d) The net current enclosed by the circle in part $d$ of the figure is zero and hence

$$
B 2 \pi x=0 \quad \text { or, } \quad B=0-
$$

Ex. 18 Figure shows a cross-section of a large metal sheet $c$ arrying an electric current along its surface. The current in a strip of width dl is Kdl where K is a constant. Find the magnetic field at a point $P$ at a distance $x$ from the metal sheet.


Sol. Consider two strips $A$ and $C$ of the sheet situated symmetrically on the two sides of $P$ (figure). The magnetic field at $P$ due to the strip $A$ is $B_{0}$ perpendicular to $A P$ and that due to the strip $C$ is $B_{c}$ perpendicular to $C P$. The resultant of these two is parallel to the width $A C$ of the sheet. The field due to the whole sheet will also be in this direction. Suppose this field has magnitude B.


The field on the opposite side of the sheet at the same distance will also be B but in opposite direction. Applying Ampere's law to the rectangle shown in figure.
$2 \mathrm{~B} \ell=\mu_{0} \mathrm{~K} \ell$
$B=\frac{1}{2} \mu_{0} K$.
Note that it is independent of $x$.
Ex. 19 Three identical long solenoids $P, Q$ and $R$ are connected to each other as shown in figure. If the magnetic field at the centre of $P$ is 2.0 T , what would be the field at the centre of Q ? Assume that the field due to any solenoid is confined within the volume of that solenoid only.


R
Sol. As the solenoids are identical, the currents in $Q$ and $R$ will be the same and will be half the current in $P$. The magnetic field within a solenoid is given by $B=\mu_{0} n i$. Hence the field in $Q$ will be equal to the field in $R$ and will be half the field in P i.e., will be 1.0 T.

## 3. MAGNETIC FORCE ON MOVING CHARGE :

When a charge $q$ moves with velocity $\vec{v}$, in a magnetic field $\vec{B}$, then the magnetic force experienced by moving charge is given by following formula :

$$
\begin{aligned}
& \vec{F}=q(\vec{v} \times \vec{B}) \quad \text { Put } q \text { with sign. } \\
& \vec{v}: \text { Instantaneoius velocity } \\
& \vec{B}: \text { Magnetic field at that point. }
\end{aligned}
$$

Note: (i) $\vec{F} \perp \vec{v}$ and also $\vec{F} \perp \vec{B}$
(ii) $\because \vec{F} \perp \vec{v} \quad \therefore$ power due to magnetic force on a charged particle is zero. (use the formula of power $P=$ $\vec{F} \cdot \vec{v}$ for its proof).
(iii) Since the $\vec{F} \perp \vec{B}$ so work done by magnetic force is zero in every part of the motion. The magnetic force cannot increase or decrease the speed (or kinetic energy) of a charged particle. Its can only change the direction of velocity.
(iv) On a stationary charged particle, magnetic force is zero.
(v) If $\vec{V} \| \vec{B}$ or $\vec{V} \| \vec{B}$, then also magnetic force on charged particle is zero. It moves along a straight line if only magnetic field is acting.

Ex. 20 A charged particle of mass 5 mg and charge $\mathrm{q}=+2 \mu \mathrm{C}$ has velocity $\vec{v}=2 \hat{i}-3 \hat{j}+4 \hat{k}$. Find out the magnetic force on the charged particle and its acceleration at this instant due to magnetic field

$$
\vec{B}=3 \hat{j}-2 \hat{k} \cdot \vec{v} \text { and } \vec{B} \text { are in } \mathrm{m} / \mathrm{s} \text { and } \phi \text { in } \mathrm{Wb} / \mathrm{m}^{2} \text { respectively. }
$$

Sol. $\vec{F}=q \vec{v} \times \vec{B}=2 \times 10^{-6}(2 \hat{i}-3 \hat{j} \times 4 \hat{k}) \times(3 \hat{j}-2 \hat{k})=2 \times 10^{-6}[-6 \hat{i}+4 \hat{j}+6 \hat{k}] N$
By Newton's Law $\overrightarrow{\mathrm{a}}=\frac{\overrightarrow{\mathrm{F}}}{\mathrm{m}}=\frac{2 \times 10^{-6}}{5 \times 10^{-6}}(-6 \hat{\mathbf{i}}+4 \hat{j}+6 \hat{\mathbf{k}})=0.8(-3 \hat{i}+2 \hat{j}+3 \hat{k}) \mathrm{m} / \mathrm{s}^{2}$
Ex. 21 A charged particle has acceleration $\vec{a}=2 \hat{i}+x \hat{j}$ in a magnetic field $\vec{B}=-3 \hat{i}+2 \hat{j}-4 \hat{k}$. Find the value of $x$.
Sol. $\quad \because \vec{F} \perp \vec{B} \quad \therefore \vec{a} \perp \vec{B} \quad \therefore \vec{a} \cdot \vec{B}=0$
$\therefore(2 \hat{i}+x \hat{j}) \cdot(-3 \hat{i}+2 \hat{j}-4 \hat{k})=0 \quad \Rightarrow-6+2 x=0 \Rightarrow x=3$.
Q. 7 A charged particle of charge 2 C thrown vertically upwards with velocity $10 \mathrm{~m} / \mathrm{s}$. Find the magnetic force on this charge due to earth's magnetic field. Given vertical component of the earth $=3 \mu \mathrm{~T}$ and angle of dip $=37^{\circ}$.
Ans. $2 \times 10 \times 4 \times 10^{-6}=8 \times 10^{-5} \mathrm{~N}$ towards west.
Q. 8 A charged particle of charge 1 C and mass 1 kg has initial velocity $\overrightarrow{\mathrm{V}}=2 \hat{\mathrm{i}}+3 \hat{j}-3 \hat{k}$ in a uniform magnetic field $\vec{B}=-4 \hat{i}-6 \hat{j}+6 \hat{k}$. Find at $t=2 s$ (i) velocity (ii) accelaration (iii) position vector of the particle.

Ans, (i) $2 \hat{i}+3 \hat{j}-2 \hat{k}$. (ii) 0 , (iii) $4 \hat{i}+6 \hat{j}-6 \hat{k}$
3.1 Motion of charged particles under the effect of magnetic force
(i) Particle released if $\mathrm{v}=0$ then $\mathrm{f}_{\mathrm{m}}=0$
$\therefore$ particle will remain at rest
(ii) $\overrightarrow{\mathrm{V}} \| \overrightarrow{\mathrm{B}}$ here $\theta=0$ or $\theta=180^{\circ}$

$$
\therefore \mathrm{F}_{\mathrm{m}}=0 \quad \therefore \overrightarrow{\mathrm{a}}=0 \quad \therefore \overrightarrow{\mathrm{v}}=\text { const. }
$$

$\therefore$ particle will move in a straight line with constant velocity
(iii) Initial velocity $\overrightarrow{\mathrm{U}} \perp \overrightarrow{\mathrm{B}}$ and $\overrightarrow{\mathrm{B}}=$ uniform


In this case $\because B$ is in $z$ direction so the magnetic force in $z$-direction will be zero $\left(Q\left(\because \overrightarrow{F_{m}} \perp \vec{B}\right)\right.$.
Now there is no initial velocity in $z$-direction.
$\therefore$ particle will always move in xy plane. $\quad \therefore$ velocity vector is always $\perp \overrightarrow{\mathrm{B}} \therefore \mathrm{F}_{\mathrm{m}}=\mathrm{quB}=\mathrm{constant}$ now quB $=\frac{m u^{2}}{R} \Rightarrow R=\frac{m u}{q B}=$ constant.
The particle moves in a curved path whose radius of curvature is same every where, such curve in a plane is only a circle.
$\therefore$ path of the particle is circular. $\quad R=\frac{m u}{q B}=\frac{p}{q B}=\frac{\sqrt{2 m k}}{q B}$
here $\mathrm{p}=$ linear momentum ; $\mathrm{k}=$ kinetic energy
now $v=\omega R \Rightarrow \omega=\frac{q B}{m}=\frac{2 \pi}{T}=2 \pi f \quad$ Time period $T=2 \pi m / \mathrm{qB}$
frequency $f=q B / 2 \pi m$
Note: $\omega, \mathrm{f}, \mathrm{T}$ are independent of velocity.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Ex. 22 A proton (p), $\alpha$-particle and deutron (D) are moving in circular paths with same kinetic energies in the same magnetic field. Find the ratio of their radii and time periods. (Neglect interaction between particles).
Ex. 23 A positive charge particle of charge q, mass $m$ enters into a uniform magnetic field with velocity v as shown in the figure. There is no magnetic field to the left of PQ .

$$
=1: 1: \sqrt{2}
$$

$\mathrm{T}=2 \pi \mathrm{~m} / \mathrm{qB} \quad \therefore \quad \mathrm{T}_{\mathrm{p}}: \mathrm{T}_{\alpha}: \mathrm{T}_{\mathrm{D}}=\frac{2 \pi \mathrm{~m}}{\mathrm{qB}}: \frac{2 \pi 4 \mathrm{~m}}{2 q B}: \frac{2 \pi 2 \mathrm{~m}}{\mathrm{qB}} \quad=1: 2: 2$ Ans.
Find (i) time spent, (ii) distance travelled in the magnetic field (iii) impulse of magnetic force
Sol. The particle will move in the field as shown
Angle subtended by the arc at the centre $=2 \theta$
(i) Time spent by the charge in magnetic field

$$
\omega t=\theta \Rightarrow \frac{q B}{m} t=\theta \quad \Rightarrow t=\frac{m \theta}{q B}
$$

(ii) Distance travelled by the charge in magnetic field :

$$
=r(2 \theta)=\frac{m v}{q B} \cdot 2 \theta
$$



$$
=(-m v \sin \theta \hat{i}+m v \cos \theta \hat{j})-(m v \sin \theta \hat{i}+m v \cos \theta \hat{j}) \quad=-2 m v \sin \theta \hat{i}
$$

Ex. 24 Repeat above question if the charge is -ve and the angle made by the boundary with the velocity is $\frac{\pi}{6}$.

$$
\begin{aligned}
& \text { (i) } 2 \pi-2 \theta=2 \pi-2 \cdot \frac{\pi}{6}=2 \pi-\frac{\pi}{3}=\frac{5 \pi}{3}= \\
& \text { (ii) } \begin{array}{l}
\text { Distance travelleds }=r(2 \pi-2 \theta)=\frac{5 \pi r}{3} \\
\text { (iii) } \\
\text { Impulse }=\text { charge in linear momentum }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =m(-v \sin \theta \hat{i}+v \cos \theta \hat{j})-m(v \sin \theta \hat{i}+v \cos \theta \hat{j}) \\
& \left.=-2 m v \sin \theta \hat{i}=-2 m v \sin \frac{\pi}{6} \hat{i}=-m v \hat{i}\right)
\end{aligned}
$$


Q. $9 \quad P, \alpha$ and $D$ are accelerated by the potential difference from rest and then send in a magnetic field where they move in circular orbits. Neglecting interaction between them find the ratio of their time periods and ratio of their radii.
Ans.
(i) $1: 2: 2$
(ii) $1: \sqrt{2}: \sqrt{2}$
Ex. 25 In the figure shown the magnetic field on the left on ' PQ ' is zero and on the right of ' PQ ' it is uniform. Find the time spent in the magnetic field.
Sol. The path will be semicircular time spent $=\mathrm{T} / 2=\pi \mathrm{m} / \mathrm{qB}$


Ex. 26 A uniform magnetic field of strength ' $B$ ' exists in a region of width 'd'. A particle of charge ' $q$ ' and mass ' $m$ ' is shot perpendicularly (as shown in the figure) into the magnetic field. Find the time spedn by the particle in the magnetic field if
© Ex. 27 What should be the speed of charged particle so that it can't collide with the upper wall? Also find the coordinate of the point where the particle strikes the lower plate in the limiting case of velocity.


Sol.
(i) $\mathrm{d}>\frac{\mathrm{mu}}{\mathrm{qB}^{\mathrm{B}}}$ (ii) $\mathrm{d}<\frac{\mathrm{mu}}{\mathrm{qB}}$
(i) $\sin \theta=\frac{d}{R}$
$\theta=\sin ^{-1}\left(\frac{d}{R}\right)$

$$
\omega t=\theta \Rightarrow t=\frac{m}{q B} \sin ^{-1}\left(\frac{d}{R}\right)
$$




Sol. (i) The path of the particle will be circular larger the velocity, larger will be the radius.

$$
\text { For particle not to strike } R<d
$$

$$
\therefore \quad \frac{\mathrm{mv}}{\mathrm{qB}}<\mathrm{d} \quad \Rightarrow \quad \mathrm{v}<\frac{\mathrm{qBd}}{\mathrm{~m}} .
$$


(ii) for limiting case $v \simeq \frac{q B d}{m}$
$R \simeq d$
$\therefore$ coordinate $=(-2 d, 0,0)$

3.2 Helical path :

If the velocity of the charge is not perpendicular to the magnetic field, we can break the velocity in two components - $v_{\| \|}$, parallel to the field and $v_{\perp}$, perpendicular to the field. The components $v_{\|,}$remains unchanged as the force $q \vec{v} \times \vec{B}$ is perpendicular to it. In the plane perpendicular to the field, the particle traces a circle of radius $\mathrm{r}=\frac{\mathrm{mv}}{\perp \mathrm{A}}$ as given by equation. The resultant path is helix.

Let a particle have initial velocity in the plane of the paper and a constant and uniform magnetic field also in
Q. 10 A particle of charge $q$ and mass $m$ is projected in a uniform and constant magnetic field of strength $B$. The initial velocity vector $\vec{v}$ makes angle ' $\theta$ ' with the $\overrightarrow{\mathrm{B}}$. Find the distance travelled by the particle in time 't'.
Ans. vt

### 3.3 Charged Particle in $\vec{E}$ \& $\vec{B}$

The particle starts from point $A_{1}$.
It completes its one revolution at $A_{2}$ and $2^{\text {nd }}$ revolution at $A_{3}$ and so on. $X$-axis is the tangent to the helix points $A_{1}, A_{2}, A_{3}, \ldots \ldots .$. all are on the $x$-axis.
distance $\quad,{ }_{1} A_{2}=A_{3} A_{4}=\ldots \ldots \ldots \ldots . .=v \cos \theta . T=$ pitch
where $\quad \mathrm{T}=$ Time period
Let the initial position of the particle be $(0,0,0)$ and $v$ sinq in $+y$ direction. Then
in $x: \quad F_{x}=0, a_{x}=0, v_{x}=$ constant $=v \cos \theta, x=(v \cos \theta) t$
In y-z plane :
From figure it is clear that

$$
\begin{aligned}
& y=R \sin \beta, v_{y}=v \sin \theta \cos \beta \\
& z=-(R-R \cos \beta) \\
& v_{z}=v \sin \theta \sin \beta
\end{aligned}
$$

acceleration towards centre $=(v \sin \theta)^{2} / R=\omega^{2} R$
$\therefore \quad a_{y}=-\omega^{2} R \sin \beta, a_{z}=-\omega^{2} R \cos \beta$
At any time : the position vector of the particle (or its displacement w.r.t. initial position)



$$
\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}, x, y, z \text { already found }
$$

$$
\vec{v}=v_{x} \hat{i}+v_{y} \hat{j}+v_{z} \hat{k}, v_{x}, v_{y}, v_{z} \text { already found }
$$

$$
\vec{a}=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}, a_{x}, a_{y}, a_{z} \text { already found }
$$

Radius

$$
q(v \sin \theta) B=\frac{m(v \sin \theta)^{2}}{R} \Rightarrow R=\frac{m v \sin \theta}{q B}
$$



$$
\omega=\frac{v \sin \theta}{R}=\frac{q B}{m}=\frac{2 \pi}{T}=2 \pi f
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Q. 12 In the above question, the charged particle passes undeviated without changing its velocity.

Ans. $\quad A, B, C, D, \quad D$ when $\vec{E}=-(\vec{V} \times \vec{B})$

Case II : $\vec{E} \| \vec{B}$ and uniform $\theta \neq 0,180^{\circ} \quad(\vec{E}$ and $\vec{B}$ are constant and uniform)



## MISCLLENEOUS EXAMPLES

$\stackrel{\circ}{\circ}$
Ex. 28 A long, straight wire carries a current i. A particle having a positive charge $q$ and mass $m$ kept at a distance $x_{0}$ from the wire is projected towards it with a speed $v$. Find the minimum separation between the wire and the particle
Sol. Let the particle be initially at $P$ (figure). Take the wire as the $Y$-axis and the foot of perpendicular from $P$ to the wire as the origin. Take the line $O P$ as the $X$-axis. We have, $\mathrm{OP}=\mathrm{x}_{0}$. The magnetic field $B$ at any point to the right of the wire is along the negative Z -axis. The magnetic force on the particle is, therefore, in the $X-Y$ plane. As there is no initial velocity along the Z-axis, the motion will be in the $\mathrm{X}-\mathrm{Y}$ plane. Also, its speed remains unchanged. As the magnetic field is not
 uniform, the particle does not go along a circle.
The force at time $t$ is $\vec{F}=q \vec{v} \times \vec{B}$

$$
=q\left(\vec{i} v_{x}+\vec{j} v_{y}\right) \times\left(-\frac{\mu_{0} i}{2 \pi x} \vec{k}\right) \quad=\vec{j} q v_{x} \frac{\mu_{0} i}{2 \pi x}-\vec{i} q v_{y} \frac{\mu_{0} i}{2 \pi x} .
$$

Thus

$$
\begin{equation*}
a_{x}=\frac{F_{x}}{m}=-\frac{\mu_{0} q i}{2 \pi m} \frac{v_{y}}{x}=-\lambda \frac{v_{y}}{x} \tag{i}
\end{equation*}
$$

where

$$
\lambda=\frac{\mu_{0} q \mathrm{i}}{2 \pi \mathrm{~m}} .
$$

Also,

$$
\begin{equation*}
a_{x}=\frac{d v_{x}}{d t}=\frac{d v_{x}}{d x} \frac{d x}{d t}=\frac{v_{x} d v_{x}}{d x} \tag{ii}
\end{equation*}
$$

As, giving From (i), (ii) and (iii),

$$
\begin{equation*}
v_{x}^{x} d v_{x} \stackrel{y}{=}-v_{y} d v_{y} \tag{iii}
\end{equation*}
$$

or,

$$
\frac{v_{y} d v_{y}}{d x}=\frac{\lambda v_{y}}{x}
$$

Ex. 29 Two long wires, carrying currents $i_{1}$ and $i_{2}$, are placed perpendicular to each other in such a way that they just avoid a contact. Find the magnetic force on a small length $d \ell$ of the second wire situated at a distance $\ell$ from the first wire.

Sol. The situation is shown in figure. The magnetic field at the site of $\mathrm{d} \ell$,

due to the first wire is ,

$$
B=\frac{\mu_{0} i_{1}}{2 \pi \ell}
$$

This field is perpendicular to the plane of the figure going into it. The magnetic force on the length $\mathrm{d} \ell$ is,

$$
\mathrm{dF}=\mathrm{i}_{2} \mathrm{~d} \ell \mathrm{~B} \sin 90^{\circ}=\frac{\mu_{0} \mathrm{i}_{1} \mathrm{i}_{2} \mathrm{~d} \ell}{2 \pi \ell}
$$

This force is parallel to the current $i_{1}$.
Ex. 30 An electron is released from the origin at a place where a uniform electric field $E$ and a uniform magnetic field $B$ exist along the negative $Y$-axis and the negative Z-axis respectively. Find the displacement of the electron along the Y -axis when its velocity becomes perpendicular to the electric field for the first time.

$$
\int_{x_{0}}^{x} \frac{d x}{x}=\int_{0}^{-v} \frac{d v_{y}}{\lambda} \quad \text { or, } \quad \ln \frac{x}{x_{0}}=-\frac{v}{\lambda}
$$

Sol. Let us take axes as shown in figure. According to the right-handed system, the $Z$-axis is upward in the figure and hence the magnetic field is shown downwards. At any time, the velocity of the electron may be written as

$$
\vec{u}=u_{x} \vec{i}+u_{y} \vec{j}
$$

where

$$
\begin{equation*}
\omega=\frac{e B}{m} \tag{iii}
\end{equation*}
$$

We have, $\quad \frac{d^{2} u_{y}}{d t^{2}}=-\frac{e B}{m} \frac{d u_{x}}{d t}=-\frac{e B}{m} \cdot \frac{e B}{m} u_{y} \quad=-\omega^{2} u_{y}$

This equation is similar to that for a simple harmonic motion. Thus,

$$
\begin{equation*}
u_{y}=A \sin (\omega t+\delta) \tag{iv}
\end{equation*}
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
and hence,

$$
\begin{equation*}
\frac{d u_{\mathrm{y}}}{\mathrm{dt}}=\mathrm{A} \omega \cos (\omega \mathrm{t}+\delta) \tag{v}
\end{equation*}
$$

### 3.4 Magnetic force on A current carrying wire :

Suppose a conducting wire, carrying a current $i$, is placed in a magnetic field B . Consider a small element $\mathrm{d} \ell$ of the wire (figure). The free electrons drift with a speed $v_{\text {d }}$ opposite to the direction of the current. The relation between the current $i$ and the drift speed $\mathrm{v}_{\mathrm{d}}$ is

$$
\begin{equation*}
\mathrm{i}=j \mathrm{~A}=\operatorname{nev}_{\mathrm{d}} \mathrm{~A} . \tag{i}
\end{equation*}
$$

Also, $\quad u_{y}=\frac{d y}{d t}=\frac{E}{B} \sin \omega t$
or, $\quad \int_{0}^{y} d y=\frac{E}{B} \sin \omega t d t$
or, $\quad y=\frac{E}{B \omega}(1-\cos \omega t)$.
At $\mathrm{t}=\frac{\pi}{\omega}$,

$$
y=\frac{E}{B \omega}(1-\cos \pi)=\frac{2 E}{B \omega}
$$

Thus,
$u_{y}=\frac{E}{B} \sin \omega t$.
The path of the electron will be perpendicular to the $Y$-axis when $u_{y}=0$. This will be the case for the first time at $t$ where

$$
\sin \omega t=0 \quad \text { or, } \quad \omega t=\pi \quad \text { or, } \quad t=\frac{\pi}{\omega}=\frac{\pi \mathrm{m}}{\mathrm{eB}}
$$

Thus, the displacement along the Y -axis is

$$
\frac{2 \mathrm{E}}{\mathrm{~B} \omega}=\frac{2 \mathrm{Em}}{\mathrm{BeB}}=\frac{2 \mathrm{Em}}{\mathrm{eB}^{2}}
$$

Here $A$ is the area of cross-section of the wire and $n$ is the numb electron experiences an average (why average?) magnetic force

$$
\vec{f}=-e \vec{v}_{d} \times \vec{B}
$$

The number of free electrons in the small element considered in nAd $\ell$. Thus, the magnetic force on the wire $\dot{\rho}$ of length $d \ell$ is

$$
\mathrm{d} \overrightarrow{\mathrm{~F}}=(\mathrm{nAd} \ell)\left(-\mathrm{e} \overrightarrow{\mathrm{v}}_{\mathrm{d}} \times \overrightarrow{\mathrm{B}}\right)
$$

If we denote the length $\mathrm{d} \ell$ along the direction of the current by $\mathrm{d} \vec{\ell}$, the above equation becomes

$$
\begin{aligned}
& \mathrm{d} \overrightarrow{\mathrm{~F}}=\mathrm{nAev}{ }_{\mathrm{d}} \overrightarrow{\mathrm{~d}} \times \overrightarrow{\mathrm{B}} . \\
& \mathrm{d} \overrightarrow{\mathrm{~F}}=\mathrm{id} \vec{\ell} \times \overrightarrow{\mathrm{B}} .
\end{aligned}
$$

Using (i),
The quantity $\mathrm{id} \vec{\ell}$ is called a current element.

$$
\overrightarrow{\mathrm{F}_{\text {res }}}=\int \overrightarrow{\mathrm{dF}}=\int \mathrm{id} \vec{\ell} \times \overrightarrow{\mathrm{B}}=\mathrm{i} \int \overrightarrow{\mathrm{~d} \ell} \times \overrightarrow{\mathrm{B}}
$$

( $\because$ i is same at all points of the wire.)
If $\vec{B}$ is uniform then $\vec{F}_{\text {res }}=i\left(\int \vec{d} \ell\right) \times \vec{B} ; \quad \overrightarrow{F_{\text {res }}}=i \vec{L} \times \vec{B}$
Here $\vec{L}=\int \mathrm{d} \vec{\ell}=$ vector length of the wire $=$ vector connecting the end points of the wire.


Note: If a current loop of any shape is placed in a uniform $\vec{B}$ then $\left.\overrightarrow{\mathrm{F}_{\text {res }}}\right)_{\text {magnetic }}$ on it $=0(\because \overrightarrow{\mathrm{~L}}=0)$.
3.5 Point of application of magnetic force :

On a straight current carrying wire the magnetic force in a uniform magnetic field can be assumed to be acting at its mid point.


Ex. 31 A wire is bent in the form of an equilateral triangle PQR of side 10 cm and carries a current of 5.0 A . It is placed in a magnetic field $B$ of magnitude 2.0 T directed perpendicularly to the plane of the loop. Find the forces on the three sides of the triangle.
Sol. Suppose the field and the current have directions as shown in figure. The force on PQ is

$$
\begin{array}{ll} 
& \vec{F}_{1}=\vec{i} \ell \times \vec{B} \\
\text { or, } & F_{1}=5.0 \mathrm{~A} \times 10 \mathrm{~cm} \times 2.0 \mathrm{~T}=1.0 \mathrm{~N}
\end{array}
$$

The rule of vector product shows that the force $F_{1}$ is perpendicular to PQ and is directed towards the inside of the triangle.


It acts towards right tin the given figure. If the wire does not slide on the rails, the force of friction by the rails should be equal to $F$. If $\mu_{0}$ be the minimum coefficient of friction which can prevent sliding, this force is also equal to $\mu_{0} \mathrm{mg}$. Thus,
$\mu_{0} \mathrm{mg}=\mathrm{i} \ell \mathrm{B} \quad$ or, $\quad \mu_{0}=\frac{i \ell B}{m g}$


Ex. 32 Figure shows two long metal rails placed horizontally and parallel to each other at a separation $\ell$. A uniform magnetic field $B$ exists in the vertically downward direction. A wire of mass $m$ can slide on the rails. The rails are connected to a constant current source the rails. The rails are connected to a constant current source
which drives a current i in the circuit. The friction coefficient between the rails and the wire is $\mu$.
(a) What soluble the minimum value of $\mu$ which can prevent the wire from sliding on the rails?
(b) Describe the motion of the wire if the value of $\mu$ is half the value
found in the previous part
Sol. (a) The force on the wire due to the magnetic field is

$$
\overrightarrow{\mathrm{F}}=\mathrm{i} \vec{\ell} \times \vec{B} \quad \text { or, } \quad \mathrm{F}=\mathrm{i} \ell \mathrm{~B}
$$

The forces $\vec{F}_{2}$ and $\vec{F}_{3}$ on QR and RP can also be obtained similarly. Both the forces are 1.0 N directed perpendicularly to the respective sides and towards the inside of the triangle.
The three forces $\vec{F}_{1}, \vec{F}_{2}$ and $\vec{F}_{3}$ will have zero resultant, so that there is no net magnetic force on the triangle. This result can be generalised. Any closed current loop, placed in a homogeneous magnetic field, does not experience a net magnetic force.
$\int \mu_{0} \mathrm{mg}=\mathrm{i} \ell \mathrm{B}$

$צ$
(b) If the friction coefficient is $\mu=\frac{\mu_{0}}{2}=\frac{i \ell B}{2 m g}$, the wire will slide towards right. The frictional force by the rails is $\mathrm{f}=\mu \mathrm{mg}=\frac{\mathrm{i} \ell \mathrm{B}}{2}$ towards left.
The resultant force is $i \ell B-\frac{i \ell B}{2}=\frac{i \ell B}{2}$ towards right. The acceleration will be $a=\frac{i \ell B}{2 m}$. The wire will slide towards right with this acceleration.

Ex. 33 In the figure shown a semicircular wire is placed in a uniform $\vec{B}$ disected toward right. Find the resultant magnetic force and torque on it.
Sol. The wire is equivalent to

$$
\because \theta=0, \therefore \mathrm{~F}_{\text {res }}=0 \quad \text { Ans. }
$$


forces on individual parts are marked in the figure by $\otimes$ and $\odot$. By symmetry their will be pair of forces forming couples.

$$
\begin{aligned}
& \tau=\int_{0}^{\pi / 2} i(R d \theta) B \sin (90-\theta) \cdot 2 R \cos \theta \\
& \tau=\frac{i \pi R^{2}}{2} B \quad \vec{\tau}=\frac{i \pi R^{2}}{2} B(-\hat{j})
\end{aligned}
$$

Ans.



Ex. 34 Find the resultant magnetic force and torque on the loop.

Sol. $\quad \overrightarrow{F_{\text {res }}}=0,(\because$ loop $)$ and $\vec{\tau}=i \pi R^{2} B(-\hat{j})$ usint the above method

Ex. 35 In the figure shown find the resultant magnetic force and torque about ' $C$ ', and ' $P$ '.


Sol. $\quad \vec{F}_{\text {nett }}=I .2 R . B \because$ wire is equivalent to


Force on each element is radially outward : $\tau_{c}=0$
point about


Ans.

Ex. 36 Prove that magnetic force per unit length on each of the infinitely long wire due to each other is $\mu_{0} I_{1} I_{2} / 2 \pi \mathrm{~d}$. Here it is attractive also.

Sol. On (2), B due to (i) is $=\frac{\mu_{0} I_{1}}{2 \pi d} \otimes$
$\therefore \quad F$ on (2) on 1 m length

$$
=\mathrm{I}_{2} \cdot \frac{\mu_{0} \mathrm{I}_{1}}{2 \pi \mathrm{~d}} \cdot 1
$$

$$
=\frac{\mu_{0} \mathrm{I}_{1} \mathrm{I}_{2}}{2 \pi \mathrm{~d}}
$$



Similarly on the other wire also.
Note : (1) Definition of ampere (fundamental unit of current) using the above formula. If $I_{1}=I_{2}=1 \mathrm{~A}, \mathrm{~d}=1 \mathrm{~m}$ then $\mathrm{F}=2 \times 10^{-7} \mathrm{~N}$
$\therefore \quad$ "When two very long wires carrying equal currents and separated by 1 m distance exert on each other a magnetic force of $2 \times 10^{-7} \mathrm{~N}$ on 1 m length then the current is 1 ampere."
(2) The above formula can also be applied if to one wire is infinitely long and the other is of finite length. In this case the force per unit length on each wire will not be same.

Force per unit length on $P Q=\frac{\mu_{0} \mathrm{I}_{1} \mathrm{I}_{2}}{2 \pi \mathrm{~d}}$
(attractive)
(3) If the currents are in the opposte direction then the magnetic force on the wires will be repulsive.


Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Ex. 37 Find the magnetic force on the loop 'PQRS' due to the loop wire.

Sol. $\quad F_{\text {res }}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi a} a(-\hat{i})+\frac{\mu_{0} I_{1} I_{2}}{2 \pi(2 a)} a(\hat{i})=\frac{\mu_{0} I_{1} I_{2}}{4 \pi}(-\hat{i})$


ลे

Sol. (i) Magnetic replusive force balances the weight.

$$
\frac{\mu_{0} \mathrm{I}_{1} \mathrm{I}_{2}}{2 \pi \mathrm{~h}} \ell \mathrm{mg} \Rightarrow \mathrm{~h}=\frac{\mu_{0} \mathrm{I}_{1} \mathrm{I}_{2} \ell}{2 \pi \mathrm{mg}}
$$

(ii) Let the wire be displaced downward by distance $x(\ll h)$.

Magnetic force on it will increase, so it goes back towards its equilibrium position. Hence it performs oscillations.

(i) 'h' in terms of $I_{1}, I_{2}, \ell, m, g$ and other standard constants.
(ii) If the wire PQ is displaced vertically by small distance prove that it performs SHM. Find its time period in terms of $h$ and $g$.
Ex. 38 In the figure shown the wires $A B$ and $P Q$ carry constant currents $I_{1}$ and $I_{2}$ respectively. $P Q$ is of uniformly distributed mass ' $m$ ' and length ' $\ell$ '. AB and $P Q$ are are both horizontal and kept in the same vertical plane. The $P Q$ is in equilibrium at height ' $h$ '. Find

