EXERCISE-1

-

con	SECTI	ON (A) : ELASTIC BEHAVIOUR LONGITUDINAL STRESS, YOUNG MODULUS					
lag.	A 1.	Why are springs made of steel and not of copper ?					
Suh	A 2.	Explain why steel is more elastic than rubber?					
thsBy	A 3.	A cable is cut to half its original length. Why this change has no effect on the maximum load the cable can support?					
w.Ma	A 4.	A steel wire is stretched by a weight of 400 N. If the radius of the wire is doubled, how will Young's modulus of the wire be affected?					
MM M	A 5. A heavy wire is suspended from the roof but no weight is attached to its lower end. Is it under stress?						
E S	A 6.	What causes the restoring stress when a wire is (i) stretched and (ii) compressed?					
s.co	A 7.	In the figure shown the strain versus stress graph for two values of young's modulus?					
Classe		 (i) which material is more ductile ? Explain. (ii) Which material is more brittle? Explain. (iii) Which material is stronger? Explain. 					
eko	A 8.	The stress required to double the length of a wire of Young's modulus Y is					
: www.T	A 9.	A wire of length 1 meter and area of cross-section 4×10^{-8} m ² increases in length by 0.2 cm when a force of $\frac{1}{16}$ N is applied. The average distance between the atoms of the material of the wire is $\frac{1}{16} \times 10^{-10}$ m. If the wire be assumed as made up of m rows of atoms and each row contains n atoms, then of calculate :					
site		(ii) value of n and m for the wire (iv) average increase in the distance between the atoms.					
m web	A 10.	A mass of 5.0 kg is hung from a copper wire of 5 mm diameter and 2 m in length. Calculate the extension \vec{r} produced. What should be the minimum diameter of the wire so that its elastic limit is not exceeded? Elastic \vec{r} limit for copper =1.5 × 10 ⁹ dyne cm ⁻² , Y for copper = 1.1 × 10 ¹² dyne cm ⁻² .					
e fro	A 11.	If a compressive force of 3.0×10^4 N is exerted on the end of 20 cm long bone of cross-sectional area $\frac{2}{3.6}$ cm ² ,					
sage		(a) will the bone break and (b) if not, by how much does it shorten?					
ach		Given, compressive strength of bone = 7.7×10^8 Nm ⁻² and Young's modulus of bone = 1.5×10^{10} Nm ⁻²					
udy F	A 12.	A wire loaded by a weight of density 7.6 g cm ⁻³ is found to measure 90 cm. On immersing the weight in water, of the length decreased by 0.18 cm. Find the original length of wire.					
load St	A 13.	Two exactly similar wires of steel and copper are stretched by equal force. If the difference in their elongation $\sqrt[6]{0}$ is 0.5 cm, find by how much each wire is elongated. Given Young's modulus for steel = 2×10^{12} dyne cm ⁻² $\sqrt[6]{0}$ and for copper 12 × 10 ¹¹ dyne cm ⁻² .					
Down	A 14.	A mass of metal of volume 500 cm ³ hangs on the end of a wire whose upper end is rigidly fixed. When the $\frac{Q}{\Phi}$ metal is completely immersed in water, the length of the wire decreases by 1 mm. Find the length of the wire. $\stackrel{Q}{\vdash}$ Given diameter of wire = 0.4 mm, Young's modulus = 7 × 10 ¹¹ dyne cm ⁻² and g = 980 cm s ⁻² .					
FREE	A 15. A 16.	A simple pendulum is made by attaching a 1 kg bob to a 5 m long copper wire of diameter 0.08 cm and it has a certain period of oscillation. Now a 10 kg bob is suspended instead of 1 kg bob. Calculate the change in the time period, if any. Y for copper is 12.4×10^{10} Nm ⁻² . [REE - 88] A steel wire of length 2 m and diameter 0.8 mm is fastened between two points horizontally. When a weight					

W is suspended from its middle-point, it is depressed by 1.0 cm. Calaculate the value of W, Y for steel = 2.0×10^{11} N m⁻².

A 17. Each of the three blocks P, Q and R shown in figure has a mass of 3 kg. Each of the wires A and B has cross-sectional area 0.005 cm² and Young's modulus 2 × 10¹¹ N/m². Neglect friction. Find the longitudinal strain developed in each of the wires. Take $g = 10 \text{ m/s}^2$.

0

Bhopal

Sir), I

Ľ.

È

Ś

B1. Do liquid possess rigidity?

MODULUS

- B 2.
- The upper face of a cube of edge 1 m moves through a distance of 1mm relative to the lower fixed surface $\frac{1}{5}$ under the action of a tangential force of 1.5×10^8 N. Calculate the tangential stress strain and the of rigidity. В3. under the action of a tangential force of 1.5×10^8 N. Calculate the tangential stress, strain and the modulus % of rigidity.
- B4. Two long metallic strips are joined together by two rivet each of radius 2.0 mm (Figure). Each rivet can withstand a maximum shearing stress of 1.5×10^9 Pa. What is the maximum tensile force that the strip can exert, assuming each rivet shares the stretching load equally?
- 903 7779, A bar of cross-section A is subjected to equal and opposite tensile forces F at its ends. Consider a plane of cross-section A is subjected to equal and opposite tensile forces F at its ends. Consider a plane of cross-section A is subjected to equal and opposite tensile forces F at its ends. Consider a plane of cross-section A is subjected to equal and opposite tensile forces F at its ends. Consider a plane of cross-section A is subjected to equal and opposite tensile forces F at its ends. Consider a plane of cross-section A is subjected to equal and opposite tensile forces F at its ends. Consider a plane of cross-section A is subjected to equal and opposite tensile forces F at its ends. Consider a plane of cross-section A is subjected to equal and opposite tensile forces F at its ends. Consider a plane of cross-section A is subjected to equal and opposite tensile forces F at its ends. Consider a plane of cross-section A is subjected to equal and opposite tensile forces F at its ends. Consider a plane of cross-section A is subjected to equal and opposite tensile forces F at its ends. Consider a plane of cross-section A is subjected to equal and opposite tensile forces F at its ends. Consider a plane of cross-section A is subjected to equal and opposite tensile forces F at its ends. B 5. Phone: 0

(a) What is the tensile stress at this plane in terms of F, A and θ ?

- (b) What is the shearing stress at the plane, in terms of F, A and θ ?
- (c) For what value of θ is the tensile stress a maximum ?
- (d) For what value of θ is the shearing stress a maximum?

Teko Classes, Maths : Suhag R. Kariya SECTION (C) : PRESSURE AND VOLUMETRIC STRAIN, BULK MODULUS OF ELASTICITY C 1. Answer the following questions. (i) What is the value of bulk modulus for perfectly rigid body (ii) What is the value of bulk modulus for an incompressible liquid ? (iii) What is the value of modulus of rigidity for a liquid ? (iv) How does Young's modulus change with rise in temperature ? C 2. If for a metal, $Y = 6.6 \times 10^{10}$ N/m² and Bulk modulus K = 11 × 10¹⁰ N/m², Poisson's ratio will be C 3. elastic than air. Water is C 4. Bulk modulus for an incompressible liquid is C 5. The bulk modulus of rubber is 9.8 × 10⁸ N/m². When a rubber ball is taken at depth about 100 m in lake of water its volume is decreased by 0.1 %. State true or false. C 6. A solid sphere of radius 10 cm is subjected to a uniform pressure equal to 5 x 10⁸ Nm⁻². Calculate the change in volume. Bulk modulus of the material of the sphere is 3.14 x 10¹¹ Nm⁻². C 7.

What will be the change in the radius of an air bubble of radius 1 cm, when it is well within a mercury trough at a depth of 1 m? Given that the compressibility of the mercury is 3.7 x 10⁻¹¹ N⁻¹ m² and density of mercury is 13.6 g cm⁻³.

A spherical ball contracts in volume by 0.0098% when it is subjected to a pressure of 100 atmosphere. C 8. Calculate its bulk modulus.

SECTION (D) : ELASTIC POTENTIAL ENERGY

- D 1. What will happen to the potential energy of the atoms of a solid when compressed? On stretching a wire ?
- 5 A wire of length L and cross-sectional area A is made of a material of Young's modulus Y. If the wire is or stretched by an amount x, the work done is ______. D 2.
 - D 3. Energy stored per unit volume in a strained body is
 - 98930 5888 D4. A metal rod of Young's modulus 2 × 10¹⁰ N m⁻², undergoes an elastic strain of 0.06%. The energy stores pe unit volume is 7200 J/m³. State true or false.
- D 5. Calculate the increase in energy of a brass bar of length 0.2 m and cross-sectional area 1 cm² when compressed with a load of 5 kg-weight along its length. 0 (Young's modulus of brass = 1.0×10^{11} N/m² and g = 9.8 m/s²).
- 7779, D 6. What work can be performed by a steel rod with a length ℓ and a cross-sectional area A when heated by degrees ? α and E are the coefficient of linear expansion and modulus of elasticity respectively. 903
- When the load on a wire increased slowly from 2 kg wt. to 4 kg wt., the elongation increases from 0.6 mm to mo D7. Phone: 0

SECTION (E) : VISCOSITY

- E1. Machine parts are jammed in winter. Explain why ?
- E 2. Small air bubbles rise slower than the bigger ones through a liquid. Explain why?
- Bhopal A flask contains glycerine and the other one contains water. Both are stirred rapidly and kept on the table. In E 3. which flask will the liquid come to rest earlier than the other one and why ? Sir), ¹
- E4. Why do clouds float in the sky ?
- E 5. Why is viscosity called internal friction?
- E 6. Why a hot liquid moves faster than a cold liquid?
- (v) E7. A spherical ball of radius 3.0×10^{-4} m and density 10^4 kg/m³ falls freely under gravity through a distance h we before entering a tank of water. If after entering the water the velocity of the ball does not change, find h. Uscosity of water is 9.8×10^{-6} N-s/m². A spherical ball of radius 3.0 × 10⁻⁴ m and density 10⁴ kg/m³ falls freely under gravity through a distance h

Ľ. сċ

- сċ E 8. Eight rain drops of radius one mm each falling down with a terminal velocity of 5 cm s⁻¹ coalesec to form a hag bigger drop. Calculate the terminal velocity of the bigger drop.
- A ball bearing of radius of 1.5 mm made of iron of density 7.85 g cm⁻³ is allowed to fall through a long column of E 9. of glycerine of density 1.25 g cm⁻³. It is found to attain a terminal velocity of 2.25 cm s⁻¹. Determine the S viscosity of glycerine in centipoise. Mat
- E 10. An air bubble of 1 cm radius is rising at a steady rate of 0.5 cm s⁻¹ through a liquid of density 0.8 g cm⁻¹ Calculate the coefficient of viscosity of the liquid. Neglect the density of air.
- Classes, E 11. Calculate the terminal velocity with which an air bubble of diameter 0.8 mm will rise in a liquid of viscosit 10.5 poise and specific gravity 0.9. Teko

E					
g.c	SECTI	ON (A) : ELASTIC E	BEHAVIOUR LONGIT	UDINAL STRESS, Y	OUNG MODULUS
ha	A 1.	The Young's modulus o to $1/2$ and $r/2$ then its	f a wire of length L and r Young's modulus will b	adius r is = Y N/m². If the م	e length and radius are reduced
Su		(A) Y/2	(B) Y	(C) 2 Y	(D) 4
Š		Y			
ЗE	A 2.	The graph is drawn be	ween the applied force	F and the strain (x) for	a thin $\uparrow a$
ath		uniform wire. The wire	behaves as a liquid in th	ne part :	
Ĩ		(A) ab	(B) bc		
Š		(C) cd	(D) oa		
Ş	A 2	An Indian rubbar aard I	matra lang and area of	araaa aaatian 'a' matra?	80 00 00 00 00 00 00 00 00 00 00 00 00 0
Ś	А Ј.	of rubber is D kg/metre	3 and Young's modulus	of rubber is E newton/ n	netre ² . If the wire extends by $\ell \circ$
Ε		metre under its own we	eight, then extension ℓ	is :	۰
S		(A) L ² Dg/E	(B) L ² Dg/2E	(C) L ² Dg/4E	(D) L T^2
S.	Δ 4	The graph shown was o	htained from experimen	ital measurements of the	
SSE		of oscillations T for dif	ferent masses M placed	d in the scale pan on the	e lower of
<u>a</u>		end of the spring bala	nce. The most likely re	eason for the line not p	bassing $0 \rightarrow M$ \hat{O}
S		through the origin is th	at the .		•
<u>X</u>		(A) Spring did not obey	Hooke's Law	(B) Amplitude of the os	scillations was too large
Ļ.		(C) Clock used needed	regulating	(D) Mass of the pan wa	as neglected
Ş	A 5.	A force F is needed to b	reak a copper wire havi	ng radius R. The force n	eeded to break a copper wire of लु
¥		radius 2 R will be :			
		(A) 172	(b) 21	(0) 41	
site	A 6.	The diameter of a brass	s rod is 4 mm and Young	's modulus of brass is 9	× 10^{10} N/m ² . The force required $\overline{\overline{O}}$
ğ		to stretch by 0.1% of II (A) 360 π N	s length is : (B) 36 N	(C) $144 \pi \times 10^3 \text{ N}$	(D) $36 \pi \times 10^5 \text{ N}$
Ň				(-)	
Ε	Α7.	To break a wire, a force	of 10 ⁶ N/m ² is required	I. If the density of the magnetic structure is the magnetic structure in the structure is the structure i	Iterial is 3×10^3 kg/m ³ , then the $\frac{3}{2}$
fro		(A) 34 m	(B) 30 m	(C) 300 m	(D) 3 m
g	A 0	A red (Veure's medulu	-7 109 N/m ² has a	breaking strain of 0.00/	The minimum errors continued of
ğ	A 8.	area of the rod in order	$s = 7 \times 10^{\circ} \text{ N/m}^2$ has a to support a load of 10	⁴ newtons is :	. The minimum cross sectional 🖵
g		(A) 1 × 10 ⁻² m ²	(B) 1.4 × 10 ^{−3} m ²	(C) 3.5 × 10 ⁻³ m ²	(D) $7.1 \times 10^{-4} \text{ m}^2$
Ц	Δ9	In steel the Young's mo	dulus and the strain at th	e breaking point are 2 × .	10^{11} Nm ⁻² and 0 15 respectively \sim
ð	A V.	The stress at the break	ing point for steel is the	erefore	
ŝtu		(A) 1.33 × 10 ¹¹ Nm ⁻²	(B) 1.33 × 10 ¹² Nm ⁻²	(C) 7.5 × 10 ⁻¹³ Nm ⁻²	(D) $3 \times 10^{10} \text{ Nm}^{-2}$
5	A 10.	Which of the following	statements is correct :		ses
)a((A) Hooke's law is appl	icable only within elasti	ic limit	Jas
nlc		(B) The adiabatic and is (C) Young's modulus is	othermal elastic consta dimensionless	ints (Bulk Modulus) of a	gas are equal at same pressure O
Š		(D) Stress multiplied by	y strain is equal to the s	tored energy	Ť H
ŏ	۸ 11	The force required to	stratable staal wire of	1 om ² proce position to	1.1 times its length would be
Ш	A 11.	$(Y = 2 \times 10^{11} \text{ Nm}^{-2})$	Sireton a Steel Wire Of	T GHT Cross-section to	i.i times its length would be
H		(A) 2 × 10 ⁶ N	(B) 2 × 10 ³ N	(C) 2 × 10 ⁻⁶ N	(D) $2 \times 10^{-7} \text{ N}$
LL_					

	GetS	Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com									
E	A 12.	Which one of the following substances possesses the highest elasticity :(A) Rubber(B) Glass(C) Steel(D) Copper									
hag.co	A 13.	Which one of the following quantities does not have the unit of force per unit area :(A) Stress(B) Strain(C) Young's modulus of elasticity(D) Pressure									
MathsBySu	A 14.	A copper wire and a steel wire of the same diameter and length are connected end to end and a force is applied, which stretches their combined length by 1 cm. The two wires will have : (A) Different stresses and strains (B) The same stress and strain (C) The same strain but different stresses (D) The same stress but different strains									
l & www.l	A 15.	A steel rod with a cross section $A = 1 \text{ cm}^2$ is tightly fitted between two stationary absolutely rigid walls. Force $\stackrel{\text{CO}}{\text{F}}$ will the rod act with on the walls if it is heated by $\Delta t = 5^{\circ}$ C will be : (The coefficient of linear thermal expansion of steel $\alpha = 1.1 \times 10^{-5} \text{ deg}^{-1}$ and its modulus of elasticity $E = 2 \times 10^5 \text{ N/mm}^2$) (A) 1200 N (B) 1100 N (C) 550 N (D) 2200 N									
ses.com	A 16.	Two blocks of masses 1 Kg and 2 Kg are connected by a metal wire going over a smooth pulley as shown in figure. The breaking stress of the metal is 2×10^9 N/m ² . What should be the minimum radius of the wire used if it is not to break ? Take g = 10 m/s ² .									
asc		(A) 4.6×10^{-4} m (B) 4.6×10^{-5} m (C) 3.6×10^{-5} m (D) 3.6×10^{-4} m ^{2Ng}									
w.TekoCl	A 17.	A thin uniform metallic rod of length 0.5 m rotates with an angular velocity 400 rad/s in a horizontal plane 0: about a vertical axis passing through one of its ends. The elongation of the rod will be : (The density of the material of the rod is 10^4 kg/m ³ and the Young's modulus is 2×10^{11} N/m ²) (A) 3.33×10^{-4} m (B) 3.33×10^{-5} m (C) 3.33×10^{-6} m									
bsite: ww	A 18.	A steel rod of cross-sectional area 16 cm ² and two brass rods each of cross sectional area 10cm ² together support a load of 5000 kg as shown in figure. The stress in steel rod will be : (Take Y for steel = 2.0×10^6 kg/cm ² and for brass = 1.0×10^6 kg/cm ²)									
We		(A) $161.2 \frac{r_9}{cm^2}$ (B) $151.4 \frac{r_9}{cm^2}$ (C) $131.4 \frac{r_9}{cm^2}$ (D) None of these									
ge from	A 19.	A copper wire and a steel wire of the same diameter and length 1m and 2m respectively are connected end metric to end and a force is applied which stretches their combined length by 1cm. How much each wire is elon- gated respectively. Y of copper = 1.2×10^{10} Nm ⁻² and Y of steel = 2.0×10^{10} Nm ⁻² . (A) 0.45 cm, 0.55 cm (B) 0.55 cm, 0.45 cm (C) 0.045 cm, 0.55 cm (D) 0.45 cm, 0.055 cm									
y Packa	A 20.	Four wires of the same material are stretched by the same load. The dimension of the wires are as given below. The one which has the maximum elongation is of (A) diameter 1 mm and length 1 m (B) diameter 2 mm and length 2 m (C) diameter 0.5 mm and length 0.5 m (D) diameter 3 mm and length 3 m (E)									
ad Study	A 21.	Four wires of different material but the same area of cross-section are loaded by the same force. Their tengths and elongations are as follows. The one whose material's Young's modulus is the largest is (A) $L = 2m$, $1 = 1 mm$ (B) $L = 1 m$, $1 = 0.25 mm$ (C) $L = 1.5 m$, $1 = 0.5 mm$ (D) $L = 2.5 m$, $1 = 1.5 mm$									
Downlo	A 22.	A steel wire of length 2.0 m and cross-sectional area 1×10^{-6} m ² is held between two rigid supports with a \bigcirc tension 200N. If the wire is pulled 5 mm in the direction perpendicular to the wire, the change in the tension of the wire is (Y = 2 × 10 ¹¹ N/m ²) (A) 5.2 N (B) 0.25 N (C) 5.0 N (D) 2.5 N									
FREE [A 23.	A brass rod of length 2 m and cross-sectional area 2.0 cm ² is attached end to end to a steel rod of length L and cross-sectional area 1.0 cm ² . The compound rod is subjected to equal and opposite pulls of magnitude 5×10^4 N at its ends. If the elongations of the two rods are equal, the length of the steel rod (L) is									

	Get S	Solution of These Pa	ww.MathsBySuhag.com			
		$(Y_{Brass} = 1.0 \times 10^{11} \text{ N/m}^2)$	and $Y_{\text{Steel}} = 2.0 \times 10^{11} \text{ N/}$	(m²)		
	Δ 24	(A) 1.5 m A vertical wire 5 m long	(B) 1.8 M and 0.0080 cm² cross-	(C) 1 m section has $V = 2 \times 10^{11}$	(D) 2 m N/m ² An object weighing 2kg is	2
E	~ 27.	fastened to its end and	stretches the wire elastica	ally. If the object is now p	ulled down a little and released, i	t
8		undergoes vertical SHM	1. Its period of vibration is	, , , ,		
ġ.		(A) 0.2 s	(B) 0.05 s	(C) 0.1 s	(D) 1.0 s	
าล	A 95	A uniform stool bor of or	and anotional area A and	longth Lip guenonded as	that it hange vertically. The street	
5ul	A 29.	at the middle point of th	the bar is (o is the density)	of steel)	that it hangs vertically. The stress	2,
Š						age
ũ		(A) $\frac{L}{2L}\rho g$	(B) $\frac{L\rho g}{\rho}$	(C) $\frac{LA}{aa}$	(D) L ρ g	d
ų.		2A -	2	() pg		
at at	A 26*.	An elastic rod will chan	ge its length when it :			81.
≥.		(A) slides on a rough su	rface (B) rota	ates about an axis at one	end y	88
₹		(C) fails vertically under		bulled along its length by	a force acting	0
Ş						393
á	A 27*.	A student performs an ex	periment for the determin	nation of Young's modulus	of the material o	õ
		of a wire. He obtains the	e following graph (figure)	from his readings. The q	juantities on X	0
ou		and t-axes may be resp	Declivery.			79,
0		(A) weight suspended a	and increase in length	(B) stress applied and s	train developed	77
es		(C) stress applied and in	ncrease in length	(D) strain produced and	weight suspended	03
SS	+				, <u>"</u> , "	ი ო
<u> </u>	A 28^.	The wires A and B show	n in the figure, are made	of the same material and	nave radii r _A and r _B .	90
Q		A block of mass in ky is		en a loice r is mg/s, one	of the whes breaks.	0
X		(A) A will break before E	$3 \text{ if } r_A < 2r_B$			ne
Ц		(B) A will break before E	$3 \text{ if } r_A = r_B$		↓ _F	ç
່ ຮ່		(C) Either A or B will bre	eak if $r_A = 2r_B$			Ľ.
Ş		(D) The lengths of A and	d B must be known to dec	cide which wire will break		pa
3	∆ 29*	When a wire is stretche	d to double its length			ЯЧС
		(A) strain is unity				<u>ب</u>
site		(B) stress is equal to Yo	oung's modulus of elastic	city		ŝ
ĝ		(C) its radius is halved				Υ.
₹ Q		(D) Young's modulus is	equal to twice the elastic	potential energy per unit	volume	с
	A 30.	An elevator cable is to	have a maximum stress	of 7×10^7 N/m ² to allow t	for appropriate safety factors. Its	ŝ
Ч		elevator the area of cro	reration is 1.5 m/s ² . If the pss-section of the cable sh	cable has to support the to	otal weight of 2000 kg of a loaded	i <u></u> , a
f		(A) 3.28 cm^2	(B) 2.38 cm ²	(C) 0.328 cm ²	(D) 8.23 cm ²	∕ar
g	Δ 31	Let Y and Y represent	t Youna's modulus for al	ass and rubber respectiv	velv. It is said that class is more	- E
ğ		elastic than rubber. The	refore, it follows			g (
ð		(A) $Y_{a} = Y_{r}$	(B) $\dot{Y}_{a} < Y_{r}$	(C) $Y_{q} > Y_{r}$	(D) $Y_{q} / Y_{r} = 0$	uhâ
a D	A 32.	A steel wire is suspende	ed vertically from a rigid s	support. When loaded wit	th a weight in air, it expands by L	S.
7		and when the weight is i	mmersed completely in v	water, the extension is rec	duced to L_w . Then relative density	h v
р		of the material of the we	eight is			٨at
Sti		L _a	L _w	La	L _w	ی ک
ð		(A) $\overline{L_a - L_w}$	(B) $\overline{L_a}$	(C) $\overline{L_w}$	(D) $\frac{1}{L_a - L_w}$	Se
)a	A 33.	A wire of cross-sectiona	I area A is stretched horiz	zontal between two clamp	bs located at a distance 2 ℓ metres	las
Ĕ		from each other. A weig	ht W kg is suspended fror	n the mid point of the wire	e. The strain produced in the wire	, 0
Ž		(if the vertical distance	through which the mid po	pint of the wire moves dov	$vn x < \ell$) will be	'e Ř
õ		(A) X ⁻ /ℓ ⁻	(Ď) ∠X ⁻ / ℓ ²	(∪) X ⁻ /∠ℓ [∠]	(IJ) X/∠ℓ	-
	A 34.	In above question, the	stress in the string is			
Ш						
Ĩ						

Get Solution of These Packages & Learn by	/ Video Tutorials on www.MathsBySuhag.com

_	В 3.	3. A 50 kg motor rests on four cylindrical rubber blocks. Each block has a height of 4 cm and a cross-s area of 16 cm ² . The shear modulus of rubber is 2 × 10 ⁶ N/m ² . A sideways force of 500 N is applie motor. The distance that the motor moves sideways is								
nag.con		(A) 0.156 cm	(B) 1.56 cm	(C) 0.312 cm	(D) 0.204 cm					
	B 4.	After the motor referred to in the above problem is disturbed, it is released to vibrate back and fourth. It frequency of vibration is								
Suh		(A) 26 Hz	(B) 21 Hz	(C) 13 Hz	(D) 18 Hz	e 26				
athsBy9	В 5.	A square brass plate of side 1.0 m and thickness 0.005 m is subjected to a force F on each of its edges, $\frac{1}{20}$ causing a displacement of 0.02 cm. If the shear modulus of brass is 0.4×10^{11} N/m ² , the value of the force F $\frac{10}{20}$ is								
		(A) 4×10^3 N	(B) 400 N	(C) 4×10^4 N	(D) 1000 N					
N.N	B 6.	A cube is subjected to strain is -	a uniform volume compr	ression. If the side of the	cube decreases by 2%, the bul	5888 5888				
\mathbf{x}		(A) 0.02	(B) 0.03	(C) 0.04	(D) 0.06	930				
~ ~	SECTI	ON (C) : PRESSU	RE AND VOLUMETRI	C STRAIN, BULK M	ODULUS OF ELASTICITY	0 98				
ses.com	UI.	(A) Density	(B) Volume	(C) Pressure	(D) Specific heat	79,				
	C 2.	The adiabatic elastic (A) $\gamma \times$ density	tity of a gas is equal to (B) γ× volume	(C) $\gamma \times$ pressure	(D) $\gamma \times$ specific heat	903 77				
oClas	C 3.	The only elastic mod (A) Young's modulus	lulus that applies to fluids (B) Shear modulus	s is : (C) Modulus of rigidity	(D) Bulk Modulus	: 0 903				
e: www.Tekc	C 4.	The compressibility of cubic centimeter of v (A)* 0.4 cc	of water is 4 × 10 ⁻⁵ per uni vater under a pressure of (B) 4 × 10 ⁻⁵ cc	t atmospheric pressure. 100 atmosphere will be (C) 0.025 cc	The decrease in volume of 10 : (D) 0.004 cc	al Phone				
	C 5.	If a rubber ball is take the water is 1×10^3 k (A) 10^8	en at the depth of 200 m i $(g/m^3 and g = 10 m/s^2, th)$ (B) 2 × 10 ⁸	n a pool its volume decr en the volume elasticity (C) 10 ⁹ (D) 2 >	eases by 0.1%. If the density of y in N/m ² will be : × 10 ⁹	ir), Bhopa				
websit	C 6.	The pressure required will be : (Coefficient of Nm ⁻² .)	to stop the increase in vol	ume of a copper block where $8.0 \times 10^{-6} \text{ C}^{-1}$ and bulk	then it is heated from 50° C to 70° C modulus of elasticity = $3.6 \times 10^{\circ}$ C	. R. К. S				
Ē	C 7.	(A) 2.73 × 10° Mill ²	(B) 3.73 × 10° Nill -	This means that	(D) 1.73 × 10° Mili -	/a (S				
e fro		al volume for each atmospher	e Kari							
ackag		(C) when water is (D) When water is 10 ⁻⁶ of its orig	essure subjected to an additional pr is subjected to an addition inal volume.	ressure of one atmosphere al pressure of one atmos	e, its volume decreases by 46.49 sphere, its volume is reduced to	בי ases by 46.4% מש is reduced to בי אולי				
study F	C 8.	A metal block is expervacuum chamber, the (A) 4×10^{-7}	riencing an atmospheric pr fractional change in its vo (B) 2 × 10 ⁻⁷	essure of 1×10^5 N/m ² , w lume is (the bulk modulus (C) 8 × 10 ⁻⁷	hen the same block is placed in a soft metal is $1.25 \times 10^{11} \text{ N/m}^2$) (D) 1×10^{-7}	, Maths .				
ad S	C 9.	The bulk modulus of w is	vater is 2.1×10^9 N/m ² . The	pressure required to incre	ease the density of water by 0.1 %	% asses				
		(A) 2.1 × 10 ³ N/m ²	(B) 2.1 × 10 ⁶ N/m ²	(C) 2.1 × 10 ⁵ N/m	(D) $2.1 \times 10^7 \text{ N/m}^2$	o Cla				
Jow	C 10.	The increase in press modulus of the liquid	sure required to decrease t = 2100 M P_a)	the 200 litres volume of a	a liquid by 0.004% in kP _a is (bul	Tek				
Ш	C 11	(A) 8.4 A solid sphere of radi	(B) 84 us r made of a material of	(C) 92.4 Foulk modulus K is surro	(D) 168 unded by a liquid in a cylindrice	al				
FRE	V 11.	container. A massless	piston of area 'a' floats on	the surface of the liquid.	When a mass m is placed on the	e				

	Get S	Solution of These Pa	ckages & Learn by \	Video Tutorials on www.MathsBySuhag.com				
		(A) Ka/mg	(B) Ka/3mg	ge in the radius of the spr (C) mg/3Ka	nere (dr/r) (D) mg/Ka			
.com	C 12.	The volume elasticity is (A) Solids only	possessed by : (B) Liquids only	(C) Gases only	(D) All the three states of matter			
ySuhag	C 13.	One litre of a gas is may volume becomes 900 cr $(A) 0.106 \text{ N m}^{-2} \text{ and } 0.1 (C) 106.62 \text{ N m}^{-2} \text{ and } 0.1$	aintained at pressure 72 m³. The values of stress a 1	cm of mercury. It is com and strain will be respectiv (B) 1.06 N m ⁻² and 0.1 (D) 10662.4 N m ⁻² and 0	pressed isothermally so that its vely :).1	age 27		
thsB	C 14.	The mean density of sea the surface of water to a	a water is p, and bulk mod a depth h is :	ulus is K. The change in d	lensity of sea water in going from	а		
v.Ma		(A) $\frac{\rho g h}{K}$	(B) Kpgh	(C) $\frac{\rho^2 gh}{K}$	(D) $\frac{K\rho^2}{gh}$	58881		
n & ww	SECTI D 1.	ON (D) : ELASTIC F If x longitudinal strain is the wire per unit volum (A) yx ²	POTENTIAL ENERGY s produced in a wire of Y e is : (B) 2 yx ²	Young's modulus y, then ((C) ½ y²x	energy stored in the material of (D) $\frac{1}{2}yx^2$, 0 98930		
ses.col	D 2.	A load of 31.4 kg is susp in temperature of wire if capacity of the material	ended from a wire of radi 75% of the work done is c of the wire are 9.8 × 10 ¹⁰	us 10^{-3} m and density 9 × onverted into heat will be N/m ² and 490 J/Kg K, res	10 ³ kg/m ³ . Calculate the change : (The Young's modulus and heat spectively)	903 7779		
las		(A) $\frac{1}{12}$ °C	(B) <u>1</u> 120 ^⁰ C	(C) $\frac{1}{90}$ °C	(D) $\frac{1}{9}$ °C	903		
TekoC	D 3.	If the potential energy stretched by 10 cm wil (A) V/25	of a spring is V on stre I be : (B) 5 V	etching it by 2 cm, then (C) V/5	its potential energy when it is (D) 25 V	hone: 0		
e: www.	 D 4*. A metal wire of length L is suspended vertically from a rigid support. When a bob of mass M is attal lower end of wire, the elongation of the wire is lower end of wi							
osit€		(C) The elastic potential	energy stored in the wire	e is <mark>1</mark> Mgℓ		K. Si		
wek		(D) Heat produced is $\frac{1}{2}$	Mgℓ			сі С		
from	D 5.	The workdone in increas will be $(Y = 2 \times 10^{11} \text{ Nm})$	sing the length of a one method r^{-2}):	etre long wire of cross-sec	ctional area 1 mm ² through 1 mm	ariya (\$		
ge	D 6.	(A) 0. I J If work done in stretchi	(B) 5 J ng a wire by 1mm is 2J,	the work necessary for s	(D) 250 J stretching another wire of same	ц. Х		
lcka		material, but with double (A) 1/4	e the radius and half the I (B) 4	ength by 1mm in joule is (C) 8	- (D) 16	uhag		
udy Pa	D 7.	Two wires of the same m ratio of potential energy (A) 1 : 1	aterial and length but diar per unit volume for the tv (B) 2 : 1	meter in the ratio 1 : 2 are vo wires when stretched v (C) 4 : 1	stretched by the same force. The will be : (D) 16 : 1	Aaths : S		
d Stl	D 8.	A steel rod of length L a heated through t ^o C. The	re of cross-section A, Yo e work that can be perforr	oung's modulus Y and line med by the rod when hea	ear coefficient of expansion α is ted as :	ses, N		
nloa		(A) $\frac{1}{2}$ (YA α t) × (1 α t)	(B) $(YA \alpha t) \times (1 \alpha t)$	(C) 2(YA a t) × (1 α t)	(D) $\frac{1}{2}$ (YA α t) × $\left(\frac{1}{2}\ell \alpha t\right)$	o Clas		
E Dow	D 9*.	A metal wire of length L such that F is always slig the wire is 1 :	area of cross-section A a ghtly greater than the elas	and Young's modulus Y is stic force of resistance in t	s stretched by a variable force F the wire. When the elongation of	Tek		
FRE		(A) the work done by F	is $\frac{YA^2}{L}$					

		(B) the work done by F is $\frac{YA\ell^2}{2L}$
5.		(C) the elastic potential energy stored in the wire is $\frac{YA\ell^2}{2I}$
aC		(D) heat is produced during the elongation
5	SECTI	ON (E) : VISCOSITY
n n n	E 1.	A metal plate 10 cm square rests on a 2 mm thick caster oil layer. Calculate the horizontal force needed to move the plate with speed 3 cm ⁻¹ s ⁻¹ will be (Coefficient of viscosity of caster oil is 15 poise.) (A) 2.25×10^{-2} (B) 2.25×10^{-1} (C) 2.25×10^{-3} (D) 2.25×10^{-4}
w.ועומנו	E 2.	A ball bearing of radius of 1.5 mm made of iron of density 7.85 g cm ⁻³ is allowed to fall through a long column \therefore of glycerine of density 1.25 g cm ⁻³ . It is found to attain a terminal velocity of 2.25 cm s ⁻¹ . The viscosity of $\bigotimes_{n=0}^{\infty}$ glycerine in centipoise will be:
2		(A) 14370.33 (B) 143.733 (C) 1437.33 (D) 17.33 O
2	E 3.	An oil drop falls through air with a terminal velocity of 5×10^{-4} m/s. (i) the radius of the drop will be : (A) 2.5×10^{-6} m (B) 2.10×10^{-6} m (C) 3.14×10^{-6} m (D) 4.18×10^{-6} m
5		Ŕ
ر د		(ii) the terminal velocity of a drop of half of this radius will be : (Viscosity of air = 1.8×10^{-5} N-s/m ² .
Ď		(A) 3.25×10^{-4} m/s (B) 2.10×10^{-4} m/s (C) 1.5×10^{-4} m/s (D) 1.25×10^{-4} m/s
201	E 4.	Viscosity of gases is :
5		(A) about hundred times less than those of liquids
Ş		(B) about twenty times less than those of liquids
D		(D) about ten hundred times less than those of liquids
>	E 5.	Viscosity of liquids :
~~~	$\langle$	(A) increases with increase in temperature (B) is independent of temperature (C) decreases with decrease in temperature (D) decreases with increase in temperature
ש	E 6.	A) directly proportional to the radius of the sphere
מו		(B) inversely proportional to the radius of the sphere
D D		(C) directly proportional to the square of the radius of sphere
>	E 7	The terminal velocity of a sphere moving through a medium is :
5	L /.	(A) directly proportional to viscosity
=		(B) inversely proportional to viscosity
ק		(C) directly proportional to the square of viscosity
کم ک	E 8.	A sphere is dropped gently into a medium of infinite extent. As the sphere falls, the force acting downwards
ש		on it
L >		(A) remains constant throughout (B) increases for sometime and then becomes constant
בי ז		(C) decreases for sometime and then becomes zero
วี		(D) increases for sometime and then decreases.
אכ	E 9.	Two hail stones with radii in the ratio of 1 : 2 fall from a great height through the atmosphere. Then the ratio &
2		(A) 1 : 1 (B) 1 : 4 (C) 1 : 16 (D) 1 : 32
	E 10.	A small spherical solid ball is dropped from a great height in a viscous liquid. Its journey in the liquid is best $\frac{Q}{Q}$ described in the diagram given below (V = velocity and t = time) by the
נ		



		(A) $\frac{1}{r}$	(B) <u>m</u>	(C) $\sqrt{\frac{m}{r}}$	(D) m only					
g.com	E 20.	A small steel ball falls t a force equal to twice its (A) 10 cm/s	hrough a syrup at constan s effective weight, how fas (B) 20 cm/s	nt speed of 10 cm/s. If the st will it move upwards ? (C) 5 cm/s	steel ball is pulled (D) – 5 cm/s	d upwards with				
ySuha	E 21.	A rain drop of radius 1.5 2 km, with a velocity v. (A) 200 m/s	mm, experiences a drag fo The terminal velocity of th (B)60 m/s	orce F = (2 × 10 ⁻⁵ v) N, whi ne rain drop will be nearly (C) 7 m/s	le falling through at (use g = 10 m/s²) (D) 3 m/s	ir from a height :				
thsB	<b>EXERCISE-3</b>									
w.Ma	1.	A point M is suspended modulus for the wire, fin line.	at the end of a massles and out the frequency of os	s wire of length L and cro cillation for the simple ha	oss-section A. If Y rmonic motion alo [CEE - 9	is the Young's 😸 ng the vertical 👸 90, JEE-78]				
om & wv	2.	A copper wire is clamper is no tension in the wire. of copper Y = $1.3 \times$ density = $9 \times 10^3$ kg/m ³	ed its two ends between tw What will be the speed of 10 ¹¹ N/m ² , coefficien 3.	ro rigid supports. When th the transverse wave in the it of linear expansion	e temperature is 3 e wire at $10^{\circ}C$ ? Yo $\alpha = 1.7 \times 10^{-5}$	0°C then there ung's modulus per °C and [JEE-79] و				
asses.co	3.	The following wires are same tension is applied (A) length = 50 cm, dia (C) length = 200 cm, dia	made of the same materia 1 ? meter = 0.5 mm ameter = 2 mm	al. Which of these will hav (B) length = 100 cm, dia (D) length = 300 cm, dia	e the largest exter ameter = 1 mm ameter = 3 mm	ision when the [[22] [JEE - 81]				
TekoCla	4. (i) (ii)	Fill in the blanks : Rubber is elast A wire of length L and c of Young's modulus Y.	ic than steel. ross-sectional area A is m If the wire is stretched by	ade of a material an amount x, the work de		6 0 · · · · · · · · · · · · · · · · · ·				
Ň	(iii)	A uniform rod of length The magnitude of the s	L and density $\rho$ is being putterss at the transverse cro	ulled along a smooth floor oss-section through the m	with a horizontal a nid-point of the roc	acceleration α lis				
bsite: w	5.	Two rods of different marespectively are fixed be increase in temperature the two rods are equal $(A) 2 \cdot 3$	aterials having coefficient of etween two rigid massive v e. There is no bending of the provided $Y_1 : Y_2$ is equal to (B) 1 : 1	of linear thermal expansion valls. The rods are heated he rods. If $\alpha_1 : \alpha_2 = 2 : 3$ , the o-	$n \alpha_1, \alpha_2$ and Young's such that they und ne thermal stresses	s moduli $Y_1, Y_2$ lergo the same $($ s developed in $($				
rom we	6.	A load of 31.4 kg is susp in temperature of the v specific heat of the mat	bended from a wire of radi vire if 75% of the work do verial of the wire are 9.8 ×	us $10^{-3}$ m and density 9 × one is converted into hea $10^{10}$ N/m ² and 490 J (kg-k	10 ³ kg/m ³ . Calcula t. The Young's mo () respectively.	ate the change () odulus and the ()				
ickage fi	7.	One end of a long meta ceiling. The other end is end of the spring. Whe period T.	allic wire of length L, area s tied to a massless spring en m is slightly pulled dow	a of cross-section, A and of spring-constant k. A m vn and released, it oscilla	Young's modulus ass m hangs freely ates up and down.	Y is tied to the . y from the free ຜິ Find the time ຜິ [JEE-93]				
udy Pa	8.	A thin rod of negligible r length of 0.5 m at 10 °C. lower end. Find	mass and area of cross-se . The rod is cooled at $0  {}^\circ \! \mathbb{C}$ ,	ction $4 \times 10^{-6} \text{ m}^2$ , suspend but prevented from contra	ded vertically from acting by attaching	one end has a $\cdots$ a mass at the $\frac{a}{2}$				
d Sti		(i) This mass and Given for this rod, $Y = 1$	(ii) The energy stored in 10 ¹¹ Nm ⁻² , coefficient of lir	the rod. her a expansion = $10^{-5} \text{ K}^{-1}$	and $g = 10 m s^{-2}$ .	sses, l				
Downloa	9.	A 1m long metal wire of from a rigid support a graph shows the obset function of W. Young's	of cross sectional area 10 nd a weight W is hangin rved extension of length s modulus of material of	$^{-6}$ m ² is fixed at one end og at its other end. The $\Delta \ell$ of the wire as a the wire is SI units is		Teko Clas				
FREE		(A) $5 \times 10^{4}$ $10^{4}$ (C) $2 \times 10^{11}$ $20 40 60 80 100$	(B) $2 \times 10^5$ $\overrightarrow{W(0)}$ $5 \times 10^{11}$		[JEE Sc	r. 2003, 31				
		• • • • • • • •								

10. A cylindrical container of the shape shown in the figure has a diameter of 0.9 m at the top and 0.3 m at the

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

bottom. A horizontal capillary tube of length L, inner radius a and outer radius 0.002 m is fixed at the bottom of the container. The container is filled with a liquid of density  $\rho = 1.6 \times 10^3$  kg m⁻³ to a height H above the tube and a pressure P is applied on the top. The rate of flow of liquid from the tube is . With the same P and H and the tube removed, the liquid comes out with a speed of v = 10 m s⁻¹. Determine the viscosity  $\mu$  (in Nsm⁻²) of the liquid. Given  $\pi a^2 = 2 \times 10^{-6}$  m² and ( $a^2/L$ ) =  $10^{-6}$  m. [Not in Syallabus now] [JEE 2003, 4/60]

0 98930 58881.

Sir), Bhopal Phone : 0 903 903 7779,

щ К

Teko Classes, Maths : Suhag R. Kariya (S.

11. Small spherical particles falling under gravity in a viscous medium heat the medium due to friction. Find how the rate of heating depends on the radius of the particles after they reach their terminal speed.
[JEE 2004, 2/60]

# **ANSWER**

шо				•				
	ICISE - 1	SECT	ION (D	):				
ୁର୍ଜ SECTI	ON:A	D 1.	In both	cases it	t is increa	ased.		
ဌ A 1.	Due to high modulus of elasticity.	<b>D</b> 0	1 YAx	2				32
Ω A 2. Ω	For the same strain, stress in steel is more than rubber.	D 2.	2 L	_				oage
<u>ν</u> Α3.	It is the property of material.	D 3.	$\frac{1}{2} \times st$	ress × s	train			
¶at}	No change.	D 4.	False			D 5.	2.4 × 10⁻⁵ J	81 .
≥ A 5.	Yes, due to its self weight.							588
<b>≩</b> A 6.	In both cases intermolecular forces.	D 6.	$\frac{1}{2}AE\ell$	$\alpha^2 t^2$		D 7.	13.72 × 10⁻	⊰၂. ဣ
≥ _{А7.}	(i) A (ii) B (iii) A	SECT		<b>`</b> .				6 86
[∞] A 8.	Υ	SECI F 1		) - temper	ature vi	scosity	of lubricant	o in-
ДО А 9. СО	(i) $2 \times 10^{11} \text{ N/m}^2$ (ii) $40 \text{ N/m}$ (iii) $5 \times 10^9$ , $1 \times 10^{12}$ (iv) $4 \times 10^{-13} \text{ m}$ .		crease	S.		Socorty		.779,
S A 10.	d' = 0.65 mm, $\Delta \ell$ = 0.045 mm	E 2.	Iermin	al veloci	ty∝(radi	us)²		23 23
Ω A 11.	$1.11 \times 10^{-3} \text{ m} = 1.11 \text{ mm}.$	E 3.	glyceri	ne, due t	o higher	viscosit	у.	3 9(
<u>0</u> A 12.	88.632cm	E 4.	Due to	higher E	Buoyant f	orce.	ana ana tha u	) 00
O A 13.	0.758 cm, 1.258 cm	Ε Э.	tive mo	property ption of d	ifferent p	art of lig	pposes the re uid.	∦a- ⊖ 
Δ A 14.	179.6 cm	E 6.	Due to	lesser v	iscosity.			one
μ. A 15.	1.0007	= F 7	1 65 x	10 ³ m				占
₹ A 16.	0.01 kg wt.	E 8	20 cm/					pal
≶ _{A 17.}	strain in wire $A = 10^{-4}$ .	E 0.	1437.3	3				Bho
 Ө	strain in wire $B = 2 \times 10^{-4}$ .	E 10	348 44	noise				ir), I
	ON : B	E 11.	0.21 cr	n s ⁻¹				ິ ເ
	Zoro							ц.
3 ^b 2.	2010.	EXEF	RCISE ·	· 2				S.
С В 3.	$1.5 \times 10^8$ Nm ⁻² , $1.5 \times 10^{11}$ Nm ⁻²		ION (A	):	R	۷3	R	iya
j⊑ B4.	3.77 × 10 ⁴ N	Δ1. Δ <i>1</i>	D	Δ 5	C	Δ6	Δ	Kar
D D		Δ7	Δ	Δ 8	D	Δ 9	П	Ë
× F	(a) $F\cos^2\theta$ (b) $F\sin 2\theta$	A 10.	A	A 11.	A	A 12.	C	hag
a a a	(a) $\frac{1}{A}$ (b) $\frac{1}{2A}$	A 13.	В	A 14.	D	A 15.	B	Su
ц >	(c) $\theta = 0^{\circ}$ (d) $\theta = 45^{\circ}$	A 16.	В	A 17.	А	A 18.	А	: su
SECTI	ON (C) :	A 19.	А	A 20.	С	A 21.	В	Mat
₽	(i) infinite (ii) infinite (iii) very small	A 22.	D	A 23.	D	A 24.	В	s, T
ad	(iv) decreases with the increase of temperature.	A 25.	В	A 26*.	A, D	A 27*.	A,B,C,D	ISSE
<u>Ö</u> C 2.	0.4 <b>C 3.</b> more	A 28*.	А	A 29*.	A,B,D	A 30.	A	Ü
∑ C4.	infinite <b>C 5.</b> True	A 31.	С	A 32.	А	A 33.	С	eko
Ó C 6.	6.67 x 10 ⁻⁶ m ³ <b>C 7.</b> 1.7 × 10 ⁻⁴ m	A 34.	D	A 35.	В	A 36.	В	F
		A 37.	С	A 38.	С	A 39.	В	
Щ ^{С8.}	1.02 × 10° atmosphere	A 40.	С	A 41.	С	A 42.	В	
Ц.								

