

 Ineff Jj. Mant thegik

STUDY PACKAGE Subject: PHYSICS

Topic : ELECTROMAGNETIC INDUCTION \& ALTERNATING CURRENT

Student's Name: \qquad Class

Roll No.
Address: Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal 욜: 0903903 7779, 98930 58881, WhatsApp 9009260559 www.TekoClasses.com

When a conductor is moved across a magnetic field, an electromotive force (emf) is produced in the conductor. If the conductors forms part of a closed circuit then the emf produced caused an electric current to flow round the circuit. Hence an emf (and thus a current) is induced in the conductor as a result of its movement across the magnetic field. This is known as "electromagnetic induction."

1. Magnetic Flux :

$\phi=\vec{B} \cdot \vec{A}=B A \cos \theta$ weber for uniform \vec{B}.
$\phi=\int \vec{B} \cdot d \vec{A}$ for non uniform \vec{B}.
2. Faraday's Laws Of Electromagnetic Induction :
(i) An induced emf is setup whenever the magnetic flux linking that circuit changes.
(ii) The magnitude of the induced emf in any circuit is proportional to the rate of change of the magnetic flux linking the circuit, $\varepsilon \alpha \frac{\mathrm{d} \phi}{\mathrm{dt}}$.
3. Lenz's Laws :

The direction of an induced emf is always such as to oppose the cause producing it .
4. Law Of EMI:
5. EMF Induced In A Straight Conductor In Uniform Magnetic Field : $\mathrm{E}=\mathrm{BLV} \sin \theta$ volt where
$\mathrm{B}=$ flux density in $\mathrm{wb} / \mathrm{m}^{2} \quad ; \quad \mathrm{L}=$ length of the conductor (m);
$\mathrm{V}=$ velocity of the conductor $(\mathrm{m} / \mathrm{s})$;
$\theta=$ angle between direction of motion of conductor \& B .
(i) shape of the loop \&
(ii) medium
$\mathrm{i}=$ current in the circuit .
$\phi_{\mathrm{s}}=$ magnetic flux linked with the circuit due to the current i .
self induced emf $e_{s}=\frac{\mathrm{d} \phi_{\mathrm{s}}}{\mathrm{dt}}=-\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{Li})=-\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$ (if L is constant)

8. Mutual Induction :

If two electric circuits are such that the magnetic field due to a current in one is partly or wholly linked $\stackrel{-}{\Gamma}$ with the other, the two coils are said to be electromagnetically coupled circuits. Than any change of current in one produces a change of magnetic flux in the other \& the latter opposes the change by inducing an emf within itself. This phenomenon is called Mutual Induction \& the induced emf in the latter circuit due to a change of current in the former is called Mutually Induced EMF. The circuit ∞ in which the current is changed, is called the primary \& the other circuit in which the emf is induced is \circ called the secondary. The co-efficient of mutual induction (mutual inductance) between two o electromagnetically coupled circuit is the magnetic flux linked with the secondary per unit current in the primary.
Mutual inductance $=\mathrm{M}=\frac{\phi_{\mathrm{m}}}{\mathrm{I}_{\mathrm{p}}}=\frac{\text { flux linked with secondary }}{\text { current in the primary }}$ mutually induced emf.
$E_{m}=\frac{d \phi_{m}}{d t}=-\frac{d}{d t}(M I)=-M \frac{d I}{d t}$ (If M is constant)
M depends on (1) geometery of loops (2) medium (3) orientation \& distance of loops.
9. Solenoid :

There is a uniform magnetic field along the axis the solenoid (ideal:length >> diameter)
B $=\mu \mathrm{ni}$ where;
$\mu=$ magnetic permeability of the core material;
$\mathrm{n}=$ number of turns in the solenoid per unit length ;
$\mathrm{i}=$ current in the solenoid ;
Self inductance of a solenoid $\mathrm{L}=\mu_{0} \mathrm{n}^{2} \mathrm{~A} l$;
$A=$ area of cross section of solenoid .
$\mathrm{I}=\frac{\mathrm{E}}{\mathrm{R}}\left(1-\mathrm{e}^{-\mathrm{Rt} / \mathrm{L}}\right) . \quad[$ If initial current $=0]$
$\frac{L}{R}=$ time constant of the circuit.

$\mathrm{I}_{0}=\frac{\mathrm{E}}{\mathrm{R}}$.
(i) $\quad \mathrm{L}$ behaves as open circuit at $\mathrm{t}=0$ [If $i=0$]
(ii) L behaves as short circuit at $t=\infty$ always .

Curve $(1) \longrightarrow \quad \frac{\mathrm{L}}{\mathrm{R}}$ Large
Curve $(2) \longrightarrow \quad \frac{\mathrm{L}}{\mathrm{R}}$ Small

13. Decay Of Current :

Initial current through the inductor $=\mathrm{I}_{0}$;
Current at any instant $\mathrm{i}=\mathrm{I}_{0} \mathrm{e}^{-\mathrm{R} / \mathrm{L}}$

Q. 1 The horizontal component of the earth's magnetic field at a place is $3 \times 10^{-4} \mathrm{~T}$ and the dip is $\tan ^{-1}(4 / 3)$. A metal rod of length 0.25 m placed in the north-south position is moved at a constant speed of $10 \mathrm{~cm} / \mathrm{s}$ towards the east. Find the e.m.f. induced in the rod.
Q. 2 A wire forming one cycle of sine curve is moved in x-y plane with velocity $\overrightarrow{\mathrm{V}}=\mathrm{V}_{\mathrm{x}} \hat{\mathrm{i}}+\mathrm{V}_{\mathrm{y}} \hat{\mathrm{j}}$. There exist a magnetic field $\overrightarrow{\mathrm{B}}=-\mathrm{B}_{0} \hat{\mathrm{k}}$. Find the motional emf develop across the ends PQ of wire.

Q. 3 A conducting circular loop is placed in a uniform magnetic field of 0.02 T , with its plane perpendicular to the field. If the radius of the loop starts shrinking at a constant rate of $1.0 \mathrm{~mm} / \mathrm{s}$, then find theemf induced in the loop, at the instant when the radius is 4 cm .
Q. 4 Find the dimension of the quantity $\frac{\mathrm{L}}{\mathrm{RCV}}$, where symbols have usual meaining.
Q. 5 A rectangular loop with a sliding connector of length $l=1.0 \mathrm{~m}$ is situated in a uniform magnetic field $\mathrm{B}=2 \mathrm{~T}$ perpendicular to the plane of loop. Resistance of connector is $r=2 \Omega$. Two resistances of 6Ω and 3Ω are connected as shown in figure. Find the external force required to keep the connector moving with a constant velocity $\mathrm{v}=2 \mathrm{~m} / \mathrm{s}$.
Q. 6 Two concentric and coplanar circular coils have radii a and $b(\gg a)$ as shown in figure. Resistance of the inner coil is R. Current in the outer coil is increased from 0 to i, then find the total charge circulating the inner coil.
Q. 7 A horizontal wire is free to slide on the vertical rails of a conducting frame as shown
in figure. The wire has a mass mand length l and the resistance of the circuit isR. If auniform magnetic field B is directed perpendicular to the frame, then find the terminal speed of the wire as it falls under the force of gravity.

Q. 8 A metal rod of resistance 20Ω is fixed along a diameter of a conducting ring of radius 0.1 m and lies on x-y plane. There is a magnetic field $\vec{B}=(50 T) \hat{\mathrm{k}}$. The ring rotates with an angular velocity $\omega=20 \mathrm{rad} / \mathrm{sec}$ about its axis. An external resistance of 10Ω is connected across the centre of the ring and rim. Find the current through external resistance.
Q. 9 In the given current, find the ratio of i_{1} to i_{2} where i_{1} is the initial (at $\left.t=0\right)$ current and i_{2} is steady state $($ at $t=\infty)$ current through the battery.

Q. 10 In the circuit shown, initially the switch is in position 1 for a long time. Then the switch is shifted to position 2 for a long time. Find the total heat produced in R_{2}.

Q. 11 Two resistors of 10Ω and 20Ω and an ideal inductor of 10 H are connected to a 2 V battery as shown. The key K is shorted at time $t=0$. Find the initial $(t=0)$ and final $(t \rightarrow \infty)$ currents through battery.

Q. 12 There exists a uniform cylindrically symmetric magnetic field directed along the axis of a cylinderbut varying with time as $B=k t$. If an electron is released fromrest in this field at a distance of ' r ' from the axis of cylinder, its acceleration, just after it is released would be (e and mare the electronic charge and mass respectively)

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Q. 13 An emf of 15 volt is applied in a circuit containing 5 H inductance and 10Ω resistance. Find the ratio of
Q. 14 A uniform magnetic field of 0.08 T is directed into the plane of the page and perpendicular to it as shown in the figure. A wire loop in the plane of the page has constant area $0.010 \mathrm{~m}^{2}$. The magnitude of magnetic field decrease at a constant rate of $3.0 \times 10^{-4} \mathrm{Ts}^{-1}$. Find the magnitude and direction of the induced emf in the loop.

Q. 15 In the circuit shown in figure switch S is closed at time $\mathrm{t}=0$. Find the charge which passes through the battery in one time constant.

Q. 16 Two coils, 1 \& 2, have a mutual inductance $=\mathrm{M}$ and resistances R each. A current flows in coil 1, which
 through coil 2 , between $t=0$ and $t=T$.
Q. 17 In a L-R decay circuit, the initial current at $\mathrm{t}=0$ is I . Find the total charge that has flown through the resistor till the energy in the inductor has reduced to one-fourth its initial value.
Q. 18 A charged ring of mass $\mathrm{m}=50 \mathrm{gm}$, charge 2 coulomb and radius $\mathrm{R}=2 \mathrm{~m}$ is placed on a smooth horizontal surface. A magnetic field varying with time at a rate of $(0.2 \mathrm{t}) \mathrm{Tesla/sec}$ is applied on to the ringin a direction normal to the surface of ring. Find the angular speed attained in a time $\mathrm{t}_{1}=10 \mathrm{sec}$.
Q. 19 A capacitor C with a charge Q_{0} is connected across an inductor through a switch S. If at $\mathrm{t}=0$, the switch is closed, then find the instantaneous charge q on the upper plate of capacitor.
Q. 20 A uniform but time varying magnetic field $\mathrm{B}=\mathrm{Kt}-\mathrm{C}$; $(0 \leq \mathrm{t} \leq \mathrm{C} / \mathrm{K})$, where K and C are constants and total charge that will pass around the loop.
Q. 25 A $50 \mathrm{~W}, 100 \mathrm{~V}$ lamp is to be connected to an ac mains of $200 \mathrm{~V}, 50 \mathrm{~Hz}$. What capacitance is essential to be put in series with the lamp.

List of recommended questions from I.E. Irodov.

3.288 to 3.299, 3.301 to 3.309, 3.311, 3.313, 3.315, 3.316, 3.326 to 3.329, 3.331, 4.124, 4.125, 4.126, 4.136, 4.137, 4.141, 4.144

Q. 21 A coil of resistance 300Ω and inductance 1.0 henry is connected across an alternating voltage of frequency $300 / 2 \pi \mathrm{~Hz}$. Calculate the phase difference between the voltage and current in the circuit.
Q. 22 Find the value of an inductance which should be connected in series with a capacitor of $5 \mu \mathrm{~F}$, a resistance of 10Ω and an ac source of 50 Hz so that the power factor of the circuit is unity.
Q. 23 In an L-R series A.C circuit the potential difference across an inductance and resistance joined inseries are respectively 12 V and 16 V . Find the total potential difference across the circuit.
Q. 24 When 100 volt D.C. is applied across a coil, a current of one ampere flows through it, when 100 V ac of 50 Hz is applied to the same coil, only 0.5 amp flows. Calculate the resistance and inductance of the coil.

$$
3.333 \text { to } 3.335,4.98,4.99,4.100,4.134,4.135,4.121 \text {, }
$$

$$
\text { 4.124, 4.125, 4.126, 4.136, 4.137, 4.141, } 4.144
$$

EXERCISE-II

Q. 1 Two straight conducting rails forma right angle where their ends are joined. A conducting bar contact with the rails starts at vertex at the time $t=0$ \& moves symmetrically with a constant velocity of $5.2 \mathrm{~m} / \mathrm{s}$ to the right as shown in figure. A 0.35 T magnetic field points out of the page. Calculate:
(i) The flux through the triangle by the rails \& bar at $\mathrm{t}=3.0 \mathrm{~s}$.

(ii) The emf around the triangle at that time.
page 7
(iii) In what manner does the emf around the triangle vary with time.
Q. 2 Two long parallel rails, a distance l apart and each having a resistance λ per unit length are joined at one end by a resistance R. A perfectly conducting rod MN of mass m is free to slide along the rails without friction. There is a uniform magnetic field of induction B normal to the plane of the paper and directed into the paper. A variable force F is applied to the rod MN such that, as the rod moves, a constant current i flows through R. Find the velocity of the rod and the applied force F as function of the distance x of the rod from R

Q. 3 A wire is bent into 3 circular segments of radius $r=10 \mathrm{~cm}$ as shown in figure. Each segment is a quadrant of a circle, ablying in the xy plane, bc lying in the yz plane \& ca lying in the zx plane.
(i) if a magnetic field B points in the positive x direction, what is the magnitude of the emf developed in the wire, when B increases at the rate of $3 \mathrm{mT} / \mathrm{s}$?
(ii) what is the direction of the current in the segment bc.
Q. 4 Consider the possibility of a new design for an electric train. The engine is driven by the force due to the vertical component of the earths magnetic field on a conducting axle. Current is passed down one coil, into a conducting wheel through the axle, through another conducting wheel \& then back to the source via the other rail.
(i) What current is needed to provide a modest $10-$ KN force? Take the vertical component of the $\mathfrak{エ}^{\dot{*}}$ earth's field be $10 \mu \mathrm{~T}$ \& the length of axle to be 3.0 m .
(ii) How much power would be lost for each Ω of resistivity in the rails ?
(iii) Is such a train realistic?
Q. 5 A square wire loop with 2 m sides in perpendicular to a uniform magnetic field, with half the area of the loop in the field. The loop contains a 20 V battery with negligible internal resistance. If the magnitude of the field varies with time according to $\mathrm{B}=0.042-0.87 \mathrm{t}$, with B in tesla \& t in sec.
(i) What is the total emf in the circuit ?

(ii) What is the direction of the current through the battery?
Q. 6 A rectangular loop of dimensions $l \& w$ and resistance R moves with constant velocity V to the right as shown in the figure. It continues to move with same speed through a region containing a uniform magnetic field B directed into the plane of the paper \& extending a distance 3 W . Sketch the flux, induced emf \& external force acting on the loop as a function of the distance.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Q. 7 A rectangular loop with current I has dimension as shown in figure . Find the magnetic flux ϕ through the infinite region to the right of line $P Q$.
Q. $8 \quad$ A square loop of side ' a ' \& resistance R moves with a uniform velocity v away from a long wire that carries current I as shown in the figure. The loop is moved away from the wire with side $A B$ always parallel to the wire. Initially, distance between the side $A B$ of the loop \& wire is ' a '. Find the work done when the loop is moved through distance ' a ' from the initial position.
Q. 9 Two long parallel conducting horizontal rails are connected by a conducting wire at one end. A uniform magnetic field B exists in the region of space. A light uniform ring of diameter d which is practically equal to separation between the rails, is placed over the rails as shown in the figure. If resistance of ring is λ per unit length, calculate the force required to pull the ring with uniform velocity v .

Q. 10 A long straight wire is arranged along the symmetry axis of a toroidal coil of rectangular cross-section, whose dimensions are given in the figure. The number of turns on the coil is N , and relative permeability of the surrounding medium is unity. Find the amplitude of the emf induced in this coil, if the current $i=i_{\mathrm{m}}$ cos ωt
flows along the straight wire.
Q. 11 Auniform magnetic field $\overrightarrow{\mathrm{B}}$ fills a cylindrical volumes of radius R. Ametal $\operatorname{rod} C D$ of length l is placed inside the cylinder along a chord of the circular cross-section as shown in the figure. If the magnitude of magnetic field increases in the direction of field at a constant rate $\mathrm{dB} / \mathrm{dt}$, find the magnitude and direction of the EMF induced in the rod.
Q. 12 A variable magnetic field creates a constant emf E in a conductor ABCDA . The resistances of portion ABC, CDA and AMC are R_{1}, R_{2} and R_{3} respectively. What current will be shown by meter M ? The magnetic field is concentrated near the axis of the circular conductor.
Q. 13 In the circuit shown in the figure the switched S_{1} and S_{2} are closed at time $t=0$. After time $t=(0.1) \ln 2$ sec, switch S_{2} is opened. Find the current in the circuit at time $t=(0.2) \ln 2 \mathrm{sec}$.
Q. 14 Find the values of i_{1} and i_{2}
(i) immediately after the switch S is closed.
(ii) long time later, with S closed.
(iii) immediately after S is open.

(iv) long time after S is opened.
Q. 15 Consider the circuit shown in figure. The oscillating source of emf deliver a sinusoidal emf of amplitude $e_{\text {max }}$ and frequency ω to the inductor L and two capacitors C_{1} and C_{2}. Find the maximum instantaneous current in each capacitor.

Q. 16 Suppose the emf of the battery, the circuit shown varies with time t so the current is given by $i(\mathrm{t})=3+5 \mathrm{t}$, where i is in amperes \& t is in seconds. Take $\mathrm{R}=4 \Omega$, $\mathrm{L}=6 \mathrm{H} \&$ find an expression for the battery emf as function of time.

Q. 17 A current of 4 A flows in a coil when connected to a 12 V dc source. If the same coil is connected to a . $12 \mathrm{~V}, 50 \mathrm{rad} / \mathrm{s}$ ac source a current of 2.4 A flows in the circuit. Determine the inductance of the coil. Also ${ }_{\infty}^{\infty}$ find the power developed in the circuit if a $2500 \mu \mathrm{~F}$ capacitor is connected in series with the coil.
Q. 18 An LCR series circuit with 100Ω resistance is connected to an ac source of 200 V and angular frequency $300 \mathrm{rad} / \mathrm{s}$. When only the capacitance is removed, the current lags behind the voltage by 60°. When only the inductance is removed, the current leads the voltage by 60°. Calculate the current and the power dissipated in the LCR circuit.
Q. 19 A box P and a coil Q are connected in series with an ac source of variable frequency. The emf of source at 10 V . Box P contains a capacitance of $1 \mu \mathrm{~F}$ in series with a resistance of 32Ω coil Q has a self-inductance 4.9 mH and a resistance of 68Ω series. The frequency is adjusted so that the maximumcurrent flows in P and Q . Find the impedance of P and Q at this frequency. Also find the voltage across P and Q respectively.
Q. 20 At resonance the voltages across resistance and inductance are 60 V and 40 V respectively. Find the values of Land C. At what frequency the current in the circuit lags the voltage by 45° ?

EXERCISE-III

Q. 1 Arectangular frame ABCD made of a uniform metal wire has a straight connection between E \& F made of the same wire as shown in the figure. AEFD is a square of side $1 \mathrm{~m} \& \mathrm{~EB}=\mathrm{FC}=0.5 \mathrm{~m}$. The entire circuit is placed in a steadily increasing uniform magnetic field directed into the place of the paper \& normal to it. The rate of change of the magnetic field is $1 \mathrm{~T} / \mathrm{s}$, the resistance per unit length of the wire is $1 \Omega / \mathrm{m}$. Find the current in segments AE, BE \& EF.

$\stackrel{\ominus}{0}$
$\stackrel{\rightharpoonup}{\circ}$
$\stackrel{\sim}{\circ}$
Q. 2 An inductance L, resistance R, battery B and switch S are connected in series. Voltmeters V_{L} and V_{R} are connected across Land R respectively. When switch is closed:
(A) The initial reading in V_{L} will be greater than in V_{R}.
(B) The initial reading in V_{L} will be lesser than V_{R}.
(C) The initial readings in V_{L} and V_{R} will be the same.
(D) The reading in V_{L} will be decreasing as time increases.
[JEE'93, 2]
Q. 3 Two parallel vertical metallic rails $A B \& C D$ are separated by 1 m . They are connected at the two ends by resistance $R_{1} \& R_{2}$ as shown in the figure. A horizontally metallic bar L of mass 0.2 kg slides without friction, vertically down the rails under the action of gravity. There is a uniform horizontal magnetic field of 0.6 T perpendicular to the plane of the rails, it is observed that when the terminal velocity is attained, the power dissipated in $R_{1} \& R_{2}$ are $0.76 \mathrm{~W} \&$ 1.2 W respectively. Find the terminal velocity of bar L \& value $\mathrm{R}_{1} \& \mathrm{R}_{2}$.
[JEE '94, 6]
Q. 4 Two different coils have self inductance 8 mH and 2 mH . The current in one coil is increased at a constant rate. The current in the second coild is also increased at the same constant. At a certain instant of time, the power given to the two coils is the same. At that time the current, the induced voltage and the energy stored in the first coil are $\mathrm{I}_{1}, \mathrm{~V}_{1}$ and W_{1} respectively. Corresponding values for the second coil at the same instant are $\mathrm{I}_{2}, \mathrm{v}_{2}$ and W_{2} respectively. Then:
[JEE'94, 2]
(A) $\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{1}{4}$
(B) $\frac{I_{1}}{I_{2}}=4$
(C) $\frac{\mathrm{W}_{2}}{\mathrm{~W}_{1}}=4$
(D) $\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{1}{4}$
Q. 5 A metal rod OA of mass m \& length r is kept rotating with a constant angular speed ω in a vertical plane about a horizontal axis at the end O . The free end A is arranged to slide without friction along a fixed conducting circular ring in the same plane as that of rotation. A uniform \& constant magnetic induction $\overrightarrow{\mathrm{B}}$ is applied perpendicular \& into the plane of rotation as shown in figure. An inductor L and an external resistance R are connected through a switch S between the point $\mathrm{O} \&$ a point C on the ring to form an electrical circuit. Neglect the resistance of the ring and the rod. Initially, the switch is open.

(a) What is the induced emf across the terminals of the switch ?
(b) (i) Obtain an expression for the current as a function of time after switch S is closed.
(ii) Obtain the time dependence of the torque required to maintain the constant angular speed, giventhat the rod OA was along the positive X -axis at $\mathrm{t}=0$.
[JEE '95, 10]

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Q. 6 A solenoid has an inductance of 10 Henry \& a resistance of 2Ω. It is connected to a 10 volt battery. How long will it take for the magnetic energy to reach $1 / 4$ of its maximum value ?
[JEE '96, 3]
Q. 7 Select the correct alternative.

A thin semicircular conducting ring of radius R is falling with its plane vertical in a horizontal magnetic induction \vec{B}. At the position MNQ the speed of the ring is v \& the potential difference developed across the ring is :

7
$\underset{\sim}{0}$
$\widetilde{\sim}$
$\underset{\sim}{0}$
(A) zero
(B) $\frac{\operatorname{Bv} \pi R^{2}}{2} \& M$ is at higher potential
(C) $\pi \mathrm{RBV} \& \mathrm{Q}$ is at higher potential
(D) $2 \mathrm{RBV} \& \mathrm{Q}$ is at higher potential
[JEE'96, 2]
Q. 8 Fill in the blank.

A metallic block carrying current I is subjected to a uniform magnetic induction $B \hat{j}$. The moving charges experience a force \vec{F} given by \qquad which results in the lowering of the potential of the face \qquad . [assume the speed of the carrier to be v]
[JEE '96, 2]

Q. 9 A pair of parallel horizontal conducting rails of negligible resistance shorted at one end is fixed on a table. The distance between the rails is L. A conducting massless rod of resistance R can slide on the rails frictionlessly. The rod is tied to a massless string which passes over a pulley fixed to the edge of the table. A mass m, tied to the other end of the string hangs vertically. Aconstant magnetic field B exists perpendicular to the table. If the system is released from rest, calculate:
(i) the terminal velocity achieved by the rod.
(ii) the acceleration of the mass at the instant when the velocity of the rod is half the terminal velocity.
[JEE '97, 5]
Q. 10 Acurrent $i=3.36(1+2 \mathrm{t}) \times 10^{-2}$ Aincreases at a steady rate in a long straight wire. A small circular loop of radius $10^{-3} \mathrm{~m}$ is in the plane of the wire \& is placed at a distance of 1 m from the wire. The resistance $\frac{\mathcal{E}}{}$ of the loop is $8.4 \times 10^{-2} \Omega$. Find the magnitude \& the direction of the induced current in the loop.
[REE '98, 5]
Q. 11 Select the correct alternative(s).
[JEE ' $98,3 \times 2=6,4 \times 2=8$]
(i) The SI unit of inductance, the Henry, can be written as :
(A) weber/ampere
(B) volt-second/ampere
(C) joule/(ampere) ${ }^{2}$
(D) ohm-second
(ii) A small square loop of wire of side l is placed inside a large square loop of wire of side $L(L \gg l)$. The loop are co-planar \& their centres coincide. The mutual inductance of the system is proportional to :
(A) $\frac{\ell}{\mathrm{L}}$
(B) $\frac{\ell^{2}}{\mathrm{~L}}$
(C) $\frac{L}{\ell}$
(D) $\frac{\mathrm{L}^{2}}{\ell}$
(iii) A metal rod moves at a constant velocity in a direction perpendicular to its length. A constant, uniform magnetic field exists in space in a direction perpendicular to the rod as well as its velocity. Select the correct statement(s) from the following
(A) the entire rod is at the same electric potential
(B) there is an electric field in the rod
(C) the electric potential is highest at the centre of the rod \& decreases towards its ends
(D) the electric potential is lowest at the centre of the rod \& increases towards its ends.
(iv) An inductor of inductance 2.0 mH , is connected across a charged capacitor of capacitance $5.0 \mu \mathrm{~F}$, and the resulting LC circuit is set oscillating at its natural frequency. Let Q denote the instantaneouscharge on the capacitor, and I the current in the circuit .It is found that the maximum value of Q is $200 \mu \mathrm{C}$.
(a) when $\mathrm{Q}=100 \mu \mathrm{C}$, what is the value of $|\mathrm{dI} / \mathrm{dt}|$?
(b) when $\mathrm{Q}=200 \mu \mathrm{C}$, what is the value ofI ?
(c) Find the maximum value of I.
(d) when I is equal to one half its maximum value, what is the value of $|\mathrm{Q}|$
Q. 12 Two identical circular loops of metal wire are lying on a table without touching each other. Loop-A carries a current which increases with time. In response, the loop-B
[JEE '99]
(A) remains stationary
(B) is attracted by the loop-A
(C) is repelled by the loop-A
(D) rotates about its CM , with CM fixed
Q. 13 A coil of inductance 8.4 mH and resistance 6Ω is connected to a 12 V battery. The current in the coil is 1.0 A at approximately the time
(A) 500 s
(B) 20 s
(C) 35 ms
(D) 1 ms [JEE '99]
Q. 14 A circular loop of radius R, carrying current I, lies in $x-y$ plane with its centre at origin. The total magnetic flux through x-y plane is
(A) directly proportional to I
(B) directly proportional to R
(C) directly proportional to R^{2}
(D) zero
Q. 15 A magnetic field $\mathrm{B}=\left(\mathrm{B}_{0} \mathrm{y} / a\right) \hat{\mathrm{k}}$ is into the plane of paper in the +z direction. B_{0} and a are positive constants. A square loop EFGH of side a , mass m and resistance R , in x -y plane, starts falling under the influence of gravity. Note the directions of x and y axes in the figure. Find
(a) the induced current in the loop and indicate its direction,
(b) the total Lorentz force acting on the loop and indicate its direction,
(c) an expression for the speed of the loop, $\mathcal{v}(t)$ and its terminal value.
[JEE '99]
Q. 16 Two circular coils can be arranged in any of the three situations shown in the figure. Their mutualinductance will be
(A) maximumin situation (a)
(B) maximum in situation (b)
(C) maximum in situation (c)

(D) the same in all situations
Q. 17 An inductor of inductance $\mathrm{L}=400 \mathrm{mH}$ and resistors of resistances $R_{1}=2 \Omega$ and $R_{2}=2 \Omega$ are connected to a battery of e.m.f. $\mathrm{E}=12 \mathrm{~V}$ as shown in the figure. The internal resistance of the battery is negligible. The switch S is closed at time $\mathrm{t}=0$. What is the potential drop across Las a function of time? After the steady state is reached, the switch is opened. What is the direction and the magnitude of current through R_{1} as a function of time? [JEE '2001]

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

Q. 18 As shown in the figure, P and Q are two coaxial conducting loops separated by some distance. When the switch S is closed, a clockwise current I_{P} flows in P (as seen by E) and an induced current $\mathrm{I}_{\mathrm{Q} 1}$ flows in Q . The switch remains closed for a long time. When S is opened, a current $\mathrm{I}_{\mathrm{Q} 2}$
flows in Q . Then the directions of $\mathrm{I}_{\mathrm{Q} 1}$ adn $\mathrm{I}_{\mathrm{Q} 2}$ (as seen by E) are:
(A) respectively clockwise and anti-clockwise
(B) both clockwise
(C) both anti-clockwise
(D) respectively anti-clockwise and clockwise

[JEE 2002(Scr), 3]
Q. 19 A short -circuited coil is placed in a time varying magnetic field. Electrical power is dissipated due to the current induced in the coil. If the number of turns were to be quadrupled and the wire radius halved, the electrical power dissipated would be
[JEE 2002(Scr), 3]
(A) halved
(B) the same
(C) doubled
(D) quadrupled
Q. 20 A square loop of side 'a' with a capacitor of capacitance C is located between two current carrying long parallel wires as shown. The value of I in the is given as $\mathrm{I}=\mathrm{I}_{0} \sin \omega \mathrm{t}$.
(a) calculate maximum current in the square loop.
(b) Draw a graph between charge on the lower plate of the capacitor v / s time.

Q. 21 The variation of induced emf (ε) with time (t) in a coil if a short bar magnet is moved along its axis with a constant velocity is best represented as
[JEE 2003]
(A)

(B)

(C)

(D)

Q. 23 An infinitely long cylindrical conducting rod is kept along $+Z$ direction. A constant magnetic field is also present in $+Z$ direction. Then current induced will be
(A) 0
(B) along $+z$ direction
(C) along clockwise as seen from +Z
(D) along anticlockwise as seen from $+Z$
[JEE' 2005 (Scr)]
Q. 24 A long solenoid of radius a and number of turns per unit length n is enclosed by cylindrical shell of radius R, thickness $d(d \ll R)$ and length L. A variable current $i=i_{0} \sin \omega t$ flows through the coil. If the resistivity of the material of cylindrical shell is ρ, find the induced current in the shell.
[JEE 2005]

Q. 25 In the given diagram, a line of force of a particular force field is shown. Out of the following options, it can never represent
(A) an electrostatic field
(B) a magnetostatic field
(C) a gravitational field of a mass at rest

[JEE 2006]

Comprehension -I

The capacitor of capacitance C can be charged (with the help of a resistance R) by a voltage source V, by closing switch S_{1} while keeping switch S_{2} open. The capacitor can be connected in series with an inductor ' L ' by closing switch S_{2} and opening S_{1}.

Q. 26 Initially, the capacitor was uncharged. Now, switch S_{1} is closed and S_{2} is kept open. If time constant of this circuit is τ, then
(A) after time interval τ, charge on the capacitor is $\mathrm{CV} / 2$
(B) after time interval 2τ, charge on the capacitor is $\mathrm{CV}\left(1-\mathrm{e}^{-2}\right)$
(C) the work done by the voltage source will be half of the heat dissipated when the capacitor is fully charged.
(D) after time interval 2τ, charge on the capacitor is $\mathrm{CV}\left(1-\mathrm{e}^{-1}\right)$
[JEE 2006]
Q. 27 After the capacitor gets fully charged, S_{1} is opened and S_{2} is closed so that the inductor is connected in series with the capacitor. Then,
(A) at $t=0$, energy stored in the circuit is purely in the form of magnetic energy
(B) at any time $\mathrm{t}>0$, current in the circuit is in the same direction
(C) at $\mathrm{t}>0$, there is no exchange of energy between the inductor and capacitor
(D) at any time $t>0$, instantaneous current in the circuit may $V \sqrt{\frac{C}{L}}$
[JEE 2006]
Q. 28 If the total charge stored in the $L C$ circuit is Q_{0}, then for $t \geq 0$
(A) the charge on the capacitor is $\mathrm{Q}=\mathrm{Q}_{0} \cos \left(\frac{\pi}{2}+\frac{\mathrm{t}}{\sqrt{\mathrm{LC}}}\right)$
(B) the charge on the capacitor is $\mathrm{Q}=\mathrm{Q}_{0} \cos \left(\frac{\pi}{2}-\frac{\mathrm{t}}{\sqrt{\mathrm{LC}}}\right)$
(C) the charge on the capacitor is $\mathrm{Q}=-\mathrm{LC} \frac{\mathrm{d}^{2} \mathrm{Q}}{\mathrm{dt}^{2}}$
(D) the charge on the capacitor is $\mathrm{Q}=-\frac{1}{\sqrt{\mathrm{LC}}} \frac{\mathrm{d}^{2} \mathrm{Q}}{\mathrm{dt}^{2}}$
[JEE 2006]
Q. 29 Match the following Columns

Column 1

(A) Dielectric ring uniformly charged
(B) Dielectric ring uniformly charged rotating with angular velocity .
(C) Constant current i_{0} in ring
(D) Current $\mathrm{i}=\mathrm{i}_{0} \cos \omega \mathrm{t}$ in ring

Column 2

(P) Time independent electrostatic field out of system
(Q) Magnetic field
(R) Induced electric field
(S) Magnetic moment
[JEE 2006]

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com ANSWER KEY

