
 jfforeluo/leZ tak I nuef J hi.NNenthegkt

Student's Name : \qquad Class

Roll No.
Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal 유‥: 0903903 7779, 98930 58881, WhatsApp 9009260559 www.TekoClasses.com www.MathsBySuhag.com

1. Wave Equation :

(i) The equation for a progressive wave travelling in the positive x -direction is
$y=\sin 2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)$,
where y is the displacemnet at point x , at time t, A is the amplitude, T is the period and λ is the wavelength.
The frequency is $\frac{1}{\mathrm{~T}}$ and the velocity of the wave is $\frac{\lambda}{\mathrm{T}}$.
(ii) The equation for a stationary wave is

$$
y=\left(2 A \cos \frac{2 \pi x}{\lambda}\right) \sin \frac{2 \pi t}{T}
$$

(iii) Pitch, loudness and quality are the characteristics of a musical note. Pitch depends on the frequency.
(iv) Loudness depends on intensity and quality depends on the waveform of the constituent overtones.
(iv) Resonance occurs when the forcing frequency is equal to the natural frequency of a vibrating body.
(v) Velocity of propagation of sound in a gas $=\sqrt{\frac{\gamma \mathrm{P}}{\mathrm{D}}}$, where D is the density of the gas and γ is the ratio of specific heats.
2. Vibrating air columns:
(i) In a pipe of length L closed at one end, the funamental note has a frequency $f_{1}=\frac{v}{4 L}$, where v is the velocity of sound in air.
(ii) The first overtone $f_{2}=\frac{v}{L}=2 f_{1}$
3. Propagation of sound in solids:
(i) The velocity of propagation of a longitudinal wave in a rod of Young's modulus Y and density ρ is given $\underset{\sim}{\dot{\sim}}$ by

$$
v=\sqrt{\frac{Y}{\rho}}
$$

(iv) Propagation of sound in gases
Laplace formula $\mathrm{v}=\sqrt{\frac{\gamma \mathrm{P}}{\rho}}$
where γ is the ratio of specific heats, P is the pressure and ρ is the density.

$$
\frac{\mathrm{v}_{\mathrm{t}}}{\mathrm{v}_{0}}=\sqrt{\frac{\mathrm{T}}{\mathrm{~T}_{0}}}=\sqrt{\frac{273+\mathrm{t}}{273}}
$$

Here v is the velocity of sound in air.
(a) When the source is moving towards the observer and the observer is moving away from the source, the apparent frequency
b) When the source and the observer are moving towards each other.
(c) When the source and observer are moving away from each other,

$$
\mathrm{f}_{\mathrm{a}}=\frac{\mathrm{v}-\mathrm{v}_{0}}{\mathrm{v}+\mathrm{v}_{\mathrm{s}}} \mathrm{f}_{\mathrm{s}} \quad \underset{\mathrm{v}_{0}}{\circ} \stackrel{\circ}{\mathrm{~s} \quad \mathrm{v}_{\mathrm{s}}}
$$

(d) When the source is moving away from the observer and the observer is moving towards the source

$$
f_{a}=\frac{v+v_{0}}{v+v_{s}} f_{s} \quad \overrightarrow{v_{0}} \quad \vec{s} \vec{v}_{s}
$$

where I is the intensity, I_{0} is a reference intensity.

6. Beats :

When two tuning forks of close but different frequencies f_{1} and f_{2} are vibrating simultaneously at nearby places, a listener observes a fluctuation in the intensity of sound, called beats. The number of beats heard per second is $f_{1}-f_{2}$.

Q. 13 A steel rod having a length of 1 m is fastened at its middle. Assuming young's modulus to be $2 \times 10^{11} \mathrm{~Pa}$, and density to be $8 \mathrm{gm} / \mathrm{cm}^{3}$ find the fundamental frequency of the longitudinal vibration and frequency of first overtone.
Q. 14 Two identical sounds A and B reach a point in the same phase. The resultant sound is C. The loudness of C is $n \mathrm{~dB}$ higher than the loudness of A. Find the value of n.
Q. 15 Sound of wavelength λ passes through a Quincke's tube, which is adjusted to give a maximum intensity I_{0}. Find the distance through the sliding tube should be moved to give an intensity $\mathrm{I}_{0} / 2$.
Q. 16 In a resonance-column experiment, a long tube, open at the top, is clamped vertically. By a separate device, water level inside the tube can be moved up or down. The section of the tube from the open end to the water level act as a closed organ pipe. A vibrating tuning fork is held above the openend, first and the second resonances occur when the water level is 24.1 cm and 74.1 cm repsectively below the open end. Find the diameter of the tube.[Hint : end correction is 0.3 d]
Q. 19 A, B and C are three tuning forks. Frequency of A is 350 Hz . Beats produced by A and B are 5 per second and by B and C are 4 per second. When a wax is put on A beat frequency between A and B is 2 Hz and between A and C is 6 Hz . Then, find the frequency of B and C respectively.
Q. 20 An open organ pipe filled with air has a fundamental frequency 500 Hz . The first harmonic of another organ pipe closed at one end and filled with carbon dioxide has the same frequency as that of the first harmonic of the open organ pipe. Calculate the length of each pipe. Assume that the velocity of sound in air and in carbondioxide to be 330 and $264 \mathrm{~m} / \mathrm{s}$ respectively.

Q. 15	Sound of wavelength λ passes through a Quincke's tube, which is adjusted to give a maximum intens I_{0}. Find the distance through the sliding tube should be moved to give an intensity $\mathrm{I}_{0} / 2$.
Q. 16	In a resonance-column experiment, a long tube, open at the top, is clamped vertically. By a separate device, water level inside the tube can be moved up or down. The section of the tube from the open end to the water level act as a closed organ pipe. A vibrating tuning fork is held above the openend, first and the second resonances occur when the water level is 24.1 cm and 74.1 cm repsectively below the open end. Find the diameter of the tube.[Hint : end correction is 0.3 d]
Q. 17	In a mixture of gases, the average number of degrees of freedom per molecule is 6 . The rms speed ofthe molecules of the gas is c. Find the velocity of sound in the gas.
Q. 18	A fixed source of sound emitting a certain frequency appears as f_{a} when the observer is approaching the source with speed v and frequency f_{r} when the observer recedes from the source with the same speed Find the frequency of the source.
Q. 19	A, B and C are three tuning forks. Frequency of A is 350 Hz . Beats produced by A and B are 5 per second and by B and C are 4 per second. When a wax is put on A beat frequency between A and B is
Q. 20	An open organ pipe filled with air has a fundamental frequency 500 Hz . The first harmonic of ano organ pipe closed at one end and filled with carbon dioxide has the same frequency as that of the
	ic of the open organ pipe. Calculate the length of each pipe. Assume that the velocity of soun
	and in carbondioxide to be 330 and $264 \mathrm{~m} / \mathrm{s}$ respectively.

Q. 1 The figure shows a snap photograph of a vibrating string at $t=0$. The particle P is observed moving
up with velocity $20 \pi \mathrm{~cm} / \mathrm{s}$. The angle made by string at $t=0$. The particle P is observed moving
up with velocity $20 \pi \mathrm{~cm} / \mathrm{s}$. The angle made by string with x -axis at P is 6°.
(a) Find the direction in which the wave is moving

(b) the equation of the wave
(c) the total energy carried by the wave per cycle of the string , assuming that μ, the mass per unit length of the string $=50 \mathrm{gm} / \mathrm{m}$.
Q. 2 A uniform rope of length L and mass m is held at one end and whirled in a horizontal circle with angular velocity ω. Ignore gravity. Find the time required for a transverse wave to travel from one end of the rope to the other.
Q. 3 A symmetrical triangular pulse of maximum height 0.4 m and total length 1 m is moving in the positive x -direction on a string on which the wave speed is $24 \mathrm{~m} / \mathrm{s}$. At $\mathrm{t}=0$ the pulse is entirely located between $x=0$ and $x=1 m$. Draw a graph of the transverse velocity of particle of string versus time at $x=+1 m$.
Q. 4 A steel wire $8 \times 10^{-4} \mathrm{~m}$ in diameter is fixed to a support at one end and is wrapped round a cylindrical tuning peg 5 mm in diameter at the other end. The length of the wire between the peg and the support is 0.06 m . The wire is initially kept taut but without any tension. What will be the fundamental frequency of vibration of the wire if it is tightened by giving the peg a quarter of a turn?
Density of steel $=7800 \mathrm{~kg} / \mathrm{m}^{3}, Y$ of steel $=20 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$.
Q. 5 The displacement of the medium in a sound wave is given by the equation; $y_{1}=A \cos (a x+b t)$ where $\mathrm{A}, \mathrm{a} \& \mathrm{~b}$ are positive constants. The wave is reflected by an obstacle situated $\mathrm{at} \mathrm{x}=0$. The intensity of the reflected wave is 0.64 times that of the incident wave.
(a) what are the wavelength \& frequency of the incident wave.
(b) write the equation for the reflected wave.
velocity ω. Ig
to the other.
x -direction on a string on which the wave speed is $24 \mathrm{~m} / \mathrm{s}$. At $\mathrm{t}=0$ the pulse is entirely located between
$\mathrm{x}=0$ and $\mathrm{x}=1 \mathrm{~m}$. Draw a graph of the transverse velocity of particle of string versus time at $\mathrm{x}=+1 \mathrm{~m}$.
(c) in the resultant wave formed after reflection, find the maximum \& minimum values of the particle speeds in the medium.
Q. 6 In a stationary wave pattern that forms as a result of reflection of waves from an obstacle the ratio of the amplitude at an antinode and a node is $\beta=1.5$. What percentage of the energy passes across the obstacle?
Q.7(a) Astanding wave in second overtone is maintained in a open organ pipe of length l. The distance between
(b) Two consecutive overtones produced by a narrow air column closed at one end and open at the other
\qquad . are 750 Hz and 1050 Hz . Then the fundamental frequency from the column is
(c) A standing wave of frequency 1100 Hz in a column of methane at $20^{\circ} \mathrm{C}$ produces nodes that are 20 cm apart. What is the ratio of the heat capacity at constant pressure to that at constant volume.
Q. 8 A string, 25 cm long, having a mass of $0.25 \mathrm{gm} / \mathrm{cm}$, is under tension. A pipe closed at one end is 40 cm long. When the string is set vibrating in its first overtone, and the air in the pipe in its fundamental frequency, 8 beats/sec are heard. It is observed that decreasing the tension in the string, decreases the beat frequency. If the speed of sound in air is $320 \mathrm{~m} / \mathrm{s}$, find the tension in the string.
Q. 9 A metal rod of length $l=100 \mathrm{~cm}$ is clamped at two points. Distance of each clamp from nearer end is $a=30 \mathrm{~cm}$. If density and Young's modulus of elasticity of rod material are $\rho=9000 \mathrm{~kg} \mathrm{~m}^{-3}$ and $\mathrm{Y}=144 \mathrm{GPa}$ respectively, calculate minimum and next higher frequency of natural longitudinal oscillations of the rod.
Q. 10 Two speakers are driven by the same oscillator with frequency of 200 Hz . They are located 4 m apart on a vertical pole. A man walks straight towards the lower speaker in a direction
(a) How many times will he hear a minimum in sound intensity, and

(b) how far is he from the pole at these moments?
Take the speed of sound to be $330 \mathrm{~m} / \mathrm{s}$, and ignore any sound reflections coming off the ground.
Q. 11 A cylinder ABC consists of two chambers 1 and 2 which contains two different gases. The wall C is rigid but the walls A and B are thin diaphragms. A vibrating tuning fork approaches the wall A with velocity $u=30 \mathrm{~m} / \mathrm{s}$ and air columns in chamber 1 and 2 vibrates with minimum frequency such that there is node (displacement) at B and antinode (displacement) at A. Find
(i) the fundamental frequency of air column.
(ii) Find the frequency of tuning fork.

Assume velocity of sound in the first and second chamber be $1100 \mathrm{~m} / \mathrm{s}$ and $300 \mathrm{~m} / \mathrm{s}$ respectively. Velocity of sound in air $330 \mathrm{~m} / \mathrm{s}$.
Q. 12 A source emits sound waves of frequency 1000 Hz . The source moves to the right with a speed of $32 \mathrm{~m} / \mathrm{s}$ relative to ground. On the right a reflecting surface moves towards left with a speed of $64 \mathrm{~m} / \mathrm{s}$ relative to the ground. The speed of sound in air is $332 \mathrm{~m} / \mathrm{s}$. Find
(a) the wavelength of sound in air by source
(b) the number of waves arriving per second which meet the reflecting surface.
(c) the speed of reflected waves.
(d) the wavelength of reflected waves.
Q. 13 A supersonic jet plane moves parallel to the ground at speed $v=0.75$ mach $(1$ mach $=$ speed of sound $)$. The frequency of its engine sound is $v_{0}=2 \mathrm{kHz}$ and the height of the jat plane is $\mathrm{h}=1.5 \mathrm{~km}$. At some instant an observer on the ground hears a sound of frequency $v=2 v_{0}$, Find the instant prior to the instant of hearing when the sound wave received by the observer was emitted by the jet plane. Velocity of sound wave in the condition of observer $=340 \mathrm{~m} / \mathrm{s}$.
Q. 14 A train of length l is moving with a constant speed v along a circular track of radius R, The engine of the train emits a whistle of frequency f. Find the frequency heard by a guard at the rear end of the train.
Q. 15 A bullet travels horizontally at $660 \mathrm{~m} / \mathrm{s}$ at a height of 5 m from a man. How far is the bullet from the man when he hears its whistle? Velocity of sound in air $=340 \mathrm{~m} / \mathrm{s}$.
Q. 1 A metallic rod of length 1 m is rigidly clamped at its mid-point . Longitudinal stationary waves are set up in the rod in such a way that there are two nodes on either side of the mid-point. The amplitude of an antinode is $2 \times 10^{-6} \mathrm{~m}$. Write the equation of motion at a point 2 cm from the mid-point and those of the constituent waves in the rod. [Young's modulus $=2 \times 10^{11} \mathrm{Nm}^{-2}$, density $=8000 \mathrm{Kg} \mathrm{m}^{-3}$].
[JEE '94, 6]
Q. 2 A whistle emitting a sound of frequency 440 Hz is tied to a string of 1.5 m length and rotated with an angular velocity of $20 \mathrm{rad} \mathrm{s}^{-1}$ in the horizontal plane. Calculate the range of frequencies heard by an observer stationed at a large distance from the whistle .
[JEE '96, 3]
Q. 3 Select the correct alternative :
[JEE '96, $2 \times 2=4$]
(i) The extension in a string, obeying Hooke's law is x. The speed of wave in the stretched string is v. If the extension in the string is increased to 1.5 x , the speed of wave will be
(A) 1.22 v
(B) 0.61 v
(C) 1.50 v
(D) 0.75 v
(ii) An open pipe is suddenly closed at one end with the result that the frequency of third harmonic of the closed pipe is found to be higher by 100 Hz than the fundamental frequency of the open pipe. The fundamental frequency of the open pipe is :
(A) 200 Hz
(B) 300 Hz
(C) 240 Hz
(D) 480 Hz
Q. 4 A whistle giving out 450 Hz approaches a stationary observer at a speed of $33 \mathrm{~m} / \mathrm{s}$. The frequency heard by the observer in Hz is :
(A) 409
(B) 429
(C) 517
(D) 500
Q. 5 The first overtone of an open organ pipe beats with the first overtone of a closed organ pipe with a beat frequency of 2.2 Hz . The fundamental frequency of the closed organ pipe is 110 Hz . Find the lengths of the pipes.
[JEE '97, 5]
Q. 6 A place progressive wave of frequency 25 Hz , amplitude $2.5 \times 10^{-5} \mathrm{~m}$ \& initial phase zero propagates along the (-ve) x-direction with a velocity of $300 \mathrm{~m} / \mathrm{s}$. At any instant, the phase difference between the oscillations at two points 6 m apart along the line of propagation is \qquad \& the corresponding amplitude difference is \qquad m.
[JEE '97, 2]
Q. $7 \quad$ A band playing music at a frequency f is moving towards a wall at a speed v_{b}. A motorist is following the band with a speed v_{m}. If v is the speed of sound, obtain an expression for the beat frequency heard by the motorist .
[JEE '97, 5]
Q. 8 A travelling in a stretched string is described by the equation $\mathrm{y}=\mathrm{A} \sin (\mathrm{kx}-\omega \mathrm{t})$. The maximum particle velocity is :
[JEE '97, 1]
(A) $\mathrm{A} \omega$
(B) ω / k
(C) $d \omega / d k$
(D) x / t
(i) The (x, y) co-ordinates of the corners of a square plate are $(0,0)(\mathrm{L}, 0)(\mathrm{L}, \mathrm{L}) \&(0, \mathrm{~L})$. The edges of the plate are clamped \& transverse standing waves are set up in it. If $u(x, y)$ denotes the displacement of the plate at the point (x, y) at some instant of time, the possible expression(s) for u is/are : ($\mathrm{a}=$ positive constant)
(A) $\operatorname{a~cos}\left(\frac{\pi \mathrm{x}}{2 \mathrm{~L}}\right) \cos \left(\frac{\pi \mathrm{y}}{2 \mathrm{~L}}\right)$
(B) $a \sin \left(\frac{\pi x}{L}\right) \sin \left(\frac{\pi y}{L}\right)$
(C) $\mathrm{a} \sin \left(\frac{\pi \mathrm{x}}{\mathrm{L}}\right) \sin \left(\frac{2 \pi \mathrm{y}}{\mathrm{L}}\right)$
(D) $a \cos \left(\frac{2 \pi \mathrm{x}}{\mathrm{L}}\right) \sin \left(\frac{\pi \mathrm{y}}{\mathrm{L}}\right)$
(ii) A string of length $0.4 \mathrm{~m} \&$ mass $10^{-2} \mathrm{~kg}$ is tightly clamped at its ends . The tension in the string is 1.6 N . Identical wave pulses are produced at one end at equal intervals of time, $\Delta \mathrm{t}$. The minimum value of Δt which allows constructive interference between successive pulses is :
(A) 0.05 s
(B) 0.10 s
(C) 0.20 s
(D) 0.40 s
(iii) A transverse sinusoidal wave of amplitude a, wavelength $\lambda \&$ frequency f is travelling on a stretched string. The maximum speed of any point on the string is $\frac{v}{10}$, where v is speed of propagation of the wave. If $\mathrm{a}=10^{-3} \mathrm{~m}$ and $\mathrm{v}=10 \mathrm{~ms}^{-1}$, then $\lambda \& \mathrm{f}$ are given by :
Q. 10 The air column in a pipe closed at one end is made to vibrate in its second overtone by atuning fork of frequency 440 Hz . The speed of sound in air is $330 \mathrm{~ms}^{-1}$. End corrections may be neglected. Let P_{0}
(i) Find the length L of the air column.
(ii) What is the amplitude of pressure variationat the middle of the column?
(iii) What are the maximum \& minimum pressures at the open end of the pipe.
[JEE ' $98,2+2+2+2$]
(iv) What are the maximum \& minimum pressures at the closed end of the pipe ?
Q. 11 In hydrogen spectrum the wvaelength of H_{α} line is 656 nm , whereas in the spectrum of a distant galaxy, H_{α} line wavelength is 706 nm . Estimated speed of the galaxy with respect to earth is, [JEE '99, 2]
(D) $2 \times 10^{5} \mathrm{~m} / \mathrm{s}$
H_{α} line wavelength is 706 nm . Estimated speed of the galaxy with respect to
$\begin{array}{llll}\text { (A) } 2 \times 10^{8} \mathrm{~m} / \mathrm{s} & \text { (B) } 2 \times 10^{7} \mathrm{~m} / \mathrm{s} & \text { (C) } 2 \times 10^{6} \mathrm{~m} / \mathrm{s} & \text { (D) }\end{array}$
Q. 12 A long wire PQR is made by joining two wires PQ and QR of equal radii. PQ
0.06 kg . QR has length 2.56 m and mass 0.2 kg . The wire PQR is under a ten
wave-pulse of amplitude 3.5 cm is sent along the wire PQ from the end P .
during the propagation of the wave-pulse. Calculate
H_{α} line wavelength is 706 nm . Estimated speed of the galaxy with respect to
$\begin{array}{llll}\text { (A) } 2 \times 10^{8} \mathrm{~m} / \mathrm{s} & \text { (B) } 2 \times 10^{7} \mathrm{~m} / \mathrm{s} & \text { (C) } 2 \times 10^{6} \mathrm{~m} / \mathrm{s} & \text { (D) }\end{array}$
Q. 12 A long wire PQR is made by joining two wires PQ and QR of equal radii. PQ
0.06 kg . QR has length 2.56 m and mass 0.2 kg . The wire PQR is under a ten
wave-pulse of amplitude 3.5 cm is sent along the wire PQ from the end P .
during the propagation of the wave-pulse. Calculate
H_{α} line wavelength is 706 nm . Estimated speed of the galaxy with respect to
$\begin{array}{llll}\text { (A) } 2 \times 10^{8} \mathrm{~m} / \mathrm{s} & \text { (B) } 2 \times 10^{7} \mathrm{~m} / \mathrm{s} & \text { (C) } 2 \times 10^{6} \mathrm{~m} / \mathrm{s} & \text { (D) }\end{array}$
Q. 12 A long wire PQR is made by joining two wires PQ and QR of equal radii. PQ
0.06 kg . QR has length 2.56 m and mass 0.2 kg . The wire PQR is under a ten
wave-pulse of amplitude 3.5 cm is sent along the wire PQ from the end P .
during the propagation of the wave-pulse. Calculate
H_{α} line wavelength is 706 nm . Estimated speed of the galaxy with respect to earth is, [JEE '99, 2]
$\begin{array}{llll}\text { (A) } 2 \times 10^{8} \mathrm{~m} / \mathrm{s} & \text { (B) } 2 \times 10^{7} \mathrm{~m} / \mathrm{s} & \text { (C) } 2 \times 10^{6} \mathrm{~m} / \mathrm{s} & \text { (D) } 2 \times 10^{5} \mathrm{~m} / \mathrm{s}\end{array}$
Q. 12 A long wire PQR is made by joining two wires PQ and QR of equal radii. PQ has length 4.8 m and mass
0.06 kg . QR has length 2.56 m and mass 0.2 kg . The wire PQR is under a tension of 80 N . A sinusoidal
wave-pulse of amplitude 3.5 cm is sent along the wire PQ from the end P . No power is dissipated
during the propagation of the wave-pulse. Calculate 0.06 kg . QR has length 2.56 m and mass 0.2 kg . The wire PQR is under a tension of 80 N . A sinusoidal wave-pulse of amplitude 3.5 cm is sent along the wire PQ from the end P . No power is dissipated
H_{α} line wavelength is 706 nm . Estimated speed of the galaxy with respect to
$\begin{array}{llll}\text { (A) } 2 \times 10^{8} \mathrm{~m} / \mathrm{s} & \text { (B) } 2 \times 10^{7} \mathrm{~m} / \mathrm{s} & \text { (C) } 2 \times 10^{6} \mathrm{~m} / \mathrm{s} & \text { (D) }\end{array}$
Q. 12 A long wire PQR is made by joining two wires PQ and QR of equal radii. PQ
0.06 kg . QR has length 2.56 m and mass 0.2 kg . The wire PQR is under a ten
wave-pulse of amplitude 3.5 cm is sent along the wire PQ from the end P .
during the propagation of the wave-pulse. Calculate
H_{α} line wavelength is 706 nm . Estimated speed of the galaxy with respect to
$\begin{array}{llll}\text { (A) } 2 \times 10^{8} \mathrm{~m} / \mathrm{s} & \text { (B) } 2 \times 10^{7} \mathrm{~m} / \mathrm{s} & \text { (C) } 2 \times 10^{6} \mathrm{~m} / \mathrm{s} & \text { (D) }\end{array}$
Q. 12 A long wire PQR is made by joining two wires PQ and QR of equal radii. PQ
0.06 kg . QR has length 2.56 m and mass 0.2 kg . The wire PQR is under a ten
wave-pulse of amplitude 3.5 cm is sent along the wire PQ from the end P .
during the propagation of the wave-pulse. Calculate
(b) the amplitude of the reflected and transmitted wave-pulses after the incident wave-pulse crosses the joint Q .
[JEE "99, 4 + 6]
Q. 13 As a wave progagates:
(A) the wave intensity remains constant for a plane wave
(C) $\mathrm{f}=\frac{10^{3}}{2 \pi} \mathrm{~Hz}$
(D) $\mathrm{f}=10^{4} \mathrm{~Hz}$
(A) $\lambda=2 \pi \times 10^{-2} \mathrm{~m}$
(B) $\lambda=10^{-2} \mathrm{~m}$
$P_{0} \overline{\bar{\circ}}$
(B) the wave intensity decreases as the inverse of the distance from the sounce for a spherical wave
(C) the wave intensity decreases as the inverse square of the distance from the source for a spherical wave
(D) total power of the sherical wave over the spherical survace centered at the source remains constant at all times.
[JEE '99, 3]
Q. $14 \mathrm{y}(\mathrm{x}, \mathrm{t})=0.8 /\left[(4 \mathrm{x}+5 \mathrm{t})^{2}+5\right]$ represents a moving pulse, where $\mathrm{x} \& \mathrm{y}$ are in meter and t in second. Then:
(A) pulse is moving in $+x$ direction
(B) in 2 s it will travel a distance of 2.5 m
(C) its maximum displacement is 0.16 m
(D) it is a symmetric pulse.
[JEE '99, 3]
Q. 15 In a wave motion $y=a \sin (k x-\omega t)$, y can represent :
(A) electric field
(B) magnetic field
(C) displacement
(D) pressure
[JEE '99, 3]
Q. 16 Standing waves can be produced :
[JEE '99, 3]
(A) on a string clamped at both the ends
(B) on a string clamped at one end and free at the other
(C) when incident wave gets reflected from a wall
(D) when two identical waves with a phase difference of p are moving in same direction
Q. 17 A train moves towards a stationary observer with speed $34 \mathrm{~m} / \mathrm{s}$. The train sounds a whistle and its frequency registered by the observer is f_{1}. If the train's speed is reduced to $17 \mathrm{~m} / \mathrm{s}$, the frequency registered is f_{2}. If the speed of sound is $340 \mathrm{~m} / \mathrm{s}$ then the ratio f_{1} / f_{2} is
[JEE 2000 (Scr), 1]
(A) $18 / 19$
(B) $1 / 2$
(C) 2
(D) $19 / 18$
Q. 18 Two monatomic ideal gases 1 and 2 of molecular masses m_{1} and m_{2} respectively are enclosed in separate container kept at the same temperature. The ratio of the speed of sound in gas 1 to that in gas 2 is given by
(A) $\sqrt{\frac{m_{1}}{m_{2}}}$
(B) $\sqrt{\frac{m_{2}}{m_{1}}}$
(C) $\frac{m_{1}}{m_{2}}$
(D) $\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}$ [JEE 2000 (Scr)]
Q. 19 Two vibrating strings of the same material but lengths L and 2 L have radii $2 r$ and r respectively. They are stretched under the same tension. Both the strings vibrate in their fundamental modes, the one of length L with frequency f_{1} and the other with frequency f_{2}. The ratio f_{1} / f_{2} is given by
(A) 2
(B) 4
(C) 8
(D) 1 [JEE 2000 (Scr), 1]
Q. 20 A 3.6 m long vertical pipe resonates with a source of frequency 212.5 Hz when water level is at certain heights in the pipe . Find the heights of water level (from the bottom of the pipe) at which resonances occur. Neglect end correction. Now, the pipe is filled to a height $\mathrm{H}(\sim 3.6 \mathrm{~m})$. A small hole is drilled $\mathcal{C}^{\boldsymbol{D}}$ very close to its bottom and water is allowed to leak. Obtain an expression for the rate of fall of water level in the pipe as a function of H. If the radii of the pipe and the hole are $2 \times 10^{-2} \mathrm{~m}$ and $1 \times 10^{-3} \mathrm{~m}$ respectively, calculate the time interval between the occurence of first two resonances. Speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.
[JEE 2000, 10]
Q. 21 The ends of a stretched wire of length L are fixed at $x=0$ and $x=L$. In one experiment, the displacement of the wire is $y_{1}=A \sin (\pi x / L) \sin \omega t$ and energy is E_{1} and in another experiment its displacement is $y_{2}=A \sin (2 \pi x / L) \sin 2 \omega t$ and energy is E_{2}. Then
[JEE 2001 (Scr)]
(A) $\mathrm{E}_{2}=\mathrm{E}_{1}$
(B) $\mathrm{E}_{2}=2 \mathrm{E}_{1}$
(C) $\mathrm{E}_{2}=4 \mathrm{E}_{1}$
(D) $\mathrm{E}_{2}=16 \mathrm{E}_{1}$
Q. 22 Two pulses in a stretched string whose centres are initially 8 cm apart are moving towards each other as shown in figure. The speed of each pulse is $2 \mathrm{~cm} / \mathrm{s}$. After 2 seconds, the total energy of the pulses will be
(A) zero
(B) purely kinetic
(C) purely potential
(D) partly kinetic and partly potential

[JEE 2001 (Scr)]
Q. 23 A boat is travelling in a river with a speed of $10 \mathrm{~m} / \mathrm{s}$ along the stream flowing with a speed $2 \mathrm{~m} / \mathrm{s}$. From this boat, a sound transmitter is lowered into the river through a rigid support. The wavelength of the sound emitted from the transmitter inside the water is 14.45 mm . Assume that attenuation of sound in water and air is negligible.
(a) What will be the frequency detected by a receiver kept inside the river downstream?
(b) The transmitter and the receiver are now pulled up into air. The air is blowing with a speed $5 \mathrm{~m} / \mathrm{sec}$ in the direction opposite the river stream. Determine the frequency of the sound detected by the receiver. (Temperature of the air and water $=20^{\circ} \mathrm{C}$; Density of river water $=10^{3} \mathrm{Kg} / \mathrm{m}^{3}$; Bulk modulus of the water $=2.088 \times 10^{9} \mathrm{~Pa} ;$ Gas constant $\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$; Mean molecular mass of air $=28.8 \times 10^{-3} \mathrm{~kg} / \mathrm{mol} ; \mathrm{C}_{\mathrm{P}} / \mathrm{C}_{\mathrm{V}}$ for air $=1.4$)
[JEE 2001, 5 + 5]
Q. 24 A siren placed at a railway platform is emitting sound of frequency 5 kHz . A passenger sitting in a moving train A records a frequency of 5.5 kHz while the train approaches the siren. During his return journey in a different train B he records a frequency of 6.0 kHz while approaching the same siren. The ratio of the velocity of $\operatorname{train} B$ to that of train A is
[JEE 2002 (Scr), 3]
(A) $242 / 252$
(B) 2
(C) $5 / 6$
(D) $11 / 6$
Q. 25 A sonometer wire resonates with a given tuning fork forming standing waves with five antinodes between the two bridges when a mass of 9 kg is suspended from the wire. When this mass is replaced by a mass M , the wire resonates with the same tuning fork forming three antinodes for the same positions of the bridges. The value of M is
[JEE 2002 (Scr), 3]
(A) 25 kg
(B) 5 kg
(C) 12.5 kg
(D) $1 / 25 \mathrm{~kg}$
Q. 26 Two narrow cylindrical pipes A and B have the same length. Pipe A is open at both ends and is filled with a monoatomic gas of malar mass M_{A}. Pipe B is open at one end and closed at the other end, and is filled with a diatomic gas of molar mass M_{B}. Both gases are at the same temperature.
(a) If the frequency of the second harmonic of the fundamental mode in pipe A is equal to the frequency of the third harmonic of the fundamental mode in pipe B, determine the value of M_{A} / M_{B}.
(b) Now the open end of pipe B is also closed (so that the pipe is closed at bothends). Find the ratio of the fundamental frequency in pipe A to that in pipe B.
[JEE 2002, 3 + 2]
Q. 27 A police van moving with velocity $22 \mathrm{~m} / \mathrm{s}$ and emitting sound of frequency 176 Hz , follows a motor cycle in turn is moving towards a stationary car and away from the police van. The stationary car is emitting frequency 165 Hz . If motorcyclist does not hear any beats then his velocity is [JEE 2003 (Scr)]
(A) $22 \mathrm{~m} / \mathrm{s}$
(B) $24 \mathrm{~m} / \mathrm{s}$
(C) $20 \mathrm{~m} / \mathrm{s}$
(D) $18 \mathrm{~m} / \mathrm{s}$
Q. 28 A cylindrical tube when sounded with a tuning fork gives, first resonance when length of air columnis 0.1 and gives second resonance when the length of air column is 0.35 m . Then end correction is
(A) 0.025 m
(B) 0.020 m
(C) 0.018 m
(D) 0.012 m
[JEE 2003 (Scr)]
Q. 29 A stringe between $\mathrm{x}=0$ and $\mathrm{x}=l$ vibrates in fundamental mode. The amplitude A , tension T and mass per unit length μ is given. Find the total energy of the string.
[JEE 2003]

Q. 30 A tuning fork of frequency 480 Hz resonates with a tube closed at one end of length, 16 cm and diameter $\stackrel{\odot}{\hookleftarrow}$ 5 cm in fundamental mode. Calculate velocity of sound in air.
[JEE 2003]

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

Q. 31 A closed organ pipe of length L and an open organ pipe contain gases of densities ρ_{1} and ρ_{2} respectively. The compressibility of gases are equal in both the pipes. Both the pipes are vibrating in their first overtone with same frequency. The length of the open organ pipe is
[JEE' 2004 (Scr)]
(A) $\frac{L}{3}$
(B) $\frac{4 \mathrm{~L}}{3}$
(C) $\frac{4 \mathrm{~L}}{3} \sqrt{\frac{\rho_{1}}{\rho_{2}}}$
(D) $\frac{4 \mathrm{~L}}{3} \sqrt{\frac{\rho_{2}}{\rho_{1}}}$
Q. 32 A source of sound of frequency 600 Hz is placed inside water. The speed of sound in water is $1500 \mathrm{~m} / \mathrm{s}$ and in air it is $300 \mathrm{~m} / \mathrm{s}$. The frequency of sound recorded by an observer who is standing in air is
(A) 200 Hz
(B) 3000 Hz
(C) 120 Hz
(D) 600 Hz [JEE' 2004 (Scr)]
Q. 33 A string fixed at both ends is in resonance in its 2 nd harmonic with a tuning fork of frequency f_{1}. Now its one end becomes free. If the frequency of the tuning fork is increased slowly from f_{1} then again a resonance is obtained when the frequency is f_{2}. If in this case the string vibrates in nth harmonic then
(A) $\mathrm{n}=3, \mathrm{f}_{2}=\frac{3}{4} \mathrm{f}_{1}$
(B) $\mathrm{n}=3, \mathrm{f}_{2}=\frac{5}{4} \mathrm{f}_{1}$
(C) $\mathrm{n}=5, \mathrm{f}_{2}=\frac{5}{4} \mathrm{f}_{1}$
(D) $\mathrm{n}=5, \mathrm{f}_{2}=\frac{3}{4} \mathrm{f}_{1}$
[JEE' 2005 (Scr)]
Q. 34 In a resonance column method, resonance occurs at two successive level of $l_{1}=30.7 \mathrm{~cm}$ and $l_{2}=63.2$ cm using a tuning fork of $\mathrm{f}=512 \mathrm{~Hz}$. What is the maximumerror in measuring speed of sound using relations $\mathrm{v}=\mathrm{f} \lambda \& \lambda=2\left(l_{2}-l_{1}\right)$
(A) $256 \mathrm{~cm} / \mathrm{sec}$
(B) $92 \mathrm{~cm} / \mathrm{sec}$
(C) $128 \mathrm{~cm} / \mathrm{sec}$
(D) $102.4 \mathrm{~cm} / \mathrm{sec}$
Q. 35 Awhistling train approaches a junction. An observer standing at junction observers the frequency to be 2.2 KHz and 1.8 KHz of the approaching and the receding train. Find the speed of the train (speed sound $=300 \mathrm{~m} / \mathrm{s}$).
Q. 36 A transverse harmonic disturbance is produced in a string. The maximum transverse velocity is $3 \mathrm{~m} / \mathrm{s}$ and maximum transverse acceleration is $90 \mathrm{~m} / \mathrm{s}^{2}$. If the wave velocity is $20 \mathrm{~m} / \mathrm{s}$ then find the waveform.
[JEE 2005]
Q. 37 A massless rod is suspended by two identical strings AB and CD of equal length. A block of mass m is suspended from point O such that BO is equal to ' x '. Further, it is observed that the frequency of $1^{\text {st }}$ harmonic (fundamental frequency) in AB is equal to $2^{\text {nd }}$ harmonic frequency in CD . Then, length of BO is
(A) $\frac{L}{5}$
(B) $\frac{\mathrm{L}}{4}$
(C) $\frac{4 \mathrm{~L}}{5}$
(D) $\frac{3 \mathrm{~L}}{4}$

[JEE 2006]

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

 Comprehension-IQ. $38 \quad$ Two waves $y_{1}=A \cos (0.5 \pi x-100 \pi t)$ and $y_{2}=A \cos (0.46 \pi x-92 \pi t)$ are travelling in a pipe placed along x-axis. Find the number of times intensity is maximum in time interval of 1 sec .
(A) 4
(B) 6
(C) 8
(D) 10
[JEE 2006]
Q. 39 Find wave velocity of louder sound
(A) $100 \mathrm{~m} / \mathrm{s}$
(B) $192 \mathrm{~m} / \mathrm{s}$
(C) $200 \mathrm{~m} / \mathrm{s}$
(D) $96 \mathrm{~m} / \mathrm{s}$
[JEE 2006]
Q. 40 At $x=0$ how many times the value of $y_{1}+y_{2}$ is zero in one second?
(A) 100
(B) 46
(C) 192
(D) 96
[JEE 2006]
$\stackrel{\ddots}{O}$ $\begin{array}{lllllll}\text { Q. } 1 & 2.5 \mathrm{~ms}^{-1} & \text { Q. } 2 & \frac{\pi^{2} \times 10^{-9}}{4} \mathrm{~W} / \mathrm{m}^{2} & \text { Q. } 3 & \mathrm{~A}_{\mathrm{r}}=- \\ \text { Q.5 } & 1: 5 & \text { Q. } 6 & 1: 1 & \text { Q. } 7 & 1 \% & \\ \text { Q. } 9 & 30 \mathrm{~dB}, 10 \sqrt{10} \mu \mathrm{~m} & \text { Q. } 10 & 25 \mathrm{~kg} & \text { Q. } 11 & 11 \mathrm{f} / 9\end{array}$
Q. 10
(i) $\mathrm{L}=\frac{15}{16} \mathrm{~m}$
, (ii) $\frac{\Delta \mathrm{P}_{0}}{\sqrt{2}}$,
(iii) $\mathrm{P}_{\max }=\mathrm{P}_{\min }=\mathrm{P}_{0}$, (iv) $\mathrm{P}_{\max }=\mathrm{P}_{0}+\Delta \mathrm{P}_{0}, \mathrm{P}_{\min }=\mathrm{P}_{0}-\Delta \mathrm{P}_{0}$
Q. 11 B
Q. 12 (a) Time $=140 \mathrm{~ms}$, (b) $A_{r}=\frac{V_{2}-V_{1}}{V_{2}+V_{1}} A_{i}=1.5 \mathrm{~cm} ; A_{t}=\frac{2 V_{2}}{V_{1}+V_{2}} A_{i}=2 \mathrm{~cm}$
Q. 13 A,C,D
Q. 14
B, C,D
Q. 15 A, B, C
Q. 16 A, B, C
Q. 17 D
Q. 18 B
Q. 19 D
Q. $20 \quad \mathrm{~h}=3.2$
, 2.4, 1
$1.6,0.8,0 ; v=5 \times 10^{-3} \sqrt{5 \mathrm{H}}$
; $\Delta t=80$
$80(4-2 \sqrt{3})$
Q. 21 C
Q. 22 B
Q. 23
(a) 100696 Hz (b) 103038 Hz
Q. 24 B
Q. 25 A
Q. 26
(a) 2.116, (b) $\frac{3}{4}$
Q. 27 A
Q. 28 A
Q. $29 \quad \mathrm{E}=\frac{\mathrm{A}^{2} \pi^{2} \mathrm{~T}}{4 l}$
Q. $30 \quad 336 \mathrm{~m} / \mathrm{s}$
Q. $31 \quad \mathrm{C}$
Q. 33

Q. 34 D
Q. $35 \mathrm{~V}_{\mathrm{s}}=30 \mathrm{~m} / \mathrm{s}$
Q. $36 \quad y=(10 \mathrm{~cm}) \sin \left(30 t \pm \frac{3}{2} x+\phi\right)$

Q. 39

Q. 40 A

Q. 38

