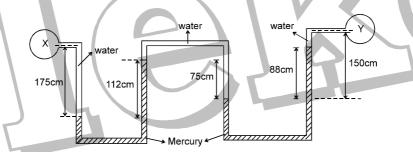

RCIS

SECTION (A) : MEASUREMENT AND CALCULATION OF PRESSURE

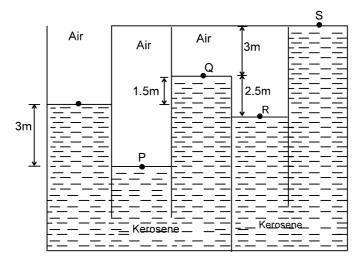
- A 1. The atmospheric pressure at a height of 6km decrease to nearly half its value at the sea level, though the height of the atmosphere is more than 100 km. Explain why?
- The passengers are advised to remove the ink from their pens while going up in an aeroplane. Explain why? A 2.
- A 3. A cart supports a cubic tank filled with a liquid of density ρ up to its top. The cart moves with a constant acceleration 'a'. Determine the pressure at point 'A' which is at a depth 'h' and a distance ℓ from the front wall, if the tank is tightly closed with a lid. In uniform motion the lid does not exert any pressure on the liquid.

0

Sir),


Ŀ. с.

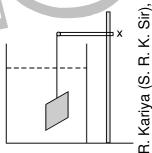
A 4. The density of ocean water may be taken to vary according to the expression


$$d = d_0 + c\sqrt{h}$$

where $d_0 =$ the density at the sea-level and h is the depth below the sea surface. Calculate the pressure as σ a function of depth.

- A hydraulic press has a ram (weight arm) 12.5 cm in diameter and plunger (Force arm) of 1.25 cm diameter. A 5. What force would be required on the plunger to raise a weight of 1 tonn on the ram.
- Pressure 3 m below the free surface of a liquid is 15KN/m² in excess of atmosphere pressure. Determine its $\frac{10}{5}$ density and specific gravity. Ig = 10 m/sec² A 6. 0
- Bhopal Phone Α7. Two U-tube manometers are connected in series as shown in figure. Determine difference of pressure be tween X and Y. Take specific gravity of mercury as 13.6.

Kariya (S. A 8. The container shown below holds kerosene and air as indicated. Compute the pressure at P, Q, R and S in KN/m² Take specific gravity of kerosene as 0.8. Teko Classes, Maths : Suhag R.



SECTION (B) : ARCHEMEDIES PRINCIPLE AND FORCE OF BUOYANCY

B 1. A boy is carrying a fish in one hand and a bucket full of water in the other hand. He then place the fish

in the bucket and thinks that in accordance with Archimedes's principle he is now carrying less weight as weight of fish will reduce due to upthrust. Is he thinking right?

- B 2. It is easier to swim in sea water than in river water. Explain why?
- B 3. Ice flows in water nine tenth of its volume submerged. What is the fractional volume submerged for an iceberg floating on a fresh water lake of a (hypothetical) planet whose gravity is ten times of earth?
- B4. If the body is non-homogeneous, then the body rotates in the fluid why?
- page B 5. A cube of wood supporting a 200 gm mass just floats in water. When the mass is removed the cube rise by 2 cm. Find the size of cube
- B 6. A solid ball of density half that of water falls freely under gravity from a height of 19.6 m and then enter water. Upto what depth will the ball go? How much time will it take to come again to the water surface? 58881 Neglect air resistance and viscosity effects in water.
- A balloon filled with hydrogen has a volume of 1000 liters and its mass of 1kg. What would be volume $_{0}^{0}$ of the block of a very light material which it can just lift? One litre of the material has a mass of 91.3 gm. $_{0}^{0}$ B 7.
- 0 B 8. An expansible balloon filled with air floats on the surface of a lake with 2/3 of its volume submerged. How deep must it be sunk in the water so that it is just in equilibrium neither sinking further nor rising? of It is assumed that the temperature of the water is constant and that the height of the water barometer is 9 meters.
- A piece of brass (alloy of copper and zinc) weighs 12.9 g in air. When completely immersed in water it of weighs 11.3 g. What is the mass of copper contained in the allow? One off B 9. weighs 11.3 g. What is the mass of copper contained in the alloy? Specific gravities of copper and zinc of a specific gravities of copper and zinc of the specific gravities of are 8.9 and 7.1 respectively.
- A glass beaker is placed partially filled with water in a sink. It has a mass of 390 gm and an B 10. interior volume of 500 cm³. When water starts filling the sink, it is found that if beaker is less than $\frac{9}{2}$ half full it will float. But if it is more than half full, it remains on the bottom of the sink, as the $\frac{9}{2}$ water rises to its rim. What is the density of the material of which the beaker is made? water rises to its rim . What is the density of the material of which the beaker is made ?
- Bhopal B 11. An iceberg of density 915 kg/m³ extends above the surface of sea water of density 1030 kg/m³. What percentage of the total volume of iceberg is visible to an obserber.
- B 12. A metallic plate having shape of a square is suspended as shown in figure. The plate is made to dip in water such that level of water is well above that of the plate. The point 'x' is then slowely raised at constant velocity. Sketch the variation of tension T in string with the displacement 's' of point x.

10

- B 13. A rod of length 6 m has a mass of 12 kg. If it is hinged at one end at a distance of 3 m below a water surface,
 - ਲੇ What weight must be attached to the other end of the rod so that 5 m of the rod is submerged? (i)
 - Find the magnitude and direction of the force exerted by the hinge on the rod. The specific \vec{o} (ii) gravity of the material of the rod is 0.5.

Maths SECTION (C) : CONTINUITY EQUATION & BERNOULLI THEOREM AND THEIR eko Classes, APPLICATION

- C 1. During wind storm, light roofs are blown off. Why?
- C 2. Explain why two stream lines cannot cross each other ?
- C 3. Why does the velocity increases when water flowing in a broader pipe enters a narrow pipe ?
- C 4. A man standing on the platform just near the railway line be sucked in by a fast moving train. Explain.
- C 5. Air is streaming past a horizontal airplane wing such that its speed is 120 ms⁻¹ over the upper surface and 90 ms⁻¹ at the lower surface. If the density of air is 1.3 kgm⁻³, find the difference in pressure

between the top and bottom of the wing. If the wing is 10 m long and has an average width of 2 m. Calculate the gross lift of the wing.

- C 6. A liquid is kept in a cylindrical vessel which is rotated along its axis. The liquid rises at the sides. If the radius of the vessel is 0.05 m and the speed of rotation is 2 rev per sec. Find the difference in the height of the liquid at the centre of the vessel and at its sides.
- C 7. The pressures of water in a water pipe when tap is open and closed are respectively 3×10^5 N/m² and 3.5×10^5 N/m² A/m² and 3.5×10^5 N/m² and 3.5×10^5 10⁵ N/m². If tap is opened, then find out
 - velocity of water flowing (a)
 - (b) rate of volume of water flowing if area of cross-section of tap is 2 cm².
 - C 8. Water flows through a horizontal tube of variable cross-section (figure). The area of cross-section at A and B are 4 mm² and 2 mm² respectively. If 1 cc of water enters per second 58881 through A, find (a) the speed of water at A, (b) the speed of water at B and B (c) the pressure difference $P_{A} - P_{B}$.
 - 98930 C 9. Suppose the tube in the previous problem is kept vertical with A upward but the other conditions remain the same. The separation between the cross-section at A and B is 15/16 cm Repeat parts (a), (b) and (c) of the previous problem. Take $g = 10 \text{ m/s}^2$. 0
 - Suppose the tube in the previous problem is kept vertical with B upward. Water enters through B at the rate of 1 cm³/s. Repeat part (a), (b) and (c). Note that the speed decreases as the water falls down. C 10.
 - 903 C 11. Water flows through a tube shown in figure. The areas of cross-section at A and B are 1 cm² and 0.5 cm² respectively. The height difference between A and B is 5 cm. If the speed of 903 water at A is 10 cm/s find (a) the speed at B and (b) the difference in pressures 0 at A and B.
 - C 12. Water flows through the tube shown in figure. The areas of cross-section of the wide and the narrow portion of the tube are 5 cm² and 2 cm² respectively. The rate of flow of water through the tube is 500 cm³/s. Find the difference of mercury levels in the U-tube. (density of mercury = 13.6 gm/cm³)

EXERCISE-2

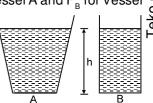

SECTION (A) : MEASUREMENT AND CALCULATION OF PRESSURE

Figure here shown the vertical cross-section of a vessel filled with a liquid of density ρ . The normal $\overset{O}{\bigcirc}$ A 1. thrust per unit area on the walls of the vessel at point. P, as shown, will be

Н

(D) 75 kg.

- (A) hpg
- (B) Hpg
- (C) $(H h) \rho g$
- (D) $(H h) \rho g \cos \theta$
- A 2. In a hydraulic lift, used at a service station the radius of the large and small piston are the ratio in of 20: 1. What weight placed on the small piston will be sufficient to 🛨 lift a car of mass 1500 kg? (A) 3.75 kg (B) 37.5 kg (C) 7.5 kg
- Classes, Maths : Suhag R. Kariya A 3. Two vessels A and B of different shapes have the same base area and are filled with water up to the same height h (see figure). The force exerted by water on the base is F_A for vessel A and F_B for vessel B. The respective weights of the water filled in vessels are W_A and W_B . Then (A) $F_A > F_B$; $W_A > W_B$ (B) $F_A = F_B$; $W_A > W_B$ (C) $F_A = F_B$; $W_A < W_B$ (D) $F_A > F_B$; $W_A = W_B$ eko
- A 4. In the figure shown water is filled in a symmetrical container. Four pistons of equal area A are used at the four opening to keep the water in equilibrium. Now an additional force F is applied at each piston. The increase in the pressure at

1 page

Phone

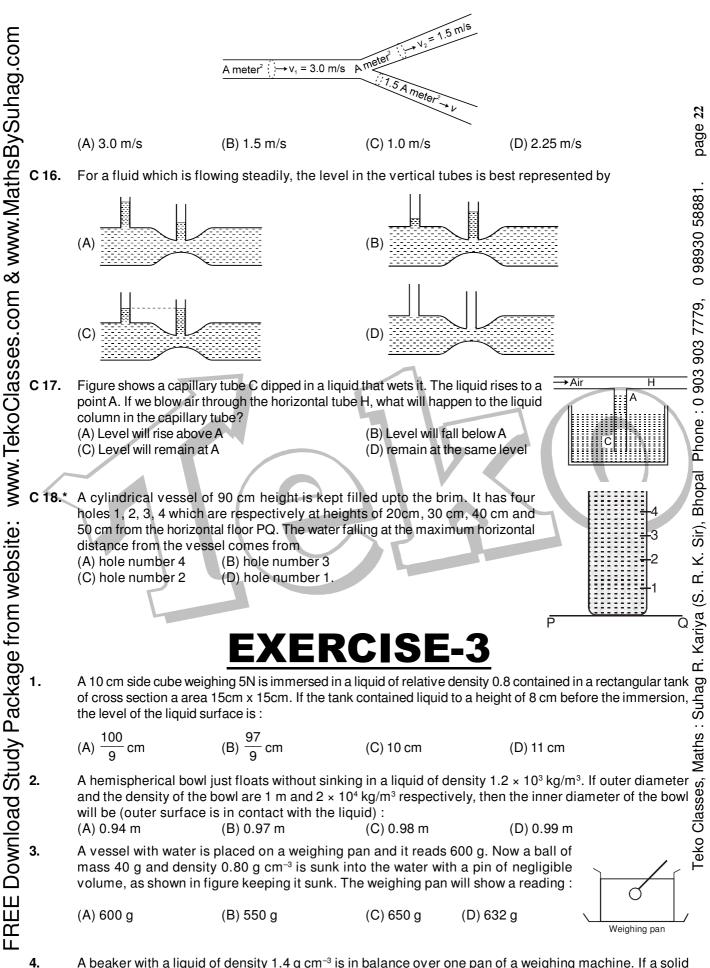
Bhopal

Sir),

Ł.

с.

REE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com ш

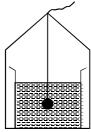

Get	Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com the centre of the container due to this addition is										
mos		(B) $\frac{2F}{A}$		(D) 0	F,	↓ ^{F₂}					
Suhag.o		and incompres		is completely fillec oves in a gravity fre		€ 81					
thsByS		positive consta ure is maximur	n, is	y point in the contain	er A F						
ww.Ma	(A) B (D) F	a = (B)	$a_0 (\hat{i} - \hat{j} + \hat{k})$ C	(C) E	E H	direction is vertically 6					
≥ _{А6.} ∞ ⊂	upwards, and	d x-axis is alon	g horizontal,d i	s density of fluid) :	epresented by (z-	direction is vertically $\overset{\otimes}{6}$					
.con	(A) $\frac{\partial p}{\partial z} = -c$	lg (B)	$\frac{\partial p}{\partial x} = dg$	$(O) = \frac{\partial Q}{\partial x} = 0$	(D) $\frac{\partial p}{\partial z} =$	N I					
e from website: www.TekoClasses.com & www.MathsBySuhag.com	 Following are some statements about buoyant force: (Liquid is of uniform density) (i) Buoyant force depends upon orientation of the concerned body inside the liquid. (ii) Buoyant force depends upon the density of the body immersed. (iii) Buoyant force depends on the fact whether the system is on moon or on the earth. (iv) Buoyant force depends upon the depth at which the body (fully immersed in the liquid) is placed inside the liquid. Of these statements : (A) Only (i), (ii) and (iv) are correct. (B) Only (ii) is correct. (C) Only (iii) and (iv) are correct. (D) (i), (ii) and (iv) are incorrect. 										
Dex Sect	ION (B) : A Ancy	RCHEMEDI	ES PRINCIP	LE AND FORCE	OF BUOY-	N/m. The other end of o					
REE Download Study Package from webs ^{E B C C C C C C C C C C C C C C C C C C}	the spring is a m ³ If the bloc (A) the elong (B) the magn (C) the spring	attached to a fix is in equilibriu ation of the spri itude of buoyan potential energ	ed support. The um position. ng is 1 cm. It force acting or gy is 12.5 J.	g is suspended by a sp block is completely s the block is 50 N. greater than the weig	ubmerged in a liqu	N/m. The other end of S id of density 1000 kg/ Waths See See See See See See See See See See					
оримод Ш	to a depth of (A) 1 cm of it (B) 5 cm of it (C) 2 cm of it	4cm above wate will be above th will be under wa	er. When the blo le free surface of ater. le common surfa	ck attains equilibrium							
Ш вз. Ц	. ,	of ice is x gm/o		ater is y gm/cc. Wha	at is the change ir	n volume in cc, when					

Get	Solution of These Pa $(A) M (y - x)$	ackages & Learn by (B) $(y - x)/m$	Video Tutorials on v (C) mxy (x - y)	www.MathsBySuhag.com (D) m (1/y – 1/x)	
B4. ⊊	A block weighs 15 N ii (A) 0.8	n air and 12 N when imn (B) 0.25	nersed in water. The sp (C) 5/4	ecific gravity of the block is : (D) 5	
100 ⁻ Бе Бе				air is 60 newton. This reading i cific gravity of the block must b	
ů,	(A) 3	(B) 2	(C) 6	(D) 3/2	6
ISVBs в е.	(A) equal to weight of	ht of liquid displaced	(B) zero	- (weight of liquid displaced)	page 1
WWW.TekoClasses.com & WWW.MathsBySuhag.com B B B B Com B Com 8 WWW.MathsBySuhag.com B Com 8 WWW.WWWW.MathsBySuhag.com B Com 8 WWWW.WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	A concrete sphere of concrete and sawdus submerged under wat (A) 8	radius R has a cavity of t are respectively 2.4 a er, the ratio of mass of (B) 4	f radius r (pack with say and 0.3. For this sphere concrete to mass of say (C) 3	wdust). The specific gravities of e to float with its entire volum wdust will be : (D) zero	30 58881. ju
≶в8. ∞ Е	The height of the liqui A. The work done by g	d in one vessel is h ₁ and pravity in equalizing the	I that in the other vesse levels when the two ve	contain same liquid of density ρ I is h ₂ . The area of either base i ssels are connected is :). සි
COI	(A) $(h_1 - h_2) g \rho$	(B) $(h_1 - h_2) g A \rho$	(C) $\frac{1}{2}(h_1 - h_2)^2 g \rho$	(D) $\frac{1}{4}(h_1 - h_2)^2 g \mathbf{A} \rho$	779
Classes. в ₉ .	We have two different solid objects P and Q (A) P floats in A and (C) P floats in B and G	Q sink in B	elative densities are 0.7 s 0.6 and 0.9 in these li (B) P sinks in A and ((D) P sinks in B and (Q floats in B	0 903 903 7
) в 10.)	A cubical box of wood depth of immersion of (A) 30 cm		g 21.6 kg floats on wate (C) 6 cm	er with two faces horizontal. The (D) 24 cm	
В 11.	above the surface of v	ρ is immersed in a liquid water up to which the ba	ll will jump is :	depth h and released. The heigh	
0) 	(A) $\frac{\sigma n}{\rho}$	(B) $\left(\frac{6}{\rho}-1\right)h$	(C) $\left(1-\frac{\rho}{\sigma}\right)h$	(D) $\frac{\rho n}{\sigma}$	Sir), B
vebsit vebsit	upward due to buoyar (A) $\sigma_{\rm b}$ Vgh	It force upto a height h. (B) $(\sigma_{b} + \sigma_{l})$ Vgh	The increase in potenti (C) $(\sigma_{b} - \sigma_{l})$ Vgh (D) no	one of these	а.
E 13.	that of acceleration du its mass should be de	e to gravity. If it is to go ι creased by :	5 kg. It is descending w up with the same accele (C) 0.75 kg	ith an acceleration equal to ha ration keeping the volume same (D) 0.5 kg	R. Kariya (S
	(A) 1.2 kg	(B) 1 kg	the start The base start		Щ. Ц
ор ^в 14.	(A) 7 N	in air and 2 N when put (B) 9 N	(C) 3 N (D) no	force is : one of these thrice its value. The portion c	lhag
ര് B 15. വ	A body of uniform cro exposed height will be	oss-sectional area float	s in a liquid of density	thrice its value. The portion of	••
dy	(A) 2/3	(B) 5/6	(C) 1/6	(D) 1/3	aths
REE Download Study Package from websis B 13. B 14. B 15. B 16. B 14. B 18. B 1	 (A) density of brine is (B) density of brine is (C) density of brine is (D) None of these 	less than that of ordinal equal to that of ordinary greater than that of ordi	ry water v water nary water	n brine. This is because	o Classes, Maths
№ в 17. О Ш		partially removed, then		nosphere. When the container i ore in water	Teks
Ш _{В 18.} Ц		vide is floating in a lake.	. , ,	ver it, it sinks 1 cm into the lake	9.

	Get S	Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com (A) 60 kg (B) 64 kg (C) 70 kg (D) 72 kg
шo	B 19.	An iceberg is floating partially immersed in sea water. The density of sea water is 1.03 g cm ⁻³ and that of ice is 0.92 g cm ⁻³ . The approximate percentage of total volume of iceberg above the level of sea water is (A) 8 (B) 11 (C) 34 (D) 89
nag.c	B 20.	A boat with scrap iron is floating in a lake. If the scrap iron is thrown in the lake, the water level will(A) go up(B) go down(C) remain unchanged(D) none of these
BySuh	B 21.	A metallic sphere floats in an immiscible mixture of water ($\rho_w = 10^3 \text{ kg/m}^3$) and a liquid \Re ($\rho_L = 13.5 \times 10^3$) with (1/5)th portion by volume in the liquid. The density of the metal is : (A) $4.5 \times 10^3 \text{ kg/m}^3$ (B) $4.0 \times 10^3 \text{ kg/m}^3$ (C) $3.5 \times 10^3 \text{ kg/m}^3$ (D) $1.9 \times 10^3 \text{ kg/m}^3$
Vaths	B 22.	Two bodies are in equilibrium when suspended in water from the arms of a balance. The mass of one body is 36 g and its density is 9 g/cc. If the mass of the other is 48 g, its density in g/cc is : (A) $4/3$ (B) $3/2$ (C) 3 (D) 5 (B) $3/2$ (C) 3 (D) 5 (B) $3/2$ (C) 3 (D) 5 (C) 3 (D) 5 (C) 3 (D) 5 (C) 3 (D) 5 (C) 3 (D) 5 (D)
& www.MathsBySuhag.com	B 23.	(A) A and B have same weight in air (B) A and B have equal volumes
es.com	B 24.	 (C) the densities of the materials of A and B are the same (D) A and B are immersed to the same depth inside water. A boat floating in a tank is carrying passengers. If the passengers drink water, how will it affect the water level of the tank? (A) it will go down (B) it will rise (C) it will remain unchanged (D) it will depend on atmospheric pressure (C) it will a floating object be in a stable equilibrium, its centre of buoyancy should be
Classe	B 25.	(A) vertically above its centre of gravity (B) vertically below its centre of gravity
www.TekoClasses.com		 (C) horizontally in line with its centre of gravity (D) may be anywhere A block of iron is kept at the bottom of a bucket full of water at 2℃. The water exerts buoyant force on the block. If the temperature of water is increased by 1℃ the temperature of iron block also increases by 1℃. The buoyant force on the block by water (A) will increase (B) will decrease (C) will not change (D) may decrease or increase depending on the values of their coefficient of expansion
ite: w	B 27.	(D) may decrease or increase depending on the values of their coefficient of expansion A block of silver of mass 4 kg hanging from a string is immersed in a liquid of relative density 0.72. If relat
om webs	B 28.*	A spring balance reads W_1 when a ball of mass m is suspended from it. A weighing machine reads W_2 when $\forall a$ beaker of liquid is kept on the pan of balance. When the ball is immersed in liquid, the spring balance reads \mathbf{M}_3 and the weighing machine reads W_4 . The two balances are now so arranged that the suspended mass is inside the liquid in a beaker. Then (A) $W_3 > W_1$ (B) $W_4 > W_2$ (C) $W_3 < W_1$ and $W_4 > W_2$ (D) $W_3 > W_1$ and $W_4 < W_2$
Download Study Package from web	B 29.*	In the figure, an ideal liquid is flowing through the tube which is of uniform area of cross-section. The liquid has velocities v_A and v_B , and pressures P_A and P_B at points A and B respectively. Then (A) $v_B > v_A$ (B) $v_B = v_A$ (C) $P_B > P_A$ (D) $P_B = P_A$ ON (C) : CONTINUITY EQUATION AND BERNOULLI THEOREM & THEIR APPLICATION The total area of cross–section is 0.25 m ² . If the blood is flowing at the rate of 100 cm ³ /sec, then the average velocity of flow of blood through the capillaries is : (A) 0.4 mm/sec. (B) 4 mm/sec. (C) 25 mm/sec. (D) 400 mm/sec.
Study	SECTI	ON (C) : CONTINUITY EQUATION AND BERNOULLI $B====================================$
vnload	C 1.	The total area of cross-section is 0.25 m ² . If the blood is flowing at the rate of 100 cm ³ /sec, then the average velocity of flow of blood through the capillaries is : (A) 0.4 mm/sec. (B) 4 mm/sec. (C) 25 mm/sec. (D) 400 mm/sec.
	C 2.	An incompressible fluid flows steadily through a cylindrical pipe which has radius 2R at point A and $\stackrel{\Phi}{\vdash}$ radius R at point B further along the flow direction. If the velocity at point A is v, its velocity at point B will be :
FREE	C 3.	(A) $2v$ (B) v (C) $v/2$ (D) $4v$ Water from a tap (at the end of a horizontal pipe) emerges vertically downwards with an initial speed of 1.0 ms ⁻¹ . The cross-sectional area of the tap is 10^{-4} m ² . Assume that the pressure is constant throughout

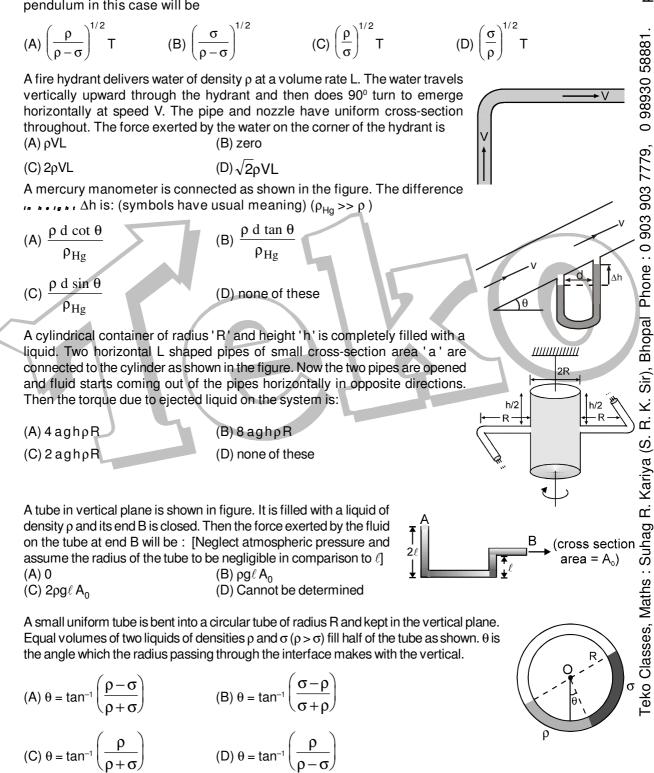
	Get S	et Solution of These Packages & Learn by Video Tutorials on www.l the stream of water and the flow is steady. The cross-sectional area of the	, ,	
F		tap is : (A) $5.0 \times 10^{-4} \text{ m}^2$ (B) $1.0 \times 10^{-5} \text{ m}^2$ (C) $5.0 \times 10^{-5} \text{ m}^2$ (D)	2.0 × 10⁻⁵ m²	
www.TekoClasses.com & www.MathsBySuhag.com	C 4.	Water is flowing through a horizontal pipe of non-uniform cross-section. At the of the pipe, the water will have : (A) maximum speed and least pressure(B) maximum pressure and least sp (C) both pressure and speed maximum (D) both pressure and speed	eed d least	21
sBySu	C 5.	An aeroplane gets an upward lift due to a phenomenon best described by the (A) Archimedes's principle(B) Bernoulli's principle(C) Buoyancy principle(D) Pascal's law		page 2
ww.Math	C 6.	cross-sectional area is 10 cm ² , the velocity of water is 1 m/s and pressure is water at another point where cross-sectional area is 5 cm ² , is : (Density of	2000 Pa. The pressure of water = 1000 kg/m ³)	58881
& ~	C 7.	In Bernoulli's theorem which of the following is conserved ? (A) Mass (B) Energy (C) Linear momentum (D) Angular	momentum	0 98930
es.com	C 8.	A tank is filled with water up to height H. Water is allowed to come out of a at a depth D below the surface of water. Express the horizontal distance x terms of H and D :	tin 1 =======: 1 _D	903 7779,
Class		(A) $x = \sqrt{D(H-D)}$ (B) $x = \sqrt{\frac{D(H-D)}{2}}$ (C) $x = 2\sqrt{D(H-D)}$ (D)		0 903
sko(= $4\sqrt{D(H-D)}$ A cylindrical vessel is filled with water up to height H. A hole is bored in the free surface of water. For maximum range h is equal to :		
ww.Te	C 9.	 A cylindrical vessel is filled with water up to height H. A hole is bored in the free surface of water. For maximum range h is equal to : (A) H (B) 3H/4 (C) H/2 (D) A water barrel having water up to a depth d is placed on a table of height h. A 		
ite: w	C 10.	wall of the barrel at its bottom. If the stream of water coming out of the ho horizontal distance R from the barrel, then the value of d is :	le falls on the ground at a	Sir), Bhol
'ebs		(A) $\frac{4h}{R^2}$ (B) $4hR^2$ (C) $\frac{R^2}{4h}$ (D)	$\frac{h}{4R^2}$	Щ. Ч.
from w	C 11.	different in pressure between the upper lower surface of its wings, in kilo pa	flight at some height. The ascals is : 12.5	R. Kariya (S.
ackage t	C 12.	 A piston of a syringe pushes a liquid with a speed of 1 cm/sec. The radii syringe tube and the needle are R = 1 cm and r = 0.5 mm respectively. The velocity of the liquid coming out of the needle is (A) 2 cm/sec (B) 400 cm/sec (C) 10 cm/sec (D) 	of	Suhag R. K
Study Pa	C 13.	 B. There is a small hole near the bottom of an open tank filled with a liquid. The does not depend on : (A) area of the hole (B) density of the liquid (C) height of the liquid from the hole (D) acceleration due to grav 	speed of the water ejected ity	s, Maths : {
Download Study Package from web:	C 14.	 syringe tube and the needle are R = 1 cm and r = 0.5 mm respectively. The velocity of the liquid coming out of the needle is (A) 2 cm/sec (B) 400 cm/sec (C) 10 cm/sec (D) There is a small hole near the bottom of an open tank filled with a liquid. The does not depend on : (A) area of the hole (B) density of the liquid (C) height of the liquid from the hole (D) acceleration due to grav Water flows through a frictionless duct with a cross-section varying as sho in figure. Pressure p at points along the axis is represented by: 	wn	eko Classes
FREE Do		(A) (B) (B) (C) (D)	×	Т

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com C 15. An incompressible liquid flows through a horizontal tube as shown in the figure. Then the velocity 'v' of the fluid is:

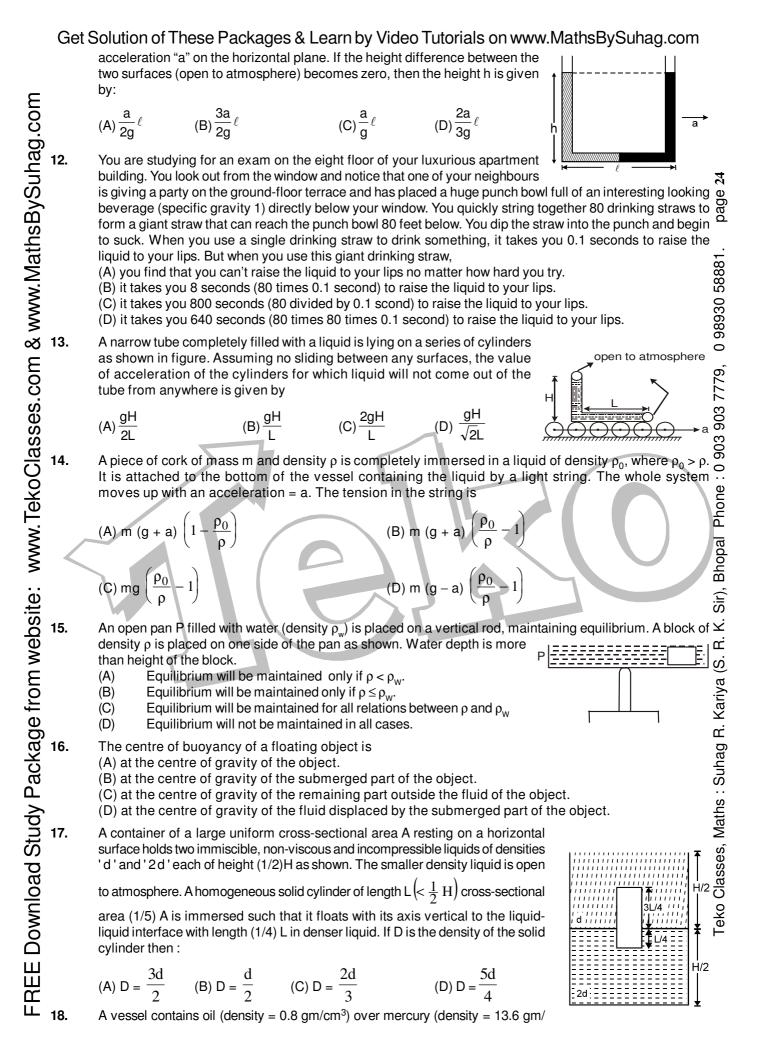


A beaker with a liquid of density 1.4 g cm⁻³ is in balance over one pan of a weighing machine. If a solid

of mass 10 g and density 8 g cm⁻³ is now hung from the top of that pan with a thread and sinking fully in the liquid without touching the bottom, the extra weight to be put on the other pan for balance will be:

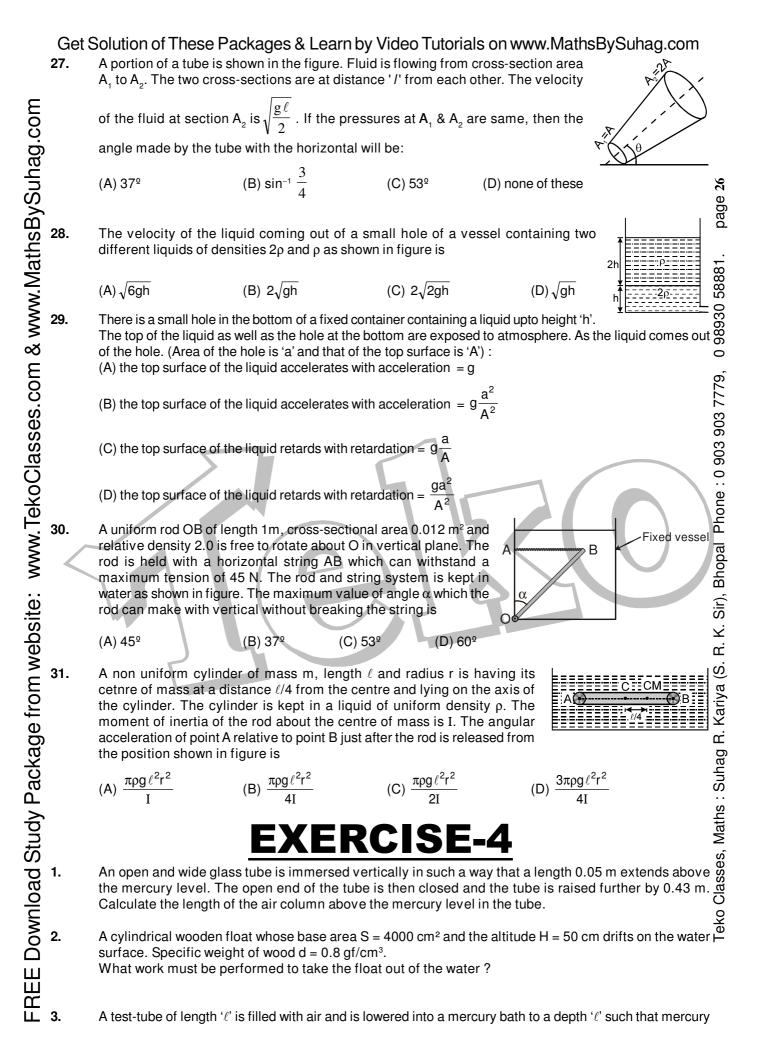

(A) 10.0 g (B) 8.25 g

- (C) 11.75 g
- (D) 1.75 g


ង

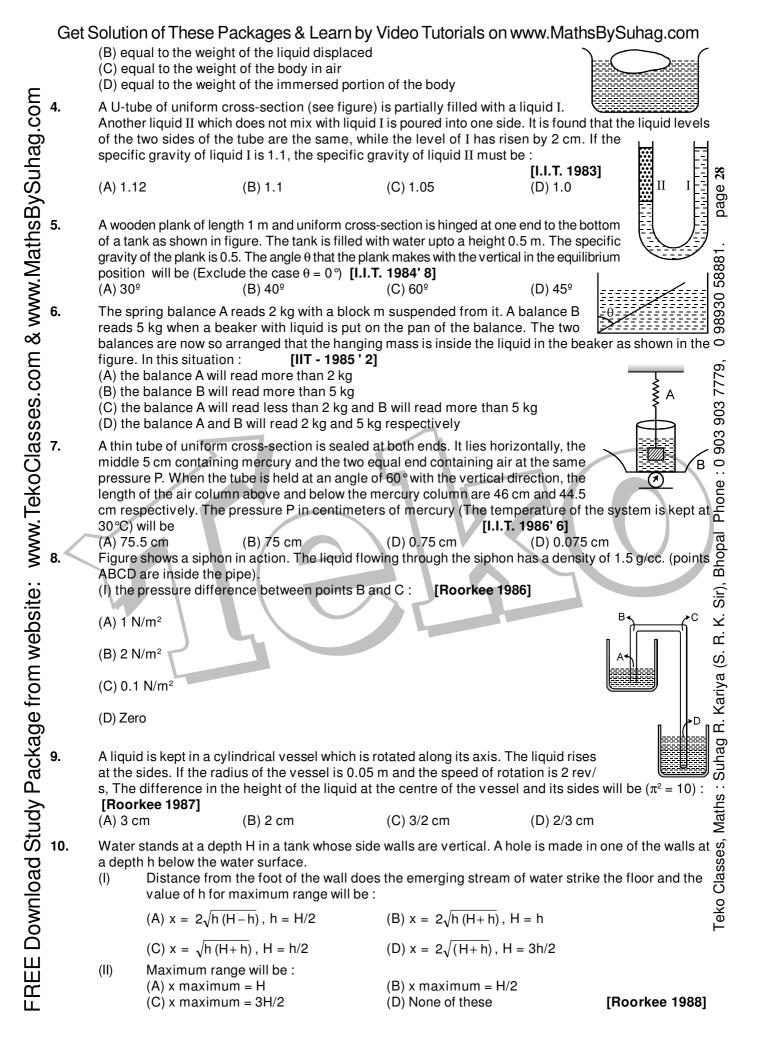
The time period of a simple pendulum is T. The pendulum is oscillated with its bob immersed in a liquid $\frac{0}{20}$ of density σ . If the density of the bob is ρ and viscous effect is neglected, the time period of the $\frac{1}{20}$ pendulum in this case will be

A U-tube of base length "I" filled with same volume of two liquids of densities ρ and 2ρ is moving with an


10.

	Get S	•	& Learn by Video Tutorials or alf its volume immersed in mercury and	
_		(A) 3.3 (B) 6.4	(C) 7.2	(D) 12.8
unag.co	19.	ating upwards with an accelerative observers O_1 and O_2 , one with an acceleration "a" upwar block is : (A) same for O_1 and O_2	a liquid and the vessel is acceler- tion "a". The block is observed by at rest and the other accelerating d. The total buoyant force on the (B) greater for O_1 than O_2	$\begin{bmatrix} - & - & - & - \\ - & - & - & - & - \\ - & - &$
ñ	00	2 1	(D) data is not sufficient	bage bage
vlaths	20.	flows out in t second. If water is (A) t (B) 4t	bottom of cylindrical vessel. Water s filled to a height 4h, it will flow out (C) 2t	in time equal to (D) t/4
I & www.Ivlatinsbysi	21.	respectively at heights of 20 cm	, 30 cm, 46 cm and 80 cm from the h ce from the vessel comes from :	t has four holes 1,2,3,4 which are $\overset{\infty}{P}$ forizontal floor. The water falling at $\overset{\infty}{P}$ (D) hole no.1
COM	22.	a is made just at its bottom side.	on a horizontal surface. Its base area The minimum coefficient of friction r force of the emerging liquid is (a << A (C) 2a/A	necessary for preventing the sliding $\hat{\sigma}$
Class	23.	air flows through the narrow tul vertical tube reduce. The liquid emerges through the end. If the	fume atomizer. When the bulb A is of be consequently pressure at the po I (perfume) rise in through the vertion ne excess pressure applied to the n speed of air in the tube to lift the per- of perfume).	sition of the cal tube and bulb in this
:elle:	24.	the vertical tube with liquid veloci that tube offers no resistance to f	P_a V P_a g through a uniform cross-sectional tul ties $v_A \& v_B$ and pressure $P_A \& P_B$. Kno	None of these \overline{R} be in \underline{P}_{A} A
¥	25.	Bernoulli's equation can be writ	ten in the following different forms	بت (column A). Column B lists certain رض
E		units each of which pertains to	one of the possible forms of the eq	
Ы Ц		with each of the equations : Column A	Column B	Kari
Kage		(a) $\frac{v^2}{2g} + \frac{p}{\rho g} + z = \text{constant}$	(i) Total energy per	unit mass unit weight unit volume (i) watch the unit associated watch unit associated watch unit associated watch
Г аС		(b) $\frac{\rho V^2}{2} + P + \rho gz = constant$	(ii) Total energy per	unit weight O
lay		(c) $\frac{\sqrt{2}}{2} + \frac{P}{\rho} + gz = constant$	(iii) Total energy per	runit volume amulov ita
		(A) a–(i), b–(ii), c–(iii) (C) a–(ii), b–(iii), c–(i)	(B) a–(iii), b–(i), c–((D) a–(iii), b–(iii), c–	iii) Śś
Download Study Package from webs	26.	and the other is a circular hole of r		of side 'L' at a depth '4y' from the top \overline{O} hen the tank is completely filled with \underline{Q}
		L	2	L

(A)
$$\frac{L}{\sqrt{2\pi}}$$
 (B) $2\pi L$ (C) $\sqrt{\frac{2}{\pi}}$. L (D) $\frac{L}{2\pi}$

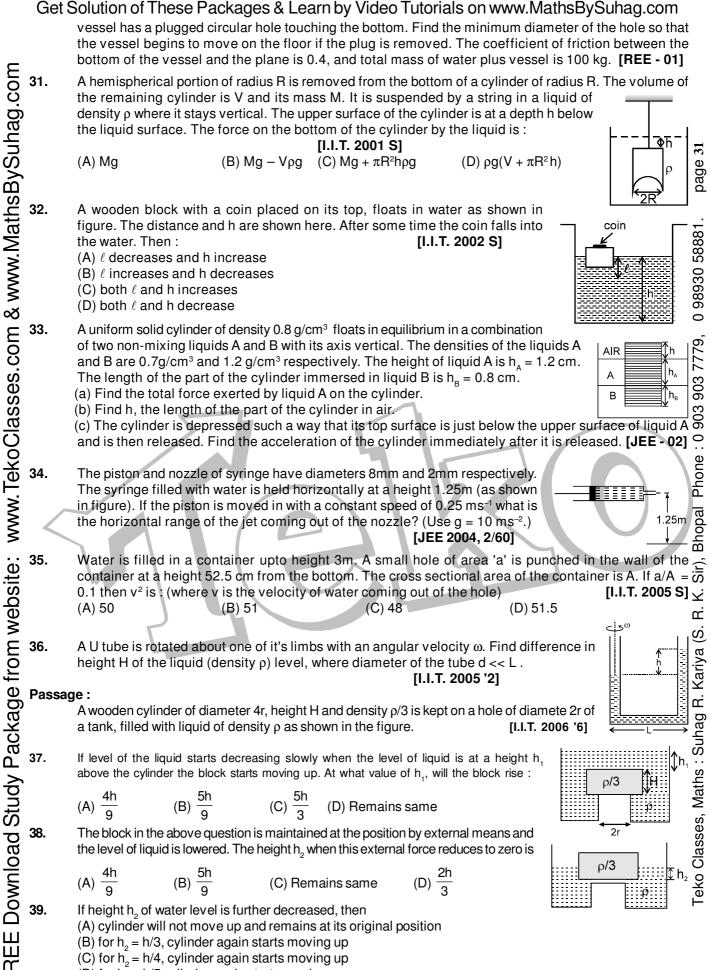

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

rises to height h into the tube. If mercury barometer also reads ' ℓ '. Then find out h in terms of ' ℓ '.

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com 4. A glass tube of length ℓ = 21cm and cross section A = 0.5cm² is closed at one end and contains air. The tube is inverted with the closed end held up and is then inserted inside a tank containing mercury. The tube is held with its upper end at a depth h = 15 cm below the free surface of the mercury. What force is required to hold the tube in this position ? $P_{atm} = 75$ cm of Hg. 5 page Tube mass is negligible, ρ_{Hg} = 13.6 g/cc. A siphon tube is discharging a liquid of specific gravity 0.9 from a reservoir as shown in figure. 0 98930 58881. (a) Find the velocity of the liquid through the siphon. (b) Find the pressure at the highest point B. (c) Find the pressure at the points A (outside the tube) and C. State and explain the following (d) Would the rate of flow be more, less or the same if the liquid were water. (e) Is there a limit on the maximum height of B above the liquid level in the reservoir. (f) Is there a limit on the vertical depth of the right limit of the siphon.
A closed tube in the form of an equilateral triangle of side l contains equal volumes of three liquids which do not mix and is placed vertically with its lowest side horizontal. Find 'x' in the figure if the densities of the liquids are in A.P.
Compute the work which must be performed to pump the water out of a hemispherical reservoir of radius R = 0.6 m.
A solid cylinder of radius R = 10 cm and of mass M = 2kg floats in water with its axis vertical. Show that if it is slightly depressed and released, it will exectute SHM and find its period.
Solid cylinder of radius R = 10 cm and of mass M = 2kg floats in water with its axis vertical. Show that if it is slightly depressed and released, it will exectute SHM and find its period. (f) Is there a limit on the vertical depth of the right limit of the siphon. 6. 7. 8. 9. and returns to its original position in a time t₁. Next, the ball is released and it falls through the same \preceq height before striking the surface of a liquid of density d₁. с. If $d < d_1$, obtain an expression (in terms of d, t_1 and d_1) for the time t_2 the ball takes to come (a) Classes, Maths : Suhag R. Kariya (S. back to the position from which it was released. (b) Is the motion of the ball simple harmonic? If $d = d_1$, how does the speed of the ball depend on its depth inside the liquid ? (c) Neglect all frictional and other dissipative forces. Assume the depth of the liquid to be large. ERCIS E-5 A vessel containing water is given a constant acceleration 'a' towards the right along a straight horizontal path. Which of the following diagrams in figure represents the surface of the liquid? [I.I.T. 1981] a(D (A) (B) Two identical cylindrical vessels with their bases at the same level each contain a liquid of density p Two identical cylindrical vessels with their bases at the same level each contain a liquid of density ρ . The height of the liquid in one vessel iis h_2 and other vessels h_1 , the area of either base is A. The work Δ done by gravity in equalizing the levels when the two vessels are connected will be : [I.I.T. 1981'4] (A) $\frac{gA\rho}{4}(h_1 - h_2)^2$ (B) $\frac{gA\rho}{4}(h_1 + h_2)^2$ (C) $\frac{gA\rho}{4}(h_1 + h_2)$ (D) $\frac{gA\rho}{4}(h_1 - h_2)$ A body floats in a liquid contained in a beaker. The whole system as shown in figure falls freely under 3.

A body floats in a liquid contained in a beaker. The whole system as shown in figure falls freely under gravity. The upthrust on the body is : [IIT - 1982 - 3] (A) zero

	Geta	Solution	ormesera	chages a Leannby	video rutoriais on w	ww.iviatiisbys	sunay.com
_	11.	sphere f material		its volume immersed i	over mercury (density = in mercury and the othe	r half in oil. The	
ō		(A) 3.3		(B) 6.4	(C) 7.2	(D) 12. 8	
hag.c	12.				e top and has a diamete empty the tank through	a hole of radius	5×10 ^{-₃} m in its æ e 1990]
5 Ú		(A) 46.2	6 sec.	(B) 4.6 sec.	(C) 462.6 sec.	(D) .46 sec.	- 50
SByS	13.	water.		alf that of water falls free	ely under gravity from a h	neight of 19.6 m a [Roork]	and then enters $\overset{\heartsuit}{2}$ are 1991]
w.Math		(II)	(A) 1.96 m Time taken to viscosity effect	(B) 19.6 m come again to the s in water. (g = 9.8 m/s	(C) 9.8 m water surface will be. s ²) :	(D) 9.6 m (Neglect air re	esistance and 88
Ş			(A) 4 s	(B) 3 s	(C) 2 s	(D) 3/2 s	330
ר א א ר	14.	If the rac rate of f	dii of its ends a low of glycerine	re 0.1 m and 0.04 m a of density 1.25 × 10 ³ l	(C) 2 s nd the pressure drop ac kg/m³ through the conica	al section of a pi	pe will be : (ee 1991]
õ		(A) 62.8	× 10 ⁻⁴ m³/s	(B) 6.28 × 10 ⁻⁴ m ³ /s	(C) .628 × 10 ⁻⁴ m³/s	(D) 62.8 × 10 ⁴	m ³ /s 6
asses.c	15.	above th m. the le	ne mercury leve ength of the air	el. The open end of the column above the mer	y in mercury in such way tube is then closed and the cury level in the tube will (C) $h = 2 m$	he tube is raised I be : [Roork	further by 0.43 8 (cee 1992]
www.TekoClasses.com & www.MathsBySuhag.com	16.	A horizo sectiona water at [Density	ontal pipe line c al area is 10 cm another point v of water = 10 ³	carries water in a strea n², the water velocity is where the cross-section kg. m ⁻³]	(C) h = 2 m Imline flow. At a point a s 1 ms ⁻¹ and the pressui nal area is 5 cm ² will be	long the pipe wh re is 2000 Pa. T :. [JEE -	he pressure of o
≥ 1	17. 🦟	A contai	ner of large unif	orm cross-sectional are	ea A resting on a horizonta	al surface, holds t	wo immiscible, 🐻
	\langle	non-vis	cous and incom	npressible liquids of de	ea A resting on a horizonta ensities d and 2d , each o	of height $\frac{H}{2}$ as s	
bsite:					here having pressure $P_{_0}$		Sir),
'ebs		(a) A hor	mogeneous soli	d cylinder of length L $\left(I \right)$	$- < \frac{H}{2}$ cross-sectional a	area ¥	Ľ ×
≥ E		$\frac{A}{5}$ is in	nmersed such t	hat it floats with its axis	s vertical at the liquid-lie	quid H/2 ↓	a S.
<u></u>		interface	e with the length	$h \frac{L}{4}$ in the denser liquid	d. Determine:	<u> </u>	
age			lensity D of the cylinder is re		e total pressure at the b nal arrangement is res		ole of area s
ack		(s << A)	is punched on	the vertical side of the	container at a height h	$h < \left(\frac{H}{2}\right)$. Deter	mine : eyn
Study Pa		(i) (ii) (iii)	The initial spee The horizontal o The height h _m a	d of efflux of the liquid distance x travelled by at which the hold shou	at the hole the liquid initially and Id be punched so that th	he liquid travels	the maximum W
ð			[Neglect air re	sistance in these calcu	llations]	[JE	E - 95, 10] 👸
FREE Download Study Package from we	18.	(a) Initia (b) Initia	al speed with wh al speed with wh	In radius rests on a plat nose area is 10^{-4} m ² is plowing : nich the water flows from nich the water strikes th y the tank to half its orig	ne groundand	he tank is filled e on the side of	with water to a $\stackrel{\it ad}{\stackrel{\it o}{\stackrel{\it o}{\stackrel{\scriptstyle }{}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$
	19.	cylinder	- ·	•	caping through a small (relative to atmospheric	• •	-


GetS	Solution of These I	Packages & Learn b	•	•	uhag.com
	(A) $\frac{1}{3}$ ms ⁻¹	(B) $\frac{10}{3}$ ms ⁻¹	(C) $\frac{100}{3}$ ms ⁻¹	(D) $\frac{1000}{3}$ ms ⁻¹	
20.		L and area of cross–see non–viscous liquid (Fig		to rotate in a vertical	
	of the liquid. The root then released. Show	The density d ₁ of the mat d is displaced by a sma v that the motion of the terms of the given para	II angle θ from its equ rod is simple harmor imeters.	ilibrium position and nic and determine its	Partition 1
			[JEE - 96		
21.	A large open top cor	ntainer of negligible mas	ss and uniform cross–	-sectional area A has a	small hole of &
	cross-sectional area	ntainer of negligible mas $\frac{A}{100}$ in its side wall nea iquid of density ρ and ma t = 0, calculate	ar the bottom. The con	itainer is kept on a smo	oth horizontal of
	(a) The acceleration	quid of density ρ and ma t = 0, calculate of the container and 75 % of the liquid has c			, O
22.		d of constant density 1			
<i>LL</i> .	variable cross sections shown in the figure. and Q at heights of and 8×10^{-3} m ² . The	on. The tube is kept inc The area of cross-section 2 meters and 5 meters e velocity of the liquid folume by the pressure	lined in the vertical p on of the tube at two p are respectively 4 × at point P is 1 m/s. F and the gravity forces	lane as points P 10^{-3} m^2 Find the s as the P	Q 2 5m 5m 203 303 203 203
23.	8	tinuously from a tap havi \times eter of the water stream eaves the tap is 4 \times 10 owing from a tap becom	10	0-3	(T).
24.				. This can be explaine	
	(A) Viscosity(C) Conservation of e		Surface tension Conservation of volum	e flux	[REE - 97] (.i
25.	cross-sectional area of water, and that th	emerges vertically of the tap is 10^{-4} m ² . As e flow is steady. The cr	ssume that the pressur oss-sectional area of	re is constant throughd the stream 0.15 m bel	out the stream r ow the tap is : 0
26.	(A) 4 times that of C	(B) $1.0 \times 10^{-5} \text{ m}^2$ nd Q having diameters 2 ℓ line of water. The veloc Q Q ngth ℓ , and radius R and	(P) 2 times that a	(D) 2.0 × 10 ⁻⁵ m ² m, respectively, are jo n pipe P is	2 ² bined in series
27.	A wooden stick of ler	ngth ℓ , and radius R and	density ρ has a small	metal piece of mass m	i (of negligible S
28.	volume) attached to it would make the stick A large open tank ha	ts one end. Find the minir float vertically in equilibr is two holes in the wall. (ar hole of radius R at a tities of water flowing ou (B) 2 π L	num value for the mass rium in a liquid of densi One is a square hole o	s m (in terms of given pa ty σ (> ρ). f side L at a depth y fro	arameters) that ··· [JEE - 99, 10] د m the top and لع المعالية
	(A) $\frac{L}{\sqrt{2\pi}}$	(B) 2 π L	(C) L	(D) $\frac{L}{2\pi}$	sko C
~ ~					<u> </u>

An air bubble in a water tank rises from the bottom to the top. Which of the following statements are true? \vdash (A) Bubble rises upwards because pressure at the bottom is less than that at the target of the statement of the st

- (B) Bubble rises upwards because pressure at the bottom is greater than that at the top.
- (C) As the bubble rises, its size increases.
- (D) As the bubble rises, its size decreases.

[REE-2000]

30. A cylindrical vessel filled with water upto a height of 2m stands on horizontal plane. The side wall of the

ANSWER

F																
& www.MathsBySuhag.com				<u>EXER</u>	<u>CISE</u>	- 1				<u> </u>	EXER	CISE	- 3			
<u> </u>	SECT	ION (A):						1.	В	2.	С	3.	С	4.	Α
ğ	A 1.	A 1. Density of air decreases with the height exponen-							5.	A	6.	D	7.	В	8.	A
Ę		tially.							9. 13.	B	10.	A	11. 15.	B B	12. 16.	A
ល	A 2. Pressure at heights gets reduced, resulting rising							17.	A D	14. 18.	B C	15. 19.	A	20.	D C	
\geq	of ink and leakage. A 3. $P = \rho (gh + a\ell)$ A 4. $p = p_a + d_0 gh + 2/3 ch^{3/2}$									В	22.	č	23.	A	24.	A
щ	A 3.	P = p	(gn + a /og 1 N	ιε) Ν	A 4. p	$= p_a + 0$	a _o gn +	2/3 CN ^{%2}	21. 25.	С	26.	C	27.	В	28.	В
Ë	A 5. 10 kg (98.1 N) A 6. 500 kg/m³ , 0.5 A 7. 248 KN/m²								29.	D	30.	В	31.	В		
at	A 8.			KN/m ²				,				EXER	CISE	- 4		
\geq			89.5 K	N/m ²	at S =	46.4KI	√/m²				-	_/_			_	
Š		ION (B						6 11	1.	0.1 m			2.	$\frac{d^2 H^2}{2}$	<u>s</u> = 32	0 J,
≥	В1. В3.	No same		it's de	ensity is	s nign	becaus	e of salt.								
3	В3. В4.			ovancv	and ce	ntre of	aravitv	are diffrent	3.	$h = \frac{3\ell}{2}$	$-\ell\sqrt{5}$	4.	1.02 1	N		
∞			ng tor				9								12	
Ε	B 5.	10 cm			B 6.		n, 4 se	C	5.) 35 KN	/m² (c)	64 KIN	/m-	
õ	B 7.	3.33 li			B 8.	h = 4.	5 m									
0	В9.	7.61 g)		B 10. ↑	2.78			6.	1	_	7	<u>π</u> ρ _w F 4	⁴	10 1	
0 S					_		_		0.	^{×=} 3	}	7.	4	— = TC	10 J	
ŝ					'									+ d		
g	B 11.	11.159	%	B 12.					9.	0.5 se	ec.	9.	(a) _		(b) No	
\overline{O}						_	S	\rightarrow						-		
õ		(i) 2.3) – 56.	7 N		0					EXER	CISE	<u>- 5</u>		
꽃		ION (C							1.	С	2.	A	3.	A	4.	В
F.	C 1.						roof, p	ressure de-	5. 9.	D B	6. 10.	BC	7.	A	8.	D
Ş	C 2.			Iting up			e canno	ot have two	9. 11.	Б С	12.	(I) A	A 13.	(II) (I)	A B	(II) A
www.TekoClasses.com	02.	velocit			n, nulu	particit	5 canne	i nave two	14.	В	15.	В	16.	500 F		(11)
<	C 3.			ined by	contin	uity equ	uation.			-		_	E			
	C 3. C 4. C 5. C 6. C 8. C 9. C 10.		decre	ase in a	air pres	sure be	tween	person and	17.	(a)	(i) De	nsity =	b			
ite	C F	train.	dooro	ana in	nrooou	in ha	tween						4			
SC	C 6.	h = 2		ase in C7.	(a) 10	m/s	(b) 2 x	< 10 ⁻³ m³/s						1		
e	C 8.			(b) 50							(ii) Pr	essure	= P ₀ +	$\frac{-}{4}$ (6 H	H + L) (gg
≥	C 9.			(b) 50		(c) zer										
Ε	C 10.	(a) 25		(b) 50			8 N/m ²			(b)	(i) v =	$\sqrt{\frac{g}{g}}$ (3H	l – 4h)	(ii) <i>x</i>	$x = \sqrt{h(x)}$	3H – 4h)
2		(a) 20 2.13 c		(D) 46	5-IN/III-							•		. ,	v	,
€ E	•			EXER	CISE	- 2				(;;;) ×	3	H, h _{max}	<u>3H</u>			
ğ	SECT	ION (A):							(III) X _m	^{ax} ⁼ 4	п, п _{max}	⁼ 8			
â	A 1.	С	A 2.	А	A 2.	В	A 4.	A	18.	(a) 10) m/s	(b) 14	4.1 m/s	; (c) 2.	5 hr	
<u></u>	A 5.	А	A 6.	А	Α7.	D	A 8.	ACD						3g (d	$(2 - d_1)$	
С О	SECT	ION (B	3):						19.	(C)		20.	ω = 1	2L	 d ₁	
5	B 1.	BC	B 2.	CD	В3.	D	В4.	D				_			1 /	
Ð.	B 5.	A	B 6.	A		В	B 8.	D	21.	(a) 0.2	$D = m/a^2$	(h) 2	m_0			
ť	B 9.	C	B 10. B 14.		B 11. B 15.		B 12. B 16.		21.	(a) 0.2	≥ m/s²	(D) 1 ⁻	Αρ			
0	B 17.	C	B 18.	A	B 19.		B 20.		22.	2.94 >	× 104 J	/m³, 29	025 J/ı	m³		
g	B 21.	Č	B 22.		B 22.		B 24.		23.	3.6 ×	10⁻³ m		24.	C, D		
ö	B 25.	А	B 26.		B 27.		B 28.		25.	С	26.	А	27.	m ³ p	r²l (√ρα	$\frac{1}{2}$ – r)
Ľ	B 29.	BC													•	0 .)
Š	SECTI	ON (C)):						28. 31.	A D	29. 32.	BC D	30.	0.113	m	
ň	C 1.	А	C 2.			С		Α	33.				:m (c)	a/6 (u	owards)	l.
	C 5.	В	C 6.		C 7.		C 8.			(,,, _0		,	(0)			
Ш	C 13	B	C 10. C 14.		C 11. C 15.		C 12. C 16.		34.	2 m	35	٨	36.	H = -	ω ² L ²	
μ	C 17.	2.13 c ION (A C A ION (B B C A C C A B C C A B C C A B C C A B C C A B C C A B C C A A B C C A A B C C A A B C A A B C A A B C A A B C C A A B C C A A B C A A B C C A A B C C A A B C C A A B C C A A B C C A A B C C A A A B C C A A B C C A A A A	C 18.		0 101	J	0.101		54.	<u>د</u> ۱۱۱	35.	A	50.	n =	2g	
ш									37.	С	38.	А	39.	А		

A