EXERCISE-1

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com **SECTION (B) : SPHERICAL MIRROR**

- As we move from point C to D in the graph, the (real/virtual) object moves from B 15. to .and the (real/virtual) image moves from ____ to .Show this movement in a diagram.
- B 16. A point object is placed on the principal axis at 60 cm infront of a concave mirror of focal length 40 cm on the principal axis. If the object is moved with a velocity of 10 cm/s (a) along the principal axis find the velocity of image (b) perpendicular to the principal axis, find the velocity of image at that moment.
- B 17. A man uses a concave mirror for shaving. He keeps his face at a distance of 20 cm from the mirror and gets an image which is 1.5 times enlarged. Find the focal length of the mirror. 4 page

REFRACTION IN GENERAL, REFRACTION AT PLANE SURFACE AND T.I.R. SECTION (C) :

- A light ray falling at an angle of 60° with the surface of a clean slab of ice of thickness 1.00 m is $\overset{\circ}{\mathbb{R}}$ refracted into it at an angle of 15°. Calculate the time taken by the light rays to cross the slab. Speed $\overset{\circ}{\mathbb{R}}$ C1.
- A light ray is incident at 45° on a glass slab. The slab is 3 cm thick, and the refractive index of the glass 6 is 1.5. What will the displacement of the ray be as a result of its passage through the angle will the ray emerge from the slab is 1.5. C 2. angle will the ray emerge from the slab? 7779.
- C 3. An observer in air (n = 1) sees the bottom of a beaker filled with water (n = 4/3) upto a height of 40 cm. What will be the depth felt by this observer.

Rays incident on an interface would converge 10 cm below the interface if they continued to move in straight lines without bending. But due to refraction, the rays will bend and meet some where else. Find the distance of meeting point of refracted rays below the interface, assuming the rays to be making small angles with the normal to the interface.

- Find the apparent distance between the observer and the object shown in the figure and shift in the position of object.
- Find the apparent depth of the object seen by obsever A?

Α	Air(n=1)
n=1.5	25cm 🗘
n=2.5	15cm 🕽
object n=2	10cm 🕽

Locate the image of the point P as seen by the eye in the figure.

μ=1

10cm

B

observer

observer

n=1

10cm

μ=1

20cm

С

D

μ**=2**

10cm

n=5/2

object

Sir), Bhopal

Ľ.

È

40ci

C 8. A small object is placed at the centre of the bottom of a cylindrical vessel of radius 3 cm and height 4 cm filled completely with water. Consider the ray leaving the vessel through a corner. Suppose this ray and the ray along the axis of the vessel are used to trace the image. Find the apparent depth of the image.Refractive index of water = 4/3.

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com <u>SECTION (E): REFRACTION BY SPHERICAL SURFACE</u>

B

0

7779,

Đ

- F 6. Given an optical axis MN & the positions of a real object A B and its image A' B', determine diagramatically the position of the lens (its optical centre O) and its foci. Is it a converging or diverging lens? Is the image real or virtual?
- A thin lens made of a material of refractive index μ_p has a medium of refractive index μ_1 on one side and \bigotimes^{A^*} F 7 a medium of refractive index µ, on the other side. The lens is biconvex and the two radii of curvature has o equal magnitude R. A beam of light travelling parallel to the principal axis is incident on the lens. Where $\overline{\omega}$ will the image be formed if the beam is incident from (a) the medium μ_{2} and (b) from the medium μ_{2} ?
- An object of height 6 cm is set at right angles to the optical axis of a double convex lens of optical power 5 D & 25 cm away from the lens. Determine the focal length of the lens, the position of the F 8. image, the linear magnification of the lens, and the height of the image formed by it.
- A lens placed between a candle and a screen forms a real triply magnified image of the candle on the screen. When the lens is moved away from the candle by 0.8 m without changing the position of the candle, a real image one-third the size of the candle is formed on the screen. Determined the lens is F 9. candle, a real image one-third the size of the candle is formed on the screen. Determine the focal length of the lens. Ł.
- Two glasses with refractive indices of 1.5 & 1.7 are used to make two identical double-convex lenses. F 10. Find the ratio between their focal lengths. (i)
 - (ii) How will each of these lenses act on a ray parallel to its optical axis if the lenses are submerged into a transparent liquid with a refractive index of 1.6?
- R. Kariya (S. F 11. A lens with a focal length of 16 cm produces a sharp image of a real object in two positions of lens which are 60 cm apart. Find the distance (fixed) from the object to the screen.
- which are 60 cm apart. Find the distance (fixed) from the object to the screen. F 12. it. Where should the object be placed to produce a triple size real image?
- A pin of length 2.0 cm lies along the principal axis of a converging lens, the centre being at a distance of 11 cm from the long. The feed length of the long is 6 cm. Find the size of the image F 13. of 11 cm from the lens. The focal length of the lens is 6 cm. Find the size of the image.
- Classes, F 14. The diameter of the sun is 1.4×10^9 m and its distance from the earth is 1.5×10^{11} m. Find the diameter of the image of the sun formed by a lens of focal length 40 cm.
- A 5.0 diopter lens forms a virtual image which is 4 times the object placed perpendicularly on the F 15. principal axis of the lens. Find the distance of the object from the lens.
- F 16. A diverging lens of focal length 20 cm and a converging mirror of focal length 10 cm are placed coaxially at a separation of 5 cm. Where should an object be placed so that a real image is formed at the object itself?

ш

- **F 17.** A converging lens of focal length 12 cm and a diverging mirror of focal length 7.5 cm are placed 5.0 cm apart with their principal axes coinciding. Where should an object be placed so that its image falls on itself?
- **F 18.** A converging lens and a diverging mirror are placed at a separation of 15 cm. The focal length of the lens is 25 cm and that of the mirror is 40 cm. Where should a point source be placed between the lens and the mirror so that the light, after getting reflected by the mirror and then getting transmitted by the lens, comes out parallel to the principal axis?
- **F 19.** A converging lens of focal length 15 cm and a converging mirror of length 10 cm are placed 50 cm apart. If a object of length 2.0 cm is placed 30 cm from the lens farther away from the mirror, where will the final image form and what will be the size of the final image?
- **F 20.** A point object is placed on the principal axis of a convex lens (f = 15 cm) at a distance of $\overleftarrow{000}_{100}$ 30 cm from it. A glass plate ($\mu = 1.50$) of thickness 1 cm is placed on the other side of the lens $\overleftarrow{000}_{100}$ perpendicular to the axis. Locate the image of the point object.
- F 21. A convex lens of focal length 20 cm and a concave lens of focal length 10 cm are placed 10 cm apart %
 with their principal axes coinciding. A beam of light travelling parallel to the principal axis and having a o beam diameter 5.0 mm, is incident on the combination. Show that the emergent beam is parallel to the incident one. Find the beam diameter of the emergent beam.
- **F 22.** A diverging lens of focal length 20 cm and a converging lens of focal length 30 cm are placed 15 cm of apart with their principal axes coinciding. Where should an object be placed on the principal axis so of that its image is formed at infinity?

SECTION (G) : COMBINATION OF LENSES/LENS & MIRRORS.

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

- **G 1.** 2 identical thin converging lenses brought in contact so that their axes coincide are placed 12.5 cm of from an object. What is the optical power of the system & each lens, if the real image formed by the asystem of lenses is four times as large as the object?
- **G 2.** A point object is placed at a distance of 15 cm from a convex lens. The image is formed on the other a side at a distance of 30 cm from the lens. When a concave lens is placed in contact with the convex lens, the image shifts away further by 30 cm. Calculate the focal lengths of the two lenses.
- **G 3.** A convex & a concave lens are brought in close contact along their optical axes. The focal length of the convex lens is 10 cm. When the system is placed at 40 cm from an object, a sharp image of the conjugation object is formed on a screen on the other side of the system. Determine the optical power of the concave object is formed on a screen the object & the screen is 1.6m.
- **G 4.** A thin concavo-concave lens is surrounded by two different liquids A and B as shown in figure. The system is supported by a plane mirror at the bottom. Refractive index of A, lens and B are 9/5, 3/2 and 4/3 respectively. The radius of curvature of the surfaces of the lens are same and equal to 10 cm. Where should an object be placed infront of this system so that final image is formed on the object itself.
- **G 5.** The convex surface of a thin concavo-convex lens of glass of refractive index 1.5 has a radius of curvature 20 cm. the concave surface has a radius of curvature 60 cm. The convex side is silvered and placed on a horizontal surface as shown in figure. (a) Where should a pin be placed on the axis so that its image is formed at the same place? (b) If the concave part is filled with water ($\mu = 4.3$), find the distance through which the pin should be moved so that the image of the pin again coincides with the pin.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com SECTION (H) : DISPERSION OF LIGHT

- Η1. A certain material has refractive indices 1.56, 1.60 and 1.68 for red, yellow and violet light respectively. (a) Calculate the dispersive power. (b) Find the angular dispersion produced by a thin prism of angle 6° made of this material.
- Η2. A flint glass prism and a crown glass prism are to be combined in such a way that the deviation of the mean ray is zero. The refractive index of flint and crown glasses for the mean ray are 1.620 and 1.518 respectively. S If the refracting angle of the flint prism is 6.0°, what would be the refracting angle of crown prism?
- Η3. Three thin prisms are combined as shown in figure. The refractive indices of the crown glass for red, yellow and violet rays are μ_{i} , μ_{j} and μ_{j} respectively and those for the flint glass are μ' , μ' and μ' respectively. Find the ratio A' /A for which (a) there is no net angular dispersion, and (b) there is no net deviation in the yellow ray.

θ

Note : * Marked questions are MCQ.

SECTION (A) : PLANE MIRROR

Two plane mirrors are inclined to each other at an angle 60°. If a ray of light incident on the first mirror is o A 1. Bhopal Phone: 0 903 parallel to the second mirror, it is reflected from the second mirror

EXERCISE-2

- (A) Perpendicular to the first mirror (C) Parallel to the second mirror
- (B) Parallel to the first mirror (D) Perpendicular to the second mirror
- A 2. Two mirrors are inclined at an angle θ as shown in the figure. Light ray is incident parallel to one of the mirrors. The ray will start retracing its path after third reflection if

(A) $\theta = 45^{\circ}$ (B) $\theta = 30^{\circ}$ (C) $\theta = 60^{\circ}$ (D) all three

- A 3.* Two plane mirrors are parallel to each other and spaced 20 cm apart. An object Two plane mirrors are parallel to each other and spaced 20 cm apart. An object is kept in between them at 15 cm from A. Out of the following at which point(s) image(s) is/are not formed in mirror A (distance measured from mirror A): Ł. (B) 25 cm (C) 45 cm (D) 55 cm (A) 15 cm с. A point object is kept in front of a plane mirror. The plane mirror is doing SHM of amplitude 2 cm. The plane A 4. mirror moves along the x-axis and x- axis is normal to the mirror. The amplitude of the mirror is such that the
- Kariya object is always infront of the mirror. The amplitude of SHM of the image is (A) zero (B) 2 cm (C) 4 cm (D) 1 cm A 5. A person's eye level is 1.5 m. He stands in front of a 0.3m long plane mirror which is 0.8 m above the ground. c
- A person's eye level is 1.5 m. He stands in front of a 0.3m long plane mirror which is 0.8 m above the ground. The length of the image he sees of himself is: (A) 1.5m (B) 1.0m (C) 0.8m (D) 0.6m A person is standing in a room of width 200 cm. A plane mirror of vertical length 10 cm is fixed on a wall of the person. The person looks into the mirror from distance 50 cm. How much width (height) is of the wall behind him will he be able to see: (A) 30 cm (B) 40 cm (C) 50 cm (D) none of these An unnumbered wall clock shows time 04: 25: 37, where 1st term represents hours, 2nd represents seconds. What time will its image in a plane mirror show. (A) 08: 35: 23 (B) 07: 35: 23 (C) 07: 34: 23 (D) none of these A 6.

Α7.

eko A plane mirror is moving with velocity $4\hat{i} + 5\hat{j} + 8\hat{k}$. A point object in front of the mirror moves with a A 8.

velocity $3\hat{i} + 4\hat{i} + 5\hat{k}$. Here \hat{k} is along the normal to the plane mirror and facing towards the object. The velocity of the image is:

- (A) $-3\hat{i} 4\hat{j} + 5\hat{k}$ (B) $3\hat{i} + 4\hat{j} + 11\hat{k}$ (C) $-3\hat{i} 4\hat{j} + 11\hat{k}$ (D) $7\hat{i} + 9\hat{j} + 11\hat{k}$
- A 9. Images of an object placed between two plane mirrors whose reflecting surfaces make an angle of 90° with

Ш

	Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com						
		one another lie on a : (A) straight line	(B) zig-zag curve	(C) circle	(D) ellipse		
E	<u>SECTI</u>	ON (B) : SPHERI	CAL MIRROR				
lg.cc	B 1. A concave mirror of radius of curvature 20 cm forms image of the sun. The d an angle 1° on the earth. Then the diameter of the image is (in cm):		he diameter of the sun subtends				
uha		(A) 2 π/9	(B) π/9	(C) 20	(D) π/18		
ByS	B 2.*		ect) formed by a concave tance of the object from t	mirror is twice the size of t he mirror is (are)	the object. The focal length of the $\frac{0}{00}$		
aths	D 0	(A) 10 cm	(B) 30 cm	(C) 25 cm	(D) 15 cm		
w.M	В3.	magnification will be: (A) $- 1/3$	(B) 1/3	(C) 2/3	he pole of a convex mirror. Its $\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $		
\mathbb{N}	В4.	An object is kept perpe	endicular to the principal	axis of a convex mirror	(D) - 2/3 of radius of curvature 20 cm. If 8		
т Х	5	the distance of the obj (A) + $1/3$	ect from the mirror is 20 $(B) - 1/3$	cm then its magnificati $(C) - 1$	on will be: O		
www.TekoClasses.com & www.MathsBySuhag.com	B 5.	An object of height 1 curvature 20 cm. If the	cm is kept perpendicula distance of the object f	ar to the principal axis c rom the mirror is 20 cm	of a convex mirror of radius of then the distance between tips $\overset{6}{6}$		
a SS6					603 90		
COI		(A) $\sqrt{\frac{6404}{9}}$	(B) $\sqrt{\frac{6414}{9}}$	(C) $\frac{40}{3}$	(D) none of these O		
Tek	B 6.	An object is kept betwe	en a plane mirror and a c	concave mirror facing ea	ch other. The distance between $\frac{1}{2}$ is 20 cm. What should be the $\frac{1}{2}$		
	\langle	distance of the object is formed on the object (A) 5 cm	rom the concave mirror itself: [Consider first ref (B) 15 cm	so that after two succes flection from concave m (C) 10 cm	sive reflections the final image of the sive reflections the final image of the sive mirror] (D) 7.5 cm		
bsite:	B 7.	shown in the figure. The	1 mm is kept at distance 1 focal length of the mirror	5 cm infront of the conca- is 10 cm. The length of th	ve mirror as le perimeter B_C		
m we		of its image will be : (A) 8 mm	(B) 2 mm	(C) 12 mm	(D) 6 mm A D (C) (D) 6 mm A D (C)		
e fro	B 8.	-	he total magnification afte	er two successive reflection	ns first f = 10cm f = -20cm s		
٤age		on $M_1 \&$ then on M_2 (A) + 1	(B) – 2	(C) + 2 (D) – 1			
Download Study Package from web	В9.	focal length 12 cm tow		ce from the mirror is 20			
load S	B 10.*	is object.	nsider the first reflection ge is real, inverted o		econd at the convex mirror. AB		
luwo		magnification	ge is virtual and ere	ect with			
REE		(C) the second image	moves towards the conve e moves away from the	N 500cm	120cm		
ш	B 11.	A particle is moving to	wards a fixed spherical r	nirror. The image:			

	Get S	Solution of These Pa	ackages & Learn by V	/ideo Tutorials on w	ww.MathsBySuhag.com	
_		(A) must move away fro(B) must move towards(C) may move towards	s the mirror			
ро		(D) will move towards t	he mirror, only if the mir	ror is convex.		
nag.c	B 12.	20 cm has velocity 2 m			ave mirror of radius of curvature ocity of image at that instant will	
'Sut		be: (A) 2 mm/s	(B) 4 mm/s	(C) 8 mm/s	(D) none of these	ge 54
hsBy	B 13.	A point object at 15 cm the principal axis with a	from a concave mirror amplitude 2 mm. The an	of radius of curvature 2 nplitude of its image wil	0 cm is made to oscillate along	paç
Jat		(A) 2 mm	(B) 4 mm	(C) 8 mm	(D) none of these	•
∠.vv	B 14.		ect from the focus of a co of the image from the fo (B) a / b ²	ocus is:		98930 58881
Ş				(C) a²/ 4b	(D) none of these	989
& E		$ v-f $. $ v-f = f^2 \Rightarrow$, 0
asses.com & www.MathsBySuhag.com	B 15.	A concave mirror canr (A) virtual image of vir (C) real image of a rea	rtual object	(B) virtual image of a (D) real image of a vir		903 7779
\overline{O}	B 16.	The largest distance of (A) 20 cm	f the image of a real obje (B) infinite (C) 10		r of focal length 20 cm can be: n the position of the object	
www.Teko	B 17.*	(A) a concave mirror for	ving statements are inco orms only virtual images ms only virtual images f orms only a virtual dimini	for any position of real of a real	object	al Phone: 0 903
		the focus (D) a convex mirror form	ms a virtual magnified im	nage of an object placed	t placed between its pole and lbetween its pole.	Bhop
site:	B 18.	Which of the following (A) plane mirror	can form erect, virtual, d	liminished image? (B) concave mirror		Sir),
		(C) convex mirror		(D) none of these		н. К
ми	B 19.	I is the image of a point c	object O formed by spheric	cal mirror, then which of th	ne following statement is incorrect	S.
Download Study Package from web		(A) If O and I are on san (B) If O and I are on opp (C) If O and I are on oppo (D) If O is on principal a	ne side of the principal ax posite sides of the principa osite side of the principal a xis then I has to lie on pri	is, then they have to be o al axis, then they have to axis, then they can be on o ncipal axis only.	on opposite sides of the mirror. be on same side of the mirror. opposite side of the mirror as well.	g R. Kariya
ack	B 20.				ge is received on a screen	Suha
ך ש		placed at a distance of v 1/ v versus 1/ u is	/from the mirror. If f is the	focal length of the mirro	r, then the graph between	ths :
Stuc		1/v ↑	1/∨	1/v ♠	1/v ♠	s, Ma
load		(A) 1/u	(B) → 1/u	(C) 1/u	(D)	Teko Classes, Maths : Suhag
Nown	B 21.	A real inverted image in	a concave mirror is repre	sented by (u, v, f are coor	rdinates)	Teko
		v/f	v/f	√/f •	√/f	
		(A)	(B) (() ↓↓ u/f	
<u> </u>		+1				
	Su	ccessful People Replace	the words like; "wish", "t	ry" & "should" with "I Wi	II". Ineffective People don't.	

SECTION (C) : LAWS OF REFRACTION, REFRACTION AT PLANE SURFACE AND T.I.R. FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com C 1. When a wave is refracted: (B) its amplitude must change (A) its path must change (C) its velocity must change (D) its frequency must change C 2. The wavelength of light in vacuum is 6000 °A and in a medium it is 4000 °A. The refractive index of the medium 52 is: page (A) 2.4 (C) 1.2 (B) 1.5 (D) 0.67 C 3. A ray of light passes from vacuum into a medium of refractive index n. If the angle of incidence is twice the angle of refraction, then the angle of incidence is: 0 98930 58881 (C) $2\cos^{-1}(n/2)(D) 2\sin^{-1}(n/2)$ (A) $\cos^{-1}(n/2)$ (B) $\sin^{-1}(n/2)$ C 4. A ray of light is incident on a parallel slab of thickness t and refractive index n. If the angle of incidence θ is small, than the displacement in the incident and emergent ray will be: (A) $\frac{t \theta (n-1)}{n}$ (B) $\frac{t\theta}{n}$ (C) $\frac{t\theta n}{n-1}$ (D) none $[k y^{3/2} + 1]^{1/2}$ where k = 1 m^{-3/2} and follows path as shown. What is the total deviation produced by slab when the ray comes out. (A) 60⁹ C 5. 903 903 (A) 60º (B) 53º (C) $\sin^{-1}(4/9)$ (D) no deviation at all A ray incident at a point at an angle of incidence of 60° enters a glass sphere of $\mu = \sqrt{3}$ and it is reflected and refracted rays at this surface is (A) 500 (P) 00° (C) 50° (C) 50° (P) 00° (C) 50° (C) 50° (P) 00° (P) 0 C 6. (C) 60° (A) 50° (B) 90° Sir), Bhopal (D) 40° 1m C 7. How much water should be filled in a container of 21 cm in height, so that it appears half filled (of total height of the container) when viewed from the top air of the container? (Assume near normal incidence and $\mu_{w}=4/3$) ¥. (A) 8.0 cm (B) 10.5 cm (C) 12.0 cm (D) 14.0 cm с. A beam of light is converging towards a point. A plane parallel plate of glass of thickness to great refractive index μ is introduced in the path of the beam. The convergent point is shifted by (assume near normal incidence): (A) t $\left(1-\frac{1}{\mu}\right)$ away (B) t $\left(1+\frac{1}{\mu}\right)$ away (C) t $\left(1-\frac{1}{\mu}\right)$ nearer (D) t $\left(1+\frac{1}{\mu}\right)$ nearer (D) t $\left(1+\frac{1}{\mu}\right)$ nearer (D) t $\left(1+\frac{1}{\mu}\right)$ nearer (Eiven that, velocity of light in quartz = 1.5×10^8 m/s and velocity of light in equation of quartz is placed in glycerine as shown. The shift of the object produced by slab is (A) 6 cm (B) 3.55 cm (C) 9 cm (D) 2 cm A beam of light is converging towards a point. A plane parallel plate of glass of thickness t. O C 8. C 9. C 10. An object is seen through a glass slab of thickness 36 cm and refractive index 3/2. The observer, object

and the slab are dipped in water (n = 4/3). The shift produced in the position of the object is:

	Gets	Solution of 11	nese Packages & Le	arn by Video Tutorials o	on www.iviatnsBySunag	g.com
		(A) 12 cm		(B) 4 cm	18cm	
		(C) cannot be	calculated	(D) 9/2 cm	Glycerine	Slycerine
Е	C 11.*	A ray of mono	ochromatic light is incider	nt on the plane surface of ser		Object
8	• • • •	tween two me		20cm		
<u>0</u> .	refraction ' <i>r' in</i> the medium <i>y</i> . The graph shows the relation between sin r and sin i. Sin r (A) the speed of light in the medium y is $(3)^{1/2}$ times then in medium x.					
Э					X.	ıartz
Ч				(1/3) ^{1/2} times then in medium place when the incidence is ir		56
Ś				place when the incidence is ir	200	Ð
Ы		(_)		p		Sini
JS	C 12.	The critical ar	ngle of light going from m	nedium A to medium B is θ . ⁻	The speed of light in mediu	m A is v.
www.MathsBySuhag.com		The speed of	light in medium B is:			
Σ		V V	(D)	(0)		98930 58881
, ≥		(A) $\frac{v}{\sin\theta}$	(B) v sin θ	(C) v $\cot \theta$	(D) v tan θ	22
≥						93(93(
	<u>SECTI</u>	<u>ON (D) : RE</u>	FRACTION BY PRIS	M		86
∞ ∞	D 1.	A ray of mono	chromatic light is incident of	on one refracting face of a pris	sm of angle 75 ⁰ . It passes thr	ough the O
Ľ		prism and is in	cident on the other face at	the critical angle. If the refrac	tive index of the material of t	he prism م
ğ			le of incidence on the first			177
လို့		(A) 30 ⁰	(B) 45 ⁰	$(C) 60^{0}$	(D) 0 ⁰	03 1
ŝŝ	D 2.	A prism havin	g refractive index $\sqrt{2}$ and	l refracting angle 30º, has one	e of the refracting surfaces r	polished.
as		A beam of light	ht incident on the other re	l refracting angle 30º, has one efracting surface will retrace	its path if the angle of incid	dence is:
$\overline{\mathbf{O}}$		(A) 0º	(B) 30 ⁹	⁰ (C) 45º	(D) 60º	0
Š	D 3.	A ray of light is	s incident at angle <i>i</i> on a s	surface of a prism of small ar	ngle A & emerges normally	from the 😐
ē		opposite surfa	ace. If the refractive ind	ex of the material of the pri	sm is μ , the angle of incid	ence <i>i</i> is 2
<u> </u>		nearly equal t	to:			료
>						
2		(A) Α/μ	(B) A/(2μ)	(C) µ A	(D) μ A/2	oal
www.TekoClasses.com &	D 4.*				(D) µ A/2	hopal
	D 4.*	For the refract (A) For ev	tion of light through a prism very angle of deviation the	n re are two angles of incidence.		, Bhopal
ite:	D 4.*	For the refracti (A) For ev (B) The lig	tion of light through a prism very angle of deviation the ght travelling inside an isos			-
site:	D 4.*	For the refract (A) For ev (B) The lig minim	tion of light through a prism very angle of deviation the ght travelling inside an isos num deviation.	n re are two angles of incidence sceles prism is necessarily par		-
site:	D 4.*	For the refract (A) For ev (B) The lig minim (C) There	tion of light through a prism very angle of deviation then ght travelling inside an isos num deviation. are two angles of incidence	n re are two angles of incidence sceles prism is necessarily par ce for maximum deviation.	rallel to the base when prism	is set for \widehat{J}
site:	D 4.*	For the refract (A) For ev (B) The lig minim (C) There (D) Angle	tion of light through a prism very angle of deviation then ght travelling inside an isos num deviation. are two angles of incidence	n re are two angles of incidence sceles prism is necessarily par	rallel to the base when prism	is set for $(\vec{s}, \vec{s}, \vec{s},$
site:		For the refract (A) For ev (B) The lig minim (C) There (D) Angle mediu	tion of light through a prism very angle of deviation the ght travelling inside an isos num deviation. are two angles of incidence of minimum deviation will um unchanged.	n re are two angles of incidence sceles prism is necessarily par ce for maximum deviation. increase if refractive index of p	rallel to the base when prism prism is increased keeping the	is set for . e outside e
site:	D 4.*	For the refract (A) For ev (B) The lig minim (C) There (D) Angle mediu	tion of light through a prism very angle of deviation the ght travelling inside an isos num deviation. are two angles of incidence of minimum deviation will um unchanged.	n re are two angles of incidence sceles prism is necessarily par ce for maximum deviation. increase if refractive index of p	rallel to the base when prism prism is increased keeping the idence differing by 20°. The	is set for . e outside e
site:	D 5.*	For the refracti (A) For ev (B) The lig minim (C) There (D) Angle mediu An equilateral angles of incid (A) 40 ⁰	tion of light through a prism very angle of deviation the ght travelling inside an isos num deviation. are two angles of incidence of minimum deviation will um unchanged. I prism deviates a ray thro dences are: (B) 50 ⁰	n re are two angles of incidence sceles prism is necessarily par ce for maximum deviation. increase if refractive index of p ough 40° for two angles of inci (C) 20°	rallel to the base when prism prism is increased keeping the idence differing by 20°. The (D) 60°	is set for for e outside (S. K. Sir), bossible (S. K. Sir), bossible (S. K. Sir),
site:	D 5.*	For the refracti (A) For ev (B) The lig minim (C) There (D) Angle mediu An equilateral angles of incid (A) 40 ⁰	tion of light through a prism very angle of deviation the ght travelling inside an isos num deviation. are two angles of incidence of minimum deviation will um unchanged. I prism deviates a ray thro dences are: (B) 50 ⁰	n re are two angles of incidence sceles prism is necessarily par ce for maximum deviation. increase if refractive index of p ough 40° for two angles of inci (C) 20°	rallel to the base when prism prism is increased keeping the idence differing by 20°. The (D) 60°	is set for for e outside (S. K. Sir), bossible (S. K. Sir), bossible (S. K. Sir),
site:	D 5.*	For the refracti (A) For ev (B) The lig minim (C) There (D) Angle mediu An equilateral angles of incid (A) 40 ⁰	tion of light through a prism very angle of deviation the ght travelling inside an isos num deviation. are two angles of incidence of minimum deviation will um unchanged. I prism deviates a ray thro dences are: (B) 50 ⁰	n re are two angles of incidence sceles prism is necessarily par ce for maximum deviation. increase if refractive index of p ough 40° for two angles of inci (C) 20°	rallel to the base when prism prism is increased keeping the idence differing by 20°. The (D) 60°	is set for for e outside (S. K. Sir), bossible (S. K. Sir), bossible (S. K. Sir),
site:	D 5.*	For the refracti (A) For ev (B) The lig minim (C) There (D) Angle mediu An equilateral angles of incid (A) 40 ⁰	tion of light through a prism very angle of deviation the ght travelling inside an isos num deviation. are two angles of incidence of minimum deviation will um unchanged. I prism deviates a ray thro dences are: (B) 50 ⁰	n re are two angles of incidence sceles prism is necessarily par ce for maximum deviation. increase if refractive index of p ough 40° for two angles of inci (C) 20°	rallel to the base when prism prism is increased keeping the idence differing by 20°. The (D) 60°	is set for for e outside (S. K. Sir), bossible (S. K. Sir), bossible (S. K. Sir),
site:	D 5.*	For the refracti (A) For ev (B) The lig minim (C) There (D) Angle mediu An equilateral angles of incid (A) 40 ⁰	tion of light through a prism very angle of deviation the ght travelling inside an isos num deviation. are two angles of incidence of minimum deviation will um unchanged. I prism deviates a ray thro dences are: (B) 50 ⁰	n re are two angles of incidence sceles prism is necessarily par ce for maximum deviation. increase if refractive index of p ough 40° for two angles of inci (C) 20°	rallel to the base when prism prism is increased keeping the idence differing by 20°. The (D) 60°	is set for for e outside (S. K. Sir), bossible (S. K. Sir), bossible (S. K. Sir),
site:	D 5.*	For the refracti (A) For ev (B) The lig minim (C) There (D) Angle mediu An equilateral angles of incid (A) 40 ⁰	tion of light through a prism very angle of deviation the ght travelling inside an isos num deviation. are two angles of incidence of minimum deviation will um unchanged. I prism deviates a ray thro dences are: (B) 50 ⁰	n re are two angles of incidence sceles prism is necessarily par ce for maximum deviation. increase if refractive index of p ough 40° for two angles of inci (C) 20°	rallel to the base when prism prism is increased keeping the idence differing by 20°. The (D) 60°	is set for for e outside (S. K. Sir), bossible (S. K. Sir), bossible (S. K. Sir),
site:	D 5.*	For the refracti (A) For ev (B) The lig minim (C) There (D) Angle mediu An equilateral angles of incid (A) 40 ⁰	tion of light through a prism very angle of deviation the ght travelling inside an isos num deviation. are two angles of incidence of minimum deviation will um unchanged. I prism deviates a ray thro dences are: (B) 50 ⁰	n re are two angles of incidence sceles prism is necessarily par ce for maximum deviation. increase if refractive index of p ough 40° for two angles of inci (C) 20°	rallel to the base when prism prism is increased keeping the idence differing by 20°. The (D) 60°	is set for for e outside (S. K. Sir), bossible (S. K. Sir), bossible (S. K. Sir),
site:	D 5.*	For the refracti (A) For ev (B) The lig minim (C) There (D) Angle mediu An equilateral angles of incid (A) 40 ⁰	tion of light through a prism very angle of deviation the ght travelling inside an isos num deviation. are two angles of incidence of minimum deviation will um unchanged. I prism deviates a ray thro dences are: (B) 50 ⁰	n re are two angles of incidence sceles prism is necessarily par ce for maximum deviation. increase if refractive index of p ough 40° for two angles of inci (C) 20°	rallel to the base when prism prism is increased keeping the idence differing by 20°. The (D) 60°	is set for for e outside (S. K. Sir), bossible (S. K. Sir), bossible (S. K. Sir),
site:	D 5.*	For the refracti (A) For ev (B) The lig minim (C) There (D) Angle mediu An equilateral angles of incid (A) 40 ⁰	tion of light through a prism very angle of deviation the ght travelling inside an isos num deviation. are two angles of incidence of minimum deviation will um unchanged. I prism deviates a ray thro dences are: (B) 50 ⁰	n re are two angles of incidence sceles prism is necessarily par ce for maximum deviation. increase if refractive index of p ough 40° for two angles of inci (C) 20°	rallel to the base when prism prism is increased keeping the idence differing by 20°. The (D) 60°	is set for for e outside (S. K. Sir), bossible (S. K. Sir), bossible (S. K. Sir),
site:	D 5.*	For the refracti (A) For ev (B) The lig minim (C) There (D) Angle mediu An equilateral angles of incid (A) 40° A beam of mode emergence is (A) 30° For refraction f (A) increation (B) will be (C) is dire (D) will defined A prism of refraction	tion of light through a prism very angle of deviation there ght travelling inside an isos num deviation. are two angles of incidence of minimum deviation will um unchanged. I prism deviates a ray through dences are: (B) 50° conochromatic light is inci- to a small angled prismant (B) < 30° through a small angled prismant (B) < 30° through a small angled prismant asses with the increase in F e 2D for a ray of R.I. 2.4 if ectly proportional to the angle active index $\sqrt{2}$ has refract	n re are two angles of incidence sceles prism is necessarily par ce for maximum deviation. increase if refractive index of p ough 40° for two angles of inci (C) 20°	rallel to the base when prism prism is increased keeping the idence differing by 20°. The (D) 60°	e outside bossible for some source classes, Maths : Suhag R. Kariya (S. R. K. Sir),
site:	D 5.*	For the refracti (A) For ev (B) The lig minim (C) There (D) Angle mediu An equilateral angles of incid (A) 40° A beam of models emergence is (A) 30° For refraction for (A) increation (B) will be (C) is dire (D) will det A prism of refraction	tion of light through a prism very angle of deviation the ght travelling inside an isos are two angles of incidence of minimum deviation will um unchanged. I prism deviates a ray thro dences are: (B) 50° conochromatic light is inci a 40°, then the angle of m (B) < 30° through a small angled prise ases with the increase in F e 2D for a ray of R.I. 2.4 if ectly proportional to the angle crease with the increase in active index $\sqrt{2}$ has refract an angle :	The are two angles of incidence sceles prism is necessarily para the for maximum deviation. Increase if refractive index of p bugh 40° for two angles of inci- (C) 20° ident at i = 50° on one face of inimum deviation is: (C) $\leq 30^{\circ}$ sm, the angle of minimum deviation it is D for a ray of R.I. 1.2 gle of the prism in R.I. of a prism. ting angle 60° . In order that a rate	rallel to the base when prism prism is increased keeping the idence differing by 20° . The (D) 60° of an equilateral prism, the (D) $\geq 30^{\circ}$ viation (n _s < n _p)	e outside bossible for some source classes, Maths : Suhag R. Kariya (S. R. K. Sir),
site:	D 5.*	For the refracti (A) For ev (B) The lig minim (C) There (D) Angle mediu An equilateral angles of incid (A) 40° A beam of mode emergence is (A) 30° For refraction f (A) increation (B) will be (C) is dire (D) will defined A prism of refraction	tion of light through a prism very angle of deviation there ght travelling inside an isos num deviation. are two angles of incidence of minimum deviation will um unchanged. I prism deviates a ray through dences are: (B) 50° conochromatic light is inci- to a small angled prismant (B) < 30° through a small angled prismant (B) < 30° through a small angled prismant asses with the increase in F e 2D for a ray of R.I. 2.4 if ectly proportional to the angle active index $\sqrt{2}$ has refract	n re are two angles of incidence sceles prism is necessarily par ce for maximum deviation. increase if refractive index of p ough 40° for two angles of inci (C) 20°	rallel to the base when prism prism is increased keeping the idence differing by 20°. The (D) 60°	is set for for e outside (S. K. Sir), bossible (S. K. Sir), bossible (S. K. Sir),
site:	D 5.* D 6. D 7.* D 8.	For the refracti (A) For ev (B) The lig minim (C) There (D) Angle mediu An equilateral angles of incid (A) 40° A beam of models emergence is (A) 30° For refraction f (A) increation (B) will be (C) is dire (D) will det A prism of refration (A) 45°	tion of light through a prism very angle of deviation the ght travelling inside an isos uum deviation. are two angles of incidence of minimum deviation will um unchanged. I prism deviates a ray through dences are: (B) 50° prochromatic light is inci- (B) 50° prochromatic light is inci- (B) $< 30^{\circ}$ through a small angled pris- ases with the increase in F e 2D for a ray of R.I. 2.4 if ectly proportional to the ang- ecrease with the increase is active index $\sqrt{2}$ has refract an angle : (B) 90°	The are two angles of incidence, sceles prism is necessarily para the for maximum deviation. increase if refractive index of p bugh 40° for two angles of inci- (C) 20° ident at i = 50° on one face of inimum deviation is: (C) $\leq 30^{\circ}$ sm, the angle of minimum deviation R.I. of the prism it is D for a ray of R.I. 1.2 gle of the prism in R.I. of a prism. ting angle 60°. In order that a rate (C) 30°	rallel to the base when prism prism is increased keeping the idence differing by 20°. The (D) 60° of an equilateral prism, the (D) $\geq 30^{\circ}$ viation (n _s < n _p) ay suffers minimum deviation (D) none	Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir),
site:	D 5.*	For the refracti (A) For ev (B) The lig minim (C) There (D) Angle mediu An equilateral angles of incid (A) 40° A beam of models (A) 30° For refraction for (A) incread (B) will be (C) is dire (D) will de A prism of refraction be incident at a (A) 45° For a glass prise	tion of light through a prism very angle of deviation the ght travelling inside an isos num deviation. are two angles of incidence of minimum deviation will um unchanged. I prism deviates a ray thro dences are: (B) 50° conochromatic light is inci- (B) 50° conochromatic light is inci- (B) < 30° through a small angled pris- ases with the increase in F e 2D for a ray of R.I. 2.4 if ectly proportional to the an- ecrease with the increase in active index $\sqrt{2}$ has refract an angle : (B) 90° sm ($\mu = \sqrt{2}$) the angle of r	The are two angles of incidence sceles prism is necessarily para the for maximum deviation. Increase if refractive index of p bugh 40° for two angles of inci- (C) 20° ident at i = 50° on one face of inimum deviation is: (C) $\leq 30^{\circ}$ sm, the angle of minimum deviation it is D for a ray of R.I. 1.2 gle of the prism in R.I. of a prism. ting angle 60° . In order that a rate	rallel to the base when prism prism is increased keeping the idence differing by 20°. The (D) 60° of an equilateral prism, the (D) $\geq 30^{\circ}$ viation (n _s < n _p) ay suffers minimum deviation (D) none	Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir),
ite:	D 5.* D 6. D 7.* D 8.	For the refracti (A) For ev (B) The lig minim (C) There (D) Angle mediu An equilateral angles of incid (A) 40° A beam of models emergence is (A) 30° For refraction f (A) increation (B) will be (C) is dire (D) will det A prism of refration (A) 45°	tion of light through a prism very angle of deviation the ght travelling inside an isos num deviation. are two angles of incidence of minimum deviation will um unchanged. I prism deviates a ray thro dences are: (B) 50° conochromatic light is inci- (B) 50° conochromatic light is inci- (B) < 30° through a small angled pris- ases with the increase in F e 2D for a ray of R.I. 2.4 if ectly proportional to the an- ecrease with the increase in active index $\sqrt{2}$ has refract an angle : (B) 90° sm ($\mu = \sqrt{2}$) the angle of r	The are two angles of incidence, sceles prism is necessarily para the for maximum deviation. increase if refractive index of p bugh 40° for two angles of inci- (C) 20° ident at i = 50° on one face of inimum deviation is: (C) $\leq 30^{\circ}$ sm, the angle of minimum deviation R.I. of the prism it is D for a ray of R.I. 1.2 gle of the prism in R.I. of a prism. ting angle 60°. In order that a rate (C) 30°	rallel to the base when prism prism is increased keeping the idence differing by 20°. The (D) 60° of an equilateral prism, the (D) $\geq 30^{\circ}$ viation (n _s < n _p) ay suffers minimum deviation (D) none	Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir),

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

F 2. E	curvature for one surface is double that of the other. Then radii of curvature for the two surfaces are (in cm (A) 6, 12 (B) 12, 24 (C) 3, 6 (D) 18, 36							
o.pag.c ع	$R_A = 0.9 R_B$. If $n_A = 1.63$ (A) 1.7	B, find n _B . (B) 1.6	(C) 1.5	(D) 4/3	58			
0) К F 4. С П S	. When a lens of power P (in air) made of material of refractive index μ is immersed in liquid of re index $\mu_{\scriptscriptstyle 0}.$ Then the power of lens is:							
.Math	$(A)\frac{\mu-1}{\mu-\mu_0} ~P$	$(B)\frac{\mu-\mu_0}{\mu-1} P$	$(C)\frac{\mu-\mu_0}{\mu-1}\cdot\frac{P}{\mu_0}$	(D) none of these	58881.			
www.TekoClasses.com & www.MathsBySuhag.com 4 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A lens behaves as a con material is (refractive in (A) equal to unity (C) between unity and 1	idex of water = 1.33)	diverging lens in water. T (B) equal to 1.33 (D) greater than 1.33	he refractive index of the), 0 98930 5			
100 F 6.	length 100 cm is used to is about	provide an image of the s	sun on to a screen. The dia	arth. A converging lens of focal ameter in mm of the image formed	903 7776			
koClass 14				(D) 9 of intensity I. Now the central part al length and image intensity would	: 0 903			
- Т. ммм _{F 8} .	(A) f/2, l/2	(B) f, I/4 uble convex lens of powe	(C) 3f/4, I/2 er P is cut into three part	(D) f, 3I/4 ts, as shown in the figure. Power	Bhopal Phone			
ebsite: •	(A) 2 P In the figure given below respectively. The distar	(B) $\frac{P}{2}$ w, there are two convex ler the between L ₁ and L ₂ will	(C) $\frac{P}{3}$ ns L ₁ and L ₂ having focal le		R. K. Sir), B			
M E	(A) f ₁	(B) f ₂	(C) $f_1 + f_2$	(D) $f_1 - f_2$	ya (S.			
JJ F 10.* DD F 10.*	Which of the following (A) concave mirror (C) plane mirror	cannot form real image	e of a real object ? (B) convex mirror (D) diverging lens		g R. Kari			
/ Pack	received on a screen pla		nverging lens and its re m the lens. If <i>f</i> is the focal	eal image is $L_1 \qquad \qquad$	าร : Suha			
Download Study Package from we 11 ± 11 15 *.	(A)	(B) (B) 1/u	(C)	(D)	Teko Classes, Maths : Suhag R. Kariya (S.			
о́ F 12. ЭЭН Э	A virtual erect image by	y a diverging lens is rep	resented by (u, v, f are co	ordinates)	F			

_	G 4.	Two pla	ano-convex lens	ses each of focal length	10 cm & refract	ive index $\frac{3}{2}$ are placed			
com		as show	wn. In the spac	e left, water $\left(R.I.=\frac{4}{3}\right)$	is filled. The wh	nole arrangement is in			
uhag.		air. The (A) 6.6		of the system is (in di (B) - 6.67	opters): (C) 33.3	(D) 20	09		
3 ySL	G 5.	The foo	cal length of a p	lano-concave lens is –	10 cm, then its	focal length when its pl			
thsE		(A) 20 d		(B) – 5 cm	(C) 5 cm	(D) none of the			
www.TekoClasses.com & www.MathsBySuhag.com	G 6.*	identica shown: (A) thre (B) two (C) the	al halves. They ee images will be images will be f ratio of focal ler	are placed in different v e formed in case (i) formed in the case (i) ngths in (ii) & (iii) is 1 ngths in (ii) & (iii) is 2		Fig(i) Fig(ii)	Fig(iii) Fig(iii) 62		
sses.co	G 7.			length 25 cm and a cor d cm. If the power of the (B) 30		cal length 20 cm are mou zero, <i>d</i> is equal to (D) 5	unted coaxially 2 806		
Clas	<u>SECTION</u>	<u>ON (H)</u>	: DISPERSIC	ON OF LIGHT			06 0		
www.Teko	н 1.	ON (H) : DISPERSION OF LIGHT Endotropy of the second s							
ebsite: v	H 2.	Critical (A) red	angle of light pas	ssing from glass to air is (B) green	minimum for (C) yellow	(D) violet	Sir), Bhopal		
	Н 3.	A plane the lea (A) viol	.51 15.	olaced over various co (B) yellow	loured letters. T	The letter which appear (D) green	S.		
e fror	H 4.	A medi (A) 3/50		6, n _r = 1.44. Then its di (B) 6/25	spersive power (C) 0.03	is: (D) none of the	R. Kariya		
ckag	H 5.	All the listed things below are made of flint glass. Which one of these have greatest dispersive power of the set of th							
, Pa		(A) prism (B) glass slab (C) biconvex		(C) biconvex le	ns (D) all have sar	$\frac{\sigma}{2}$			
Study	H 6.	made of glass of refractive index 1.72 to produce dispersion without deviation. The angle of the prism P ₂ is : 2							
Download Study Package from w	H 7.		5 & n _r = 1.48. Th	00 Å is incident at smal ne angle of dispersion p (B) 0.08º		m of apex angle 4º. The prism in this light is: (D) none of the	ō		
FREE Dov	H 8.*	 A norrow beam of white light goes through a slab having parallel faces (A) The light never splits in different colours (B) The emergent beam is white (C) The light inside the slab is split into different colours (D) The light inside the slab is white 							

- H 9.* By properly combining two prisms made of different materials, it is possibel to
 - (A) have dispersion without average deviation
 - (B) have deviation without dispersion
 - (C) have both dispersion and average deviation
 - (D) have neither dispersion nor average deviation
- FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com H 10.* Which of the following quantities increases when wavelength is increased? Consider only the magnitudes (A) The power of a converging lens (B) The focal length of a converging lens (C) The power of a diverging lens (D) The focal length of a diverging lens EXERCISE-3 Note : * marked questions are MCQ. **SELECT THE CORRECT ALTERNATIVE(S)** 1.* A flat mirror M is arranged parallel to a wall W at a distance / from it. The light produced by a point source S kept on the wall is reflected by the mirror and produces a light patch on the wall. The mirror moves with velocity v towards the wall. The patch of light will move with the speed v on the wall. (A) (B) The patch of light will not move on the wall. (C) As the mirror comes closer the patch of light will become larger and shift away from the wall with speed larger then v. (D) The size of the light patch on the wall remains the same. An object is placed 30 cm (from the reflecting surface) in front of a block of glass 10 cm thick having its 0 farther side silvered. The image is found to be at 23.2 cm behind the silvered face, by an observer infront of the block. The refractive index of glass is : (A) 1.41 (B) 1.46 (C) 200/132 (D) 1.61 A ray of light strikes a plane mirror at an angle of incidence 45° as shown in the figure. After reflection, the ray passes through a prism of refractive index 1.50, whose apex angle is 4°. The angle through which the mirror should be rotated if 2. 3. the total deviation of the ray is to be 90° is : (B) 1⁰ anticlockwise (A) 1⁰ clockwise (C) 2⁰ clockwise (D) 2⁰ anticlockwise 4. When the object is at distances $u_1 \& u_2$ the images formed by the same lens are real and virtual respectively and of the same size. Then focal length of the lens is: (A) $\frac{1}{2}\sqrt{u_1u_2}$ (B) $\frac{u_1 + u_2}{2}$ (C) $\sqrt{u_1 u_2}$ $(D) 2 (u_1 + u_2)$ A man wishing to get a picture of a Zebra photographed as white donkey after fitting a glass with black streaks onto the lens of his camera. (A) The image will look like a white donkey on the photograph. (B) The image will look like a Zebra on the photograph (C) The image will be more intense compared to the case in which no such glass is used. (D) The image will be less intense compared to the case in which no such glass is used. A beam of white light is incident on hollow prism of glass. Then : 6. (A) the light emerging from prism gives no dispersion (B) the light emerging from prism gives spectrum but the bending of all colours is away from base. (C) the light emerging from prism gives spectrum, all the colours bend towards base, the violet the most and red the least. (D) the light emerging from prism gives spectrum, all the colours bend towards base, the violet the least and red the most. 7. A light ray I is incident on a plane mirror M. The mirror is rotated in the direction as shown in the figure by an

90°

4°3

5

wall

S.

88

- 22. For a prism of apex angle 45⁰, it is found that the angle of emergence is 45⁰ for grazing incidence. Calculate the refractive index of the prism. (A) (2)^{1/2} (B) (3)^{1/2} (C) 2 (D) (5)^{1/2}
- 23*. The angle of minimum deviation from a prism is 30°. If the prism angle is 90°, if the refractive index of the material of the prism is μ and the angle of incidence required for minimum deviation is i, then

(C) $\mu = 1.5$

(D) i = 90°

2 page (

0 98930 58881.

Ŀ.

Ē

R. Kariya (S.

1.8m

(A)
$$\mu = \sqrt{\frac{3}{2}}$$
 (B) $i = 60^{\circ}$

The angular dispersion produced by a small angle prism placed in air :

(A) increases if the average refractive index of the prism increases

(B) increases if the average refractive index decreases

(C) remains constant whether the average refractive index increases or decreases

(D) has no relation with average refractive index

- 25.* Which of the following quantities related to a lens depend on the wavelength of the incident light? (A) power (B) focal length
 - (C) chromatic aberration

(D) radii of curvature

EXERCISE-4

- A right angle prism (45°-90°-45°) of refractive index n has a plate of refractive index n, (n, < n) cemented to its diagonal face. The assembly is in air. a ray is incident on AB (see the figure).</p>
 (i) Calculate the angle of incidence at AB for which the ray strikes the diagonal face at the critical angle.
 (ii) Assuming n = 1.352. Calculate the angle of incidence at AB for which the refracted ray passes through the diagonal face undeviated. [JEE '96, 3/100]
 A thin plano-convex. Lens of focal length F is split into two halves, one of the halves is shifted along the optical axis. The separation between object and image planes is 1.8 m. The magnification of the image formed by one and image planes is 1.8 m. The magnification of the image formed by one of the half lenses is 2. Find the focal length of the lens and separation between the two halves. Draw the ray diagram for image formation. [JEE '96, 5/100]
 - Which of the following form(s) a virtual and erect image for all positions of the object? (A) Convex lens (B) Concave lens (C) Convex mirror (D) Concave mirror [JEE '96, 2/100]
 - uhag A small fish, 0.4 m below the surface of a lake, is viewed through a simple converging lens of focal length 3 m. The lens is kept at 0.2 m above the water surface such that the fish lies on the optical axis Maths of the lens. Find the image of the fish seen by the observer. The refractive index of the water is 4/3. [REE '96, 5]
- Teko Classes, A thin equiconvex lens of glass of refractive index $\mu = 3/2$ & of focal length 0.3 m in air is sealed into an opening at one end of a tank filled with water ($\mu = 4/3$). On the opposite 0.9m side of the lens, a mirror is placed inside the tank on the tank wall perpendicular to the lens axis, as shown in figure. The separation between the lens and the mirror is 0.8 m. A small object is placed outside the tank in front of the lens at a distance of 0.9 m from the lens along its axis. Find the position (relative to the lens) of the image of the object formed by the system.

[JEE'97,5]

[JEE '98 3/200 Each]

- A concave mirror is placed on a horizontal table, with its axis directed vertically upwards. Let O be (i) the pole of the mirror and C its centre of curvature. A point object is placed at C. It has a real image, also located at C. If the mirror is now filled with water, the image will be:
 - (A) real, & will remain at C
 - (B) real, & located at a point between C and ∞
 - (C) virtual, & located at a point between C and O
 - (D) real, & located at a point between C and O
- (ii) A ray of light travelling in a transparent medium falls on a surface separating the medium from air at 😮 an angle of incidence of 45°. The ray undergoes total internal reflection. If n is the refractive index of the medium with respect to air, select the possible value(s) of n from the following: (D) 1.6 (A) 1.3 (B) 1.4 (C) 1.5

(iii) A spherical surface of radius of curvature R separates air (refractive index 1.0) from glass (refractive _ index 1.5). The centre of curvature is in the glass. A point object P placed in air is found to have a $\bigotimes_{n=1}^{\infty}$ real image Q in the glass. The line PQ cuts the surface at a point O and PO = OQ. The distance PO $\bigotimes_{n=1}^{\infty}$ is equal to: 0 98930 (C) 2R (D) 1.5 R

A prism of refractive index n, and another prism of refractive index n, are stuck together without a gap as shown in the figure. The angles of the prisms are as shown. n, and n, depend on λ , the wavelength of light according

to
$$n_1 = 1.20 + \frac{10.8 \times 10^4}{\lambda^2}$$
 and $n_2 = 1.45 + \frac{1.80 \times 10^4}{\lambda^2}$ where λ is in nm.

- (i) Calculate the wavelength λ_0 for which rays incident at any angle on the interface BC pass through without bending at that interface.
- Phone: 0 For light of wavelength λ_{0} , find the angle of incidence i on the face AC such that the deviation (ii) produced by the combination of prisms is minimum. [JEE '98, (2 + 6)/200]

A rod made of glass ($\mu = 1.5$) and of square cross-section is bent into the shape shown in figure. A parallel beam of light falls perpendicularly on the plane flat surface A. Referring to the diagram, d is the width of a side and R is the radius of inner semicircle. Find the maximum value of ratio d/R so that all light entering the glass through surface A emerge from the glass through surface B. [REE '98, 5]

- A concave lens of glass, refractive index 1.5, has both surfaces of same radius of curvature R. On immersion in a medium of refractive index 1.75, it will behave as a (A) convergent lens of focal length 3.5R (B) convergent lens of focal length 3.0 R. (C) divergent lens of focal length 3.5 R (D) divergent lens of focal length 3.0 R
- R. Kariya (S. $\begin{bmatrix} JEE '99, 2/100 \end{bmatrix}$ The x-y plane is the boundary between two transparent media. Medium-1 with z > 0 has refractive prior index $\sqrt{2}$ and medium -2 with z < 0 has a refractive index $\sqrt{3}$. A ray of light in medium-1 given by the given by the $\sqrt{3}$ i + 8 $\sqrt{3}$ i - 10 k is incident on the plane of separation. Find the unit vector in the direction of refracted ray in medium - 2. A quarter cylinder of radius R and refractive index 1.5 is placed on a table. A point object P is kept at a distance of mR from it. Find the value of m for which a ray from P will emerge parallel to the table as shown in the figure. [JEE '99, 5/100] Two symmetric double-convex lenses L₁ & L₂ with their radii of curvature 0.2 m each are made from glasses with refractive index 1.2 & 1.6 respectively. The lenses with a separation [JEE '99, 2/100]

903 903 7779,

R. K. Sir), Bhopal

n.

semi

circ

60

- 11.
- each are made from glasses with refractive index 1.2 & 1.6 respectively. The lenses with a separation of 0.345 m are submerged in a transparent liquid medium with a refractive index of 1.4. Find the focal lengths of lens L, & L₂. An object is placed at a distance of 1.3 m from L, find the location of its image while the whole system remains inside the liquid. [REE '99, 5] 13.

[JEE '2000 (Screening) 3/105 Each]

ш

- (a) A diverging beam of light from a point source S having divergence angle α , falls symmetrically on a glass slab as shown. The angles of incidence of the two extreme rays are equal. If the thickness of the glass slab is t and the refractive index n, then the divergence angle of the emergent beam is (A) zero (B) α (C) $sin^{-1}(1/n)$ (D) $2\sin^{-1}(1/n)$
- (b) A rectangular glass slab ABCD, of refractive index n₂, is immersed in water of refractive index $n_2(n_1 > n_2)$. A ray of light is incident at the surface AB of the slab as shown. The maximum value of the angle of incidence $\alpha_{_{\text{max}}},$ such that the ray comes out only from the other surface CD is given by

(A)
$$\sin^{-1} \left\lfloor \frac{n_1}{n_2} \cos \left(\sin^{-1} \frac{n_2}{n_1} \right) \right\rfloor$$
 (B) $\sin^{-1} \left\lfloor n_1 \cos \left(\sin^{-1} \frac{1}{n_2} \right) \right\rfloor$
(C) $\sin^{-1} \left(\frac{n_1}{n_2} \right)$ (D) $\sin^{-1} \left(\frac{n_2}{n_1} \right)$

- (c) A point source of light B is placed at a distance L in front of the centre of a mirror of width d hung vertically on a wall. A man walks in front of the mirror along a line parallel to the mirror at a distance 2L from it as shown. The greatest distance over which he can see the image of the light source in the mirror is (A) d/2 (B) d (C) 2d (D) 3d
- 903 903 7779, 2L (d) A hollow double concave lens is made of very thin transparent material. , 0 It can be filled with air or either of two liquids L, or L, having refractive indices n, and n, respectively $(n_0 > n_1 > 1)$. The lens will diverge a parallel beam of light if it is filled with Phone (B) air and immersed in L₁. (A) air and placed in air. (C) L₁ and immersed in L_2 . (D) L, and immersed in L,.

A convex lens of focal length 15 cm and a concave mirror of focal length 30 cm are kept with their optic axes PQ and RS parallel but separated in vertical direction by 0.6 cm as shown. The distance between the lens and mirror is 30 cm. An upright object AB of height 1.2 cm is placed on the optic axis PQ of the lens at a distance of 20 cm from the lens. If A' B' is the image after refraction from the lens and reflection from the mirror, find the distance A'B' from the pole of the mirror and obtain its magnification. Also locate positions of A' and B' with respect to the optic axis RS. Mains 6/100]

μ

30cm

n

Вţ

I

page 66

0 98930 58881.

Sir), Bhopal

Ł.

с.

Kariya

C

S

2000 ഗ്

*20cm

С

[JEE

- (B) no deviation (D) total internal reflection
- (ii) A ray of light passes through four transparent media with refractive indices μ_1 , μ_2 , μ_3 , μ_4 , as shown in the figure. The surfaces of all media are parallel. If the emergent ray CD is parallel to the incident ray AB, we must have: (A)

prism P Additional prisms Q and R of identical shape and of the

same material as P are now added as shown in the figure. The

$$\mu_1 = \mu_2$$
 (B) $\mu_2 = \mu_3$ (C) $\mu_3 = \mu_4$ (D) $\mu_4 = \mu_1$

eko [JEE 2001 (Mains) 5/100 Each] (i) The refractive indices of the crown glass for blue and red lights are 1.51 & 1.49 respectively h and those of the flint glass are 1.77 & 1.73 respectively. An isosceles prism of angle 6º is made of crown glass. A beam of white light is incident at a small angle on this prism. The other flint glass isosceles prism is combined with the crown glass prism such that there is no deviation of the incident light. Determine the angle of the flint glass prism. Calculate the net dispersion of the combined system.

(i)

ray will now suffer. (A) greater deviation

(C) same deviation as before

ANSWER

F					
	<u> 186155 - 1</u>	SECTION (C) :			
SECT	<u>'ION (A) :</u>	C 1.	2/3 × 10⁻³ sec	C 2.	9.9 mm
<u>с</u> А1.	120 [°] anticlockwise and 240 [°] clockwise.	C 3.			25 cm.
ဂ္ဂ A 2.	30º clockwise.	C 5.	35 cm , Shift = 5 c		
A 3.	60° A 4. 40°				
aths • •	Mirror should be placed on the path of the rays at an \angle of 78° or 12° to the horizontal	C 6.	$\frac{68}{3}$ cm		0.9 cm above P R (R - h)
www.TekoClasses.com & www.MathsBySuhag.com 8 8 8 9 9 1 3 5 8 9 9 9 1 3 3 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Mirror should be placed at an \angle of 45° to the horizontal with mirror surface facing upwards		2.25 cm, 1.78	C 9.	(i) $\frac{\mu}{\mu}$ (ii) $\frac{\mu}{\mu}$
₹ A7.	(a) 1 ; (b) (4, 0) ; (c) No	C 10.	$\frac{\pi h^2}{\mu^2 - 1}$	C 11.	45°
∞ _{A 8.}	Position of image = $(1 \cos 60^{\circ}, -1 \sin 60^{\circ})$		μ² –1		
сот	Velocity of image = $1 \cos 60^{\circ} \hat{i}$, + $1 \sin 60^{\circ} \hat{j}$ m/s.			C 13.	$\alpha > \sin^{-1}\frac{8}{9}$
ပ် A 9.	(4, 0, 0)	<u>SECT</u> D 1.	<u>ION (D) :</u> 90º		
00 SECI	<u>'ION (B) :</u>		37º, This deviation	ie not r	ninimum
<u>й</u> В 1.	infinitely large. B 2. 61.25 cm		$\theta = 60^{\circ}$	10 1101 1	
<u>о</u> в з.	1.95 m B 4. 10.35 cm		$38^\circ = \delta_m = 2 \sin^{-1}$	2/4)	600
₫ в 5.	approx 0.1cm inside the ball bearing 5×10 ⁻³ cm.			(3/4) –	00-
' ≥ B6.	16 cm B 7. 84 cm, 0.05 m	D 5.	(i) 1.5°, (ii) $\frac{3^{\circ}}{8}$		
≩ в 8.	0.2 m from the mirror	SECT	<u>ION (E) :</u>		
		E 1.	240 cm away from	the se	eparating surface
from website: 8 8 8 10		E 2.		sible, i	t will focus close to the
Ә в 9. Х Ц		E 3.	40 cm from pole in t virtual, erect and 4		dium of refrative index 1, size.
В 10.		E 4.	80 cm	E 5.	50 cm
		E 6.	13.5 cm below the	surfa	ce of water
	virtual, virtual	E 7.	(i) No shift is obse	rved	(ii) 1 cm
ୁ ଅ B 12. ପୁ	(i) Real object, Virtual image,(ii) smaller, larger	E 8.	8/3 mm, virtual at		
С _{В 13.}	Virtual object, Real image		<u>ION (F) :</u>		
<u>р</u> в14	larger, smaller	F 1.	75 cm, 150 cm	F 2.	± 24 cm, ± 120 cm
Stu		F 3.	360 cm; ∞; – 600		,
g	C F		, , , , , , , , , , , , , , , , , , ,	1	
<u>O</u> B 15.	to ∞		\wedge		i
MN N	of Object of image E	F 4.	M S	s'	<u> </u>
	real, 2f, infinity: real,2f, f			2	
EE Download Study Package B 13. B 14. B 14. B 15. B 16. B 16.	(a) 40 cm/s opposite to the velocity object.,		\checkmark	ļ	
нц	(b) 20 cm/s opposite along the velocity of object.				
Ш В 17	. 60 cm				

page 69

page 70

SEC	<u> </u>		9.	A	
_ H 1.	D H2. D	H3. C		$3 2\sqrt{2} 1 2\sqrt{2}$	
Ен4.	B H5. D	H6. A	10.	$\vec{r} = \frac{3}{5\sqrt{2}} \hat{i} + \frac{2\sqrt{2}}{5} \hat{j} - \frac{1}{\sqrt{2}} \hat{k}$	
<u>о</u> н7.		H9.* ABC		(angle of incidence = 60° , r = 45°)	
D)	во по. вс	N9. ADC	11.	m = 4/3	
É "			12.	$f_1 = -70 \text{ cm}, f_2 = 70 \text{ cm},$	l
ର୍ <u>xer</u>	RCISE - 3			$V = 560 \text{ cm to the right of } L_2$	
<u></u> Д	o. 1 2 3 4 5 6 7	' 8 9 10	13.	$(a) B (b) A (c) D (d) D^{\dagger}$	-
S An		AD ABD B	14.	A' B' at 15 cm to the right of mirror. B' is 0.3 cm above RS & A' is 1.5 cm below RS. Magnification $\frac{1}{10000000000000000000000000000000000$	
a'o at	o. 11 12 13 14 15 16 17	7 18 19 20		above RS & A' is 1.5 cm below RS. Magnification	
	S C A AB D A B C	B B D		is 1.5 👸	
ξ Q.Ν	o. 21 22 23 24 25		15.	دن (i) C (ii) D O	1
≦ An:	S C D A B ABC ABC		16.	(i) C (ii) D (i) A = 4 ^o , θ = 0.04 (ii) n = 8/5 = 1.6	
∞ <u>ΕΧΕ</u>	RCISE - 4		17.	(i) B (ii) B (iii) C 18. (i) B (ii) D •	
Е					
ပ္ပ 1.	(i) $\sin^{-1}\left[\frac{1}{\sqrt{2}}\left(\sqrt{n^2-n_1^2}-n_1\right)\right]$		19.	$f = \frac{\mu_3 R}{(\mu_3 - \mu_1)}$	
es.	L •	I	20.	$f = \frac{\mu_3 R}{(\mu_3 - \mu_1)}$ B 21. C 22. A	1
www.TekoClasses.com & 1. 5. 3. 4. 2. 2. 2. 4. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	(ii) $r_1 = \sin^{-1} (n \sin 45^{\circ}) = 72.9$ f = 0.4 m, separation = 0.6 m	·4-	20. 23.		
<u>8</u> 2. 0 3.		5	23.		
<u> </u>	B, C		24.	$\frac{dv}{dt} = 0.09 \text{ m/s}; \frac{dm}{dt} = -0.3 \text{ sec}^{-1}$	1
Ч. Ч.	On the object itself		25.	C 26. (a) $i = 60^{\circ}(b) 60^{\circ}$	
⊢. <u>5.</u> ≥	90 cm from the lens towards rig	ght		C 26. (a) i = 60°(b) 60° දු	
≩ 6.	(i) D (ii) C, D (iii) A		27.	C 28. B 29. B R	<u> </u>
≥ _{7.}	(i) $\lambda_0 = 600 \text{ nm}, \text{ n} = 1.5$			and of the second se	
 (1)	(ii) i = sin ⁻¹ (0.75) = 48.59 [♀]				2
site	$(r/R)_{max} = 1/2$		22	<u>o</u>	
q	() max		7 4		
× ₽					
Â				a S)	
ē				Li V	
e f				a B	
g				сі.	
N N N				ac	
ac				S.	
Ē				 ە	1
dy				at	
ŝtu				Ž	
U T				es S	
ac				a ss	
				Ö	1
Ň				Teko Classes, Maths : Suhaq R. Kariya (S.	
õ				F	
Ш					
FREE Download Study Package from website: ∞					