NUCLEAR PHYSICS

It is the branch of physics which deals with the study of nucleus.

1. NUCLEUS

(a) Discoverer: Rutherford
(b) Constituents : neutrons (n) and protons (p) [collectively known as nucleons]

1. Neutron : It is a neutral particle. It was discovered by J. Chadwick.

Mass of neutron, $\mathrm{m}_{\mathrm{n}}=1.6749286 \times 10^{-27} \mathrm{~kg}$.
2. Proton : It has a charge equal to +e. It was discovered by Goldstein.

Mass of proton, $\mathrm{m}_{\mathrm{p}}=1.6726231 \times 10^{-27} \mathrm{~kg}$

$$
m_{p} \tilde{<} m_{n}
$$

(c) Representation

	${ }_{Z} \mathrm{X}^{A}$ where X	or	${ }_{\mathrm{Z}}^{\mathrm{A} X}$
Z	\Rightarrow	symbol of the atom	
A	\Rightarrow	Atomic number = number of protons	

Atomic mass number : It is the nearest integer value of mass represented in a.m.u. (atomic mass unit).
1 a.m.u. $=\frac{1}{12}$ [mass of one atom of ${ }_{6} \mathrm{C}^{12}$ atom at rest and in ground state]

$$
\simeq 1.6603 \times 10^{-27} \mathrm{~kg} \simeq 931.478 \mathrm{MeV} / \mathrm{c}^{2}
$$

mass of proton $\left(m_{p}\right) \simeq$ mass of neutron $\left(m_{n}\right) \simeq 1$ a.m.u.

Some definitions :

(1) Isotopes: The nuclei having the same number of protons but different number of neutrons are called isotopes.
(2) Isotones: Nuclei with the same neutron number N but different atomic number Z are called isotones.
(3) Isobars : The nuclei with the same mass number but different atomic number are called isobars.
(d) Size of nucleus: Order of $10^{-15} \mathrm{~m}$ (fermi)

Radius of nucleus; $R=R_{0} A^{1 / 3}$
where $R_{0}=1.1 \times 10^{-15} \mathrm{~m}$ (which is an empirical constant)
$A=$ Atomic mass number of atom.
(e) Density
density $=\frac{\text { mass }}{\text { volume }} \cong \frac{A m_{p}}{\frac{4}{3} \pi R^{3}}=\frac{A m_{p}}{\frac{4}{3} \pi\left(R_{0} A^{1 / 3}\right)^{3}}=\frac{3 m_{p}}{4 \pi R_{0}{ }^{3}}$
$=\frac{3 \times 1.67 \times 10^{-27}}{4 \times 3.14 \times\left(1.1 \times 10^{-15}\right)^{3}} \simeq 3 \times 10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
Nucleus of almost all atoms have almost same density as nuclear density is independent of the mass number (A) and atomic number (Z).
Ex. 1 Calculate the radius of ${ }^{70} \mathrm{Ge}$.
Sol. Wehave,

$$
\begin{aligned}
R & =R_{0} A^{1 / 3}=(1.1 \mathrm{fm})(70)^{1 / 3} \\
& =(1.1 \mathrm{fm})(4.12)=4.53 \mathrm{fm} .
\end{aligned}
$$

Ex. 2 Calculate the electric potential energy of interaction due to the electric repulsion between two nuclei of ${ }^{12} \mathrm{C}$ when they 'touch' each other at the surface
Sol. The radius of $a{ }^{12} \mathrm{C}$ nucleus is

$$
\begin{aligned}
R & =R_{0} A^{1 / 3} \\
& =(1.1 \mathrm{fm})(12)^{1 / 3}=2.52 \mathrm{fm} .
\end{aligned}
$$

The separation between the centres of the nuclei is $2 R=5.04 \mathrm{fm}$. The potential energy of the pair is

$$
\begin{aligned}
U & =\frac{\mathrm{q}_{1} \mathrm{q}_{2}}{4 \pi \varepsilon_{0} r}=\left(9 \times 10^{9} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{C}^{2}\right) \frac{\left(6 \times 1.6 \times 10^{-19} \mathrm{C}\right)^{2}}{5.04 \times 10^{-15} \mathrm{~m}} \\
& =1.64 \times 10^{-12} \mathrm{~J}=10.2 \mathrm{MeV}
\end{aligned}
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

2. MASS DEFECT

It has been observed that there is a difference between expected mass and actual mass of a nucleus.

$$
\begin{aligned}
& M_{\text {expected }}=Z m_{p}+(A-Z) m_{n} \\
& M_{\text {oboserved }}=M_{\text {atom }}-Z m_{e}
\end{aligned}
$$

It is found that

$$
M_{\text {obsened }}<M_{\text {expected }}
$$

Hence, mass defect is defined as
Mass defect $=M_{\text {expected }}-M_{\text {obseved }}$
$\Delta m=\left[Z m_{p}+(A-Z) m_{n}\right]-\left[\right.$ Matom $\left._{\text {atom }}^{\text {execele }}-Z m_{e}\right]$
3. BINDING ENERGY

It is the minimum energy required to break the nucleus into its constituent particles. or
Amount of energy released during the formation of nucleus by its constituent particles and bringing them from infinite separation.
Binding Energy (B.E.) $=\Delta \mathrm{mc}^{2}$

```
BE=\Deltam(in amu) > 931.5 MeV/amu
\[
=\Delta \mathrm{m} \times 931.5 \mathrm{MeV}
\]
\[
\simeq \Delta \mathrm{m} \times 931 \mathrm{MeV}
\]
```

Note : If binding energy per nucleon is more for a nucleus than it is more stable.
For example

$$
\text { If } \quad\left(\frac{B \cdot E_{1}}{A_{1}}\right)>\left(\frac{B \cdot E_{2}}{A_{2}}\right)
$$

then nucleus 1 would be more stable.
Ex. 3 Following data is available about 3 nuclei $P, Q \& R$. Arrange them in decreasing order of stability

	P	Q	R
Atomic mass number (A)	10	5	6
Binding Energy (MeV)	100	60	66

Sol.

Atomic mass number
$\quad\left(\frac{B . E}{A}\right)_{P}=\frac{100}{10}=10$
$\therefore \quad$ Stabingility Energy (Me order is $Q>R>P$.

Ex. 4 A nucelus has binding energy of 100 MeV . It further releases 10 MeV energy. Find the new binding energy of the nucleus.
Sol. After releasing 10 MeV , it will become more stable and its binding energy will increase.
New binding energy $=100+10=110 \mathrm{MeV}$
Ex. 5 A nuclear reaction is given as

$$
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}
$$

Binding energies of A, B, C and D are given as
$\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$ and B_{4}
Find the energy released in the reaction

Ans. $\quad\left(B_{3}+B_{4}\right)-\left(B_{1}+B_{2}\right)$
Ex. 6 Calculate the binding energy of an alpha particle from the following data:

$$
\begin{array}{ll}
\text { mass of }{ }_{1}^{1} \mathrm{H} \text { atom } & =1.007826 \mathrm{u} \\
\text { mass of neutron } & =1.008665 \mathrm{u} \\
\text { mass of }{ }_{2}^{4} \mathrm{He} \text { atom } & =4.00260 \mathrm{u}
\end{array}
$$

Take $1 \mathrm{u}=931 \mathrm{MeV} / \mathrm{c}^{2}$.
Sol. The alpha particle contains 2 protons and 2 neutrons. The binding energy is

$$
\begin{aligned}
\mathrm{B} & =(2 \times 1.007826 \mathrm{u}+2 \times 1.008665 \mathrm{u}-4.00260 \mathrm{u}) \mathrm{c}^{2} \\
& =(0.03038 \mathrm{u}) \mathrm{c}^{2} \\
& =0.03038 \times 931 \mathrm{MeV}=28.3 \mathrm{MeV} .
\end{aligned}
$$

Ex. 7 Find the binding energy of ${ }_{26}^{56} \mathrm{Fe}$. Atomic mass of ${ }^{56} \mathrm{Fe}$ is 55.9349 u and that of ${ }^{1} \mathrm{H}$ is 1.00783 u . Mass of neutron $=1.00867 \mathrm{u}$.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

Sol. The number of protons in ${ }_{26}^{56} \mathrm{Fe}=26$ and the number of neutrons $=56-26=30$. The binding energy of ${ }_{26}^{56} \mathrm{Fe}$ is

$$
\begin{aligned}
& =[26 \times 1.00783 u+30 \times 1.00867 u-55.9349 u] c^{2} \\
& =(0.52878 u) c^{2} \\
& =(0.52878 u)(931 \mathrm{MeV} / \mathrm{u})=492 \mathrm{MeV} .
\end{aligned}
$$

3.1 Variation of binding energy per nucleon with mass number

The binding energy per nucleon first increases on an average and reaches a maximum of about 8.7 MeV for $\mathrm{A} \simeq 50 \rightarrow 80$. For still heavier nuclei, the binding energy per nucleon slowly decreases as A increases.

Binding energy per nucleon is maximum for ${ }_{26} \mathrm{Fe}^{56}$, which is equal to
 8.8 MeV . Binding energy per nucleon is more for medium nuclei than for heavy nuclei. Hence, medium nuclei are highly stable.

* The heavier nuclei being unstable have tendency to split into medium nuclei. This process is called Fission.
* The Lighter nuclei being unstable have tendency to fuse into a medium nucleus. This process is called Fusion.

4. RADIOACTIVITY

It was dscovered by Henry Becquerel.
Spontaneous emission of radiations (α, β, γ) from unstable nucleus is called radioactivity. Substances which shows radioactivity are known as radioactive substance.
Radioactivity was studied in detail by Rutherford.
In radioactive decay, an unstable nucleus emits α particle or β particle. After emission of α or β the remaining nucleus may emit γ-particle, and converts into more stable nucleus.
α-particle : It is a doubly charged helium nucleus. It contains two protons and two neutrons.
Mass of α-particle $=$ Mass of ${ }_{2} \mathrm{He}^{4}$ atom $-2 \mathrm{~m}_{\mathrm{e}} \simeq 4 \mathrm{~m}_{\mathrm{p}}$
Charge of α-particle $=+2 \mathrm{e}$
β-particle :
(a) $\quad \beta^{-}$(electron):

Mass $=m_{e}$;
(b)
β^{+}(positron) :
Mass $=\mathrm{m}_{\mathrm{e}}$; Charge $=+\mathrm{e}$
positron is an antiparticle of electron.
Antiparticle: A particle is called antiparticle of other if on collision both can annihilate (destroy completely) צ̇ and converts into energy. For example : (i) electron ($-e, m_{e}$) and positron ($+e, m_{e}$) are anti particles. (ii) $\underset{\sim}{ }$ neutrino (v) and antineutrino (\bar{v}) are anti particles.
5. RADIOACTIVE DECAY (DISPLACEMENT LAW) :
$5.1 \quad \alpha$-decay :
${ }_{z} \mathrm{X}^{\mathrm{A}} \quad \rightarrow \quad \mathrm{Z}_{2} \mathrm{Y}^{\mathrm{A}-4}+{ }_{2} \mathrm{He}^{4}+\mathrm{Q}$
Q value : It is definied as energy released during the decay process.
Q value = rest mass energy of reactants - rest mass energy of products.
This energy is available in the form of increase in K.E. of the products.
Let,
$M_{x}=$ mass of atom $Z_{z} X^{A}$
$M_{y}^{X}=$ mass of atom $Z_{Z-2} Y^{A-4}$
$\mathrm{M}_{\mathrm{He}}^{\mathrm{y}}=$ mass of atom ${ }_{2} \mathrm{He}^{4}$.
Q value $=\left[\left(M_{x}-Z m_{e}\right)-\left\{\left(M_{y}-(Z-2) m_{e}\right)+\left(M_{\text {He }}-2 m_{e}\right)\right\}\right] c^{2}$

$$
=\left[M_{x}-M_{y}-M_{\text {He }}\right] c^{2}
$$

Considering actual number of electrons in α-decay

$$
\begin{aligned}
\text { Qvalue } & =\left[M_{x}-\left(M_{y}+2 m_{e}\right)-\left(M_{H e}-2 m_{e}\right)\right] c^{2} \\
& =\left[M_{x}-M_{y}-M_{H e}\right] c^{2}
\end{aligned}
$$

Calculation of kinetic energy of final products

As atom X was initialy at rest and no external forces are acting, so final momentum also has to be zero. Hence both Y and α-particle will have same momentum in magnitude but in opposite direction.
(Here we are representing T for kinetic energy)
(Here we are representing T for kinetic energy)
. Hence, if they are passed through a region of uniform magnetic field having direction perpendicular to velocity, they should move in a circle of same radius.

$$
r=\frac{m v}{q B}=\frac{m v}{2 e B}=\frac{\sqrt{2 K m}}{2 e B}
$$

Experimental Observation : Experimentally it has been observed that all the α-particles do not move in the circle of same radius, but they move in `circles having different radii.

This shows that they have different kinetic energies. But it is also observed that they follow circular paths of some fixed values of radius i.e. yet the energy of emitted α-particles is not same but it is quantized. The reason behind this is that all the daughter nuclei produced are not in their ground state but some of the daughter nuclei may be produced in their excited states and they emits photon to aquire their ground state.

The only difference between Y and Y^{*} is that Y^{*} is in excited state and Y is in ground state.
Let, \quad the energy of emitted γ-particles be E
$\therefore \quad Q=T_{\alpha}+T_{Y}+E \quad$ where $Q=\left[M_{x}-M_{y}-M_{H e}\right] c^{2}$
$T_{\alpha}+T_{Y}=Q-E$
$T_{\alpha}=\frac{m_{Y}}{m_{\alpha}+m_{Y}}(Q-E) ; T_{Y}=\frac{m_{\alpha}}{m_{\alpha}+m_{Y}}(Q-E)$
$5.2 \quad \beta^{-}-$decay :

$$
{ }_{z} X^{A} \longrightarrow{ }_{Z+1} Y^{A}+{ }_{-1} e^{0}+Q
$$

$$
{ }_{-1} \mathrm{e}^{0} \text { can also be written as }{ }_{-1} \beta^{0} .
$$

Here also one can see that by momentum and energy conversion, we will get

$$
T_{e}=\frac{m_{Y}}{m_{e}+m_{Y}} Q ; \quad T_{Y}=\frac{m_{e}}{m_{e}+m_{Y}} Q
$$

as $m_{e} \ll m_{Y}$, we can consider that all the energy is taken away by the electron.
From the above results, we will find that all the β-particles emitted will have same energy and hence they have same radius if passed through a region of perpendicular magnetic field. But, experimental observations were completely different. On passing through a region of uniform magnetic field perpendicular to the velocity, it was observed that β-particles take circular paths of different ra-
 dius having a continuous spectrum.

$$
\begin{aligned}
& p_{\alpha}{ }^{2}=p_{Y}{ }^{2} \\
& Q=T_{y}+T_{\alpha} \\
& 2 m_{\alpha} T_{\alpha}=2 m_{Y} T_{Y} \\
& m_{\alpha}{ }^{\top}{ }_{\alpha}=m_{Y} T_{Y} \\
& T_{\alpha}=\frac{m_{Y}}{m_{\alpha}+m_{Y}} Q ; \\
& T_{Y}=\frac{m_{\alpha}}{m_{\alpha}+m_{Y}} Q \\
& \mathrm{~T}_{\alpha}=\frac{\mathrm{A}-4}{\mathrm{~A}} \mathrm{Q} \quad ; \quad \mathrm{T}_{\mathrm{Y}}=\frac{4}{\mathrm{~A}} \mathrm{Q} \\
& \frac{\mathrm{p}}{\stackrel{Y}{4}} \\
& \xrightarrow[\alpha]{p}
\end{aligned}
$$ neutrino).

Ex. 8 Consider the beta decay

$$
{ }^{198} \mathrm{Au} \rightarrow{ }^{198} \mathrm{Hg}^{*}+\beta^{-}+\bar{v}
$$

where ${ }^{198} \mathrm{Hg}^{*}$ represents a mercury nucleus in an excited state at energy 1.088 MeV above the ground state. What can be the maximum kinetic energy of the electron emitted? The atomic mass ${ }^{198} \mathrm{Au}$ is 197.968233 u and that of ${ }^{198} \mathrm{Hg}$ is 197.966760 u .
Sol. If the product nucleus ${ }^{198} \mathrm{Hg}$ is formed in its ground state, the kinetic energy available to the electron and the antineutrino is

$$
Q=\left[m\left({ }^{198} \mathrm{Au}\right)-m\left({ }^{198} \mathrm{Hg}\right)\right] \mathrm{c}^{2} .
$$

During β^{-}- decay, inside the nucleus a neutron is converted to a proton with emission of an electron and antineutrino.

Let, $\quad \mathrm{M}_{\mathrm{x}}=$ mass of atom $\mathrm{Z}_{\mathrm{Z}} \mathrm{X}^{A}$
$M_{y}^{x}=$ mass of atom $Z_{+} Y^{A}$
$m=$ mass of electron
$m_{e}=$ mass of electron
Q value $=\left[\left(M_{x}-Z m_{e}\right)-\left\{\left(M_{Y}-(z+1) m_{e}\right)+m_{e}\right\}\right] c^{2} \quad=\left[M_{x}-M_{Y}\right] c^{2}$
Considering actual number of electrons.
Q value $=\left[M_{x}-\left\{\left(M_{y}-m_{e}\right)+m_{e}\right\}\right] c^{2}$

As ${ }^{198} \mathrm{Hg}^{*}$ has energy 1.088 MeV more than ${ }^{198} \mathrm{Hg}$ in ground state, the kinetic energy actually available is

$$
\begin{aligned}
Q & =\left[m\left({ }^{198} \mathrm{Au}\right)-m\left({ }^{198} \mathrm{Hg}\right)\right] \mathrm{c}^{2}-1.088 \mathrm{MeV} \\
& =(197.968233 \mathrm{u}-197.966760 \mathrm{u})\left(931 \frac{\mathrm{MeV}}{\mathrm{u}}\right)-1.088 \mathrm{MeV} \\
& =1.3686 \mathrm{MeV}-1.088 \mathrm{MeV}=0.2806 \mathrm{MeV} .
\end{aligned}
$$

This is also the maximum possible kinetic energy of the electron emitted.
$5.3 \quad \beta^{+}$- decay
${ }_{z} \mathrm{X}^{\mathrm{A}} \rightarrow_{{ }_{\mathrm{Z}}-1} \mathrm{Y}^{\mathrm{A}}+{ }_{+1} \mathrm{e}^{0}+\mathrm{V}+\mathrm{Q}$
In β^{+}decay, inside a nucleus a proton is converted into a neutron, positron and neutrino.

$$
p \rightarrow n+{ }_{+1} \mathrm{e}^{0}+v
$$

As mass increases during conversion of proton to a neutron, hence it requires energy for β^{+}decay to take place, $\therefore \beta^{+}$decay is rare process. It can take place in the nucleus where a proton can take energy from the nucleus itself.
Q value $=\left[\left(M_{X}-Z m_{e}\right)-\left\{\left(M_{Y}-(Z-1) m_{e}\right)+m_{e}\right\} c^{2}\right.$

$$
=\left[M_{x} \hat{-} M_{y}-2 m_{e}\right] c^{2}
$$

Considering actual number of electrons.
Q value $=\left[M_{X}-\left\{\left(M_{Y}+m_{e}\right)+m_{e}\right\}\right] c^{2}$

$$
=\left[M_{x}^{x}-M_{Y}-2 m_{e}\right]^{\prime} c^{2}
$$

Ex. 9 Calculate the Q-value in the following decays:
(a) ${ }^{19} \mathrm{O} \rightarrow{ }^{19} \mathrm{~F}+\mathrm{e}^{-}+\overline{\mathrm{v}}$
(b) ${ }^{25} \mathrm{Al} \rightarrow{ }^{25} \mathrm{Mg}+\mathrm{e}^{+}+\mathrm{v}$.

The atomic masses needed are as follows:

${ }^{19} \mathrm{O}$	${ }^{19} \mathrm{~F}$	${ }^{25} \mathrm{Al}$	${ }^{25} \mathrm{Mg}$
19.003576 u	18.998403 u	24.990432 u	24.985839 u

Sol. (a) The Q-value of β^{-}-decay is
$\mathrm{Q}=\left[\mathrm{m}\left({ }^{19} \mathrm{O}\right)-\mathrm{m}\left({ }^{(19} \mathrm{F}\right)\right] \mathrm{c}^{2}$
$=[19.003576 \mathrm{u}-18.998403 \mathrm{u}](931 \mathrm{MeV} / \mathrm{u})$

$$
=4.816 \mathrm{MeV}
$$

(b) The Q-value of β^{+}-decay is

$$
\begin{aligned}
Q & =\left[m\left({ }^{25} \mathrm{Al}\right)-m\left({ }^{25} \mathrm{Mg}\right)-2 m_{e}\right] c^{2} \\
& =\left[24.99032 u-24.985839 u-2 \times 0.511 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}\right] \mathrm{c}^{2} \\
& =(0.004593 \mathrm{u})(931 \mathrm{MeV} / \mathrm{u})-1.022 \mathrm{MeV} \\
& =4.276 \mathrm{MeV}-1.022 \mathrm{MeV}=3.254 \mathrm{MeV} .
\end{aligned}
$$

5.4 K capture

It is rare process which is found only in few nucleus. In this process the nucleus captures one of the atomic electrons from the K shell. A proton in the nucleus combines with this electron and converts itself into a neutron. A neutrino is also emitted in the process and is emitted from the nucleus.
$\mathrm{p}+{ }_{-1} \mathrm{e}^{0} \rightarrow \mathrm{n}+\mathrm{v}$
$z^{X A} \rightarrow_{z-1} Y^{A}+v+Q$

Note: (1) Nuclei having atomic numbers from $Z=84$ to 112 shows radioactivity.
(2) Nuclei having $Z=1$ to 83 are stable (only few exceptions are there)
(3) Whenever a neutron is produced, a neutrino is also produced.
(4) Whenever a neutron is converted into a proton, a antineutrino is produced.

6. NUCLEAR STABILITY

Figure shows a plot of neutron number N versus proton number Z for the nuclides found in nature. The solid line in the figure represents the stable nuclides. For light stable nuclides, the neutron number is equal to the proton number so that ratio N / Z is equal to 1 . The ratio N/Z increases for the heavier nuclides and becomes about 1.6 for the heaviest stable nuclides.
The points (Z, N) for stable nuclides fall in a rather well-defined narrow region. There are nuclides to the left of the stability belt as well as to the right of it. The nuclides to the left of the
 stability region have excess neutrons, whereas, those to the right of the stability belt have excess protons. These nuclides are unstable and decay with time according to the laws of radioactive disintegration. Nuclides with excess neutrons (lying above stability belt) show β^{-} decay while nuclides with excess protons (lying below stability belt) show β^{+}decay and K - capture.

7. NUCLEAR FORCE

(i) Nuclear forces are basically attractive and are responsible for keeping the nucleons bound in a nucleus in spite of repulsion between the positively charge protons.
(ii) It is strongest force with in nuclear dimensions ($F_{n} \simeq 100 F_{e}$)
(iii) It is short range force (acts only inside the nucleus)
(iv) It acts only between neutron-neutron, neutron-proton and proton-proton i.e. between necleons.
(v) It does not depend on the nature of necleons.
(vi) An important property of nuclear force is that it is not a central force. The force between a pair of nucleons is not solely determined by the distance between the necleons. For example, the nuclear force depends on the directions of the spins of the nucleons. The force is stronger if the spins of the nucleons are parallel (i.e., both nucleons have $m_{s}=+1 / 2$ or $-1 / 2$) and is weaker if the spins are antiparallel (i.e., one nucleon has $m_{s}=+1 / 2$ and the other has $m_{s}=-1 / 2$). Here m_{s} is spin quantum number.

8. RADIOATIVE DECAY : STATISTICAL LAW

(Given by Rutherford and Soddy)
Rate of radioactive decay $\propto N$
where $\mathrm{N}=$ number of active nuclei

$$
=\lambda \mathrm{N}
$$

where $\lambda=$ decay constant of the radioactive substance.
Decay constant is different for different radioactive substances, but it does not depend on amount of sub-

SI unit of λ is s^{-1}
If $\lambda_{1}>\lambda_{2}$ then first substance is more radioactive (less stable) than the second one.
For the case, if A decays to B with decay constant λ

$$
A \xrightarrow{\lambda} B
$$

$\begin{array}{lll}t=0 & N_{0} & 0 \\ t=t & N & N^{\prime}\end{array}$

$$
\begin{aligned}
& \text { where } N_{0}=\text { number of active nuclei of } A \text { at } t=0 \\
& \text { where } N=\text { number of active nuclei of } A \text { at } t=t
\end{aligned}
$$

Rate of radioactive decay of $A=-\frac{d N}{d t}=\lambda N$
$-\int_{N_{0}}^{N} \frac{\mathrm{dN}}{\mathrm{N}}=\int_{0}^{\mathrm{t}} \lambda \mathrm{dt} \quad \Rightarrow \quad \mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$ (it is exponential decay)

Number of nuclie decayed (i.e. the number of nuclei of B formed)

$$
\begin{aligned}
& N^{\prime}=N_{0}-N \quad=N_{0}-N_{0} e^{-\lambda t} \\
& N^{\prime}=N_{0}\left(1-e^{-\lambda t}\right)
\end{aligned}
$$

8.1 Half life ($\mathrm{T}_{1 / 2}$)

It is the time in which number of active nuclei becomes half.

Number of nuclei present after n half lives i.e. after a time $\mathrm{t}=\mathrm{nt}$

Ex. 10 A radiactive sample has 6.0×10^{18} active nuclei at a certain instant. How many of these nuclei will still be in the same active state after two half-lives?
Sol. In one half-life the number of active nuclei reduces to half the original number. Thus, in two half lives the number is reduced to $\left(\frac{1}{2}\right) \times\left(\frac{1}{2}\right)$ of the original number. The number of remaining active nuclei is, therefore,

$$
6.0 \times 10^{18} \times\left(\frac{1}{2}\right) \times\left(\frac{1}{2}\right)=1.5 \times 10^{18} .
$$

Ex. 11 The number of ${ }^{238} \mathrm{U}$ atoms in an ancient rock equals the number of ${ }^{206} \mathrm{~Pb}$ atoms. The half-life of decay of ${ }^{238} \mathrm{U}$ is $4.5 \times 10^{9} \mathrm{y}$. Estimate the age of the rock assuming that all the ${ }^{206} \mathrm{~Pb}$ atoms are formed from the decay of ${ }^{238} \mathrm{U}$.
Sol. Since the number of ${ }^{206} \mathrm{~Pb}$ atoms equals the number of ${ }^{238} \mathrm{U}$ atoms, half of the original ${ }^{238} \mathrm{U}$ atoms have decayed. It takes one half-life to decay half of the active nuclei. Thus, the sample is $4.5 \times 10^{9} \mathrm{y}$ old.

8.2 Activity

Activity is defined as rate of radioactive decay of nuclei
It is denoted by A or $R \quad A=\lambda N$
If a radioactive substance changes only due to decay then

$$
\mathrm{A}=-\frac{\mathrm{dN}}{\mathrm{dt}}
$$

As in that case, $N=N_{0} e^{-\lambda t}$

$$
A=\lambda N=\lambda N_{0} e^{-\lambda t} \quad A=A_{0} e^{-\lambda t}
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
SI Unit of activity : becquerel (Bq) which is same as 1 dps (disintegration per second)
The popular unit of activity is curie which is defined as

$$
1 \text { curie }=3.7 \times 10^{10} \mathrm{dps} \quad(\text { which is activity of } 1 \mathrm{gm} \text { Radium })
$$

Ex. 12 The decay constant for the radioactive nuclide ${ }^{64} \mathrm{Cu}$ is $1.516 \times 10^{-5} \mathrm{~s}^{-1}$. Find the activity of a sample containing $1 \mu \mathrm{~g}$ of ${ }^{64} \mathrm{Cu}$. Atomic weight of copper $=63.5 \mathrm{~g} / \mathrm{mole}$. Neglect the mass difference between the given radioisotope and normal copper.
Sol. $\quad 63.5 \mathrm{~g}$ of copper has 6×10^{23} atoms. Thus, the number of atoms in $1 \mu \mathrm{~g}$ of Cu is

$$
\mathrm{N}=\frac{6 \times 10^{23} \times 1 \mu \mathrm{~g}}{63.5 \mathrm{~g}}=9.45 \times 10^{15}
$$

The activity $=\lambda \mathrm{N}$

$$
\begin{aligned}
& =\left(1.516 \times 10^{-5} \mathrm{~s}^{-1}\right) \times\left(9.45 \times 10^{15}\right)=1.43 \times 10^{11} \text { disintegrations } / \mathrm{s} \\
& =\frac{1.43 \times 10^{11}}{3.7 \times 10^{10}} \mathrm{Ci}=3.86 \mathrm{Ci}
\end{aligned}
$$

Activity after n half lives: $\quad \frac{A_{0}}{2^{n}}$
Ex. 13 The half-life of a radioactive nuclide is 20 hours. What fraction of original activity will remain after 40 hours?
Sol. 40 hours means 2 half lives.
Thus,
or, $\quad \frac{A}{A_{0}}=\frac{1}{4}$.
So one fourth of the original activity will remain after 40 hours.
Specific activity : The activity per unit mass is called specific activity.
8.3

Averge Life
$T_{\text {avg }}=\frac{\text { sum of ages of all the nuclei }}{N_{0}}=\frac{\int_{0}^{\infty} \lambda N_{0} e^{-\lambda t} d t . t}{N_{0}}=\frac{1}{\lambda}$
Ex. 14 The half-life of ${ }^{198} \mathrm{Au}$ is 2.7 days. Calculate (a) the decay constant, (b) the average-life and (c) the activity of 1.00 mg of ${ }^{198} \mathrm{Au}$. Take atomic weight of ${ }^{198} \mathrm{Au}$ to be $198 \mathrm{~g} / \mathrm{mol}$.

Sol. (a) The half-life and the decay constant are related as

$$
\begin{aligned}
& \mathrm{t}_{1 / 2}=\frac{\ln 2}{\lambda}=\frac{0.693}{\lambda} \quad \text { or, } \quad \lambda=\frac{0.693}{\mathrm{t}_{1 / 2}}=\frac{0.693}{2.7 \text { days }} \\
& =\frac{0.693}{2.7 \times 24 \times 3600 \mathrm{~s}}=2.9 \times 10^{-6} \mathrm{~s}^{-1} .
\end{aligned}
$$

(b) The avergae-life is $\mathrm{t}_{\mathrm{av}}=\frac{1}{\lambda}=3.9$ days.
(c) The activity is $\mathrm{A}=\lambda \mathrm{N}$. Now, 198 g of ${ }^{198} \mathrm{Au}$ has 6×10^{23} atoms. The number of atoms in 1.00 mg of ${ }^{198} \mathrm{Au}$ is

$$
\begin{aligned}
\mathrm{N} & =6 \times 10^{23} \times \frac{1.0 \mathrm{mg}}{198 \mathrm{~g}}=3.03 \times 10^{18} . \\
\mathrm{A} & =\lambda \mathrm{N} \quad=\left(2.9 \times 10^{-6} \mathrm{~s}^{-1}\right)\left(3.03 \times 10^{18}\right) \\
& =8.8 \times 10^{12} \text { disintegrations } / \mathrm{s} \quad=\frac{8.8 \times 10^{12}}{3.7 \times 10^{10}} \mathrm{Ci}=240 \mathrm{Ci} .
\end{aligned}
$$

Thus,

Ex. 15 Suppose, the daughter nucleus in a nuclear decay is itself radioactive. Let λ_{p} and λ_{d} be the decay constants t. Find the condition for which the number of daughter nuclei becomes constant.
Sol. The number of parent nuclei decaying in a short time interval tot +dl is $\lambda_{\mathrm{p}} \mathrm{N}_{\mathrm{p}} \mathrm{dt}$. This is also the number of daughter nuclei decaying during the same time interval is $\lambda_{d} N_{d} d t$. The number of the daughter nuclei will be constant if

$$
\lambda_{\mathrm{p}} \mathrm{~N}_{\mathrm{p}} \mathrm{dt}=\lambda_{\mathrm{d}} \mathrm{~N}_{\mathrm{d}} \mathrm{dt} \quad \text { or, } \quad \lambda_{\mathrm{p}} \mathrm{~N}_{\mathrm{p}}=\lambda_{\mathrm{d}} \mathrm{~N}_{\mathrm{d}}
$$

Ex. 16 A radioactive sample decays with an average-life of 20 ms . A capacitor of capcitance $100 \mu \mathrm{~F}$ is charged to some potential and then the plates are connected through a resistance R. What should be the value of R so that the ratio of the charge on the capacitor to the activity of the radioactive sample remains constant in time?
Sol. The activity of the sample at time t is given by
where λ is the decay constant and A_{0} is the activity at time $t=0$ when the capacitor plates are connected. The charge on the capacitor at time t is given by

$$
\mathrm{Q}=\mathrm{Q}_{0} \mathrm{e}^{-t / C R}
$$

where Q_{0} is the charge at $t=0$ and $C=100 \mu F$ is the capacitance. Thus, $\frac{Q}{A}=\frac{Q_{0}}{A_{0}} \frac{e^{-t / C R}}{e^{-\lambda t}}$.
It is independent of t if $\quad \lambda=\frac{1}{\mathrm{CR}}$
or, $\quad R=\frac{1}{\lambda C}=\frac{t_{\mathrm{av}}}{\mathrm{C}}=\frac{20 \times 10^{-3} \mathrm{~s}}{100 \times 10^{-6} \mathrm{~F}}=200 \Omega$.
Ex. 17 A radioactive nucleus can decay by two different processes. The half-life for the first process is t_{1} and that for the second process is t_{2}. Show that the effective half-life t of the nucleus is given by
$\frac{1}{t}=\frac{1}{t_{1}}+\frac{1}{t_{2}}$.

Sol. The decay constant for the first process is $\lambda_{1}=\frac{\ln 2}{t_{1}}$ and for the second process it is $\lambda_{2}=\frac{\ln 2}{t_{1}}$. The probability that an active nucleus decays by the first process in a time interval dt is $\lambda_{1} \mathrm{dt}$. Similarly, the probability that it decays by the second process is $\lambda_{2} \mathrm{dt}$. The probability that it either decays by the first process or by the second process is $\lambda_{1} \mathrm{dt}+\lambda_{2} \mathrm{dt}$. If the effective decay constant is λ, this probability is also equal to $\lambda \mathrm{dt}$. Thus.
or,
or,

(Remember this ...)

Ex. 18 A factory produces a radioactive substance A at a constant rate R which decays with a decay constant λ to form a stable substance. Find (i) the no. of nuclei of A and (ii) Number of nuclei of B, at any time tassuming the production of A starts at $t=0$. (iii) Also find out the maximum number of nuclei of ' A ' present at any time during its formation.

Sol: Factory $\underset{\text { const.rate }}{R} A \xrightarrow[\text { decay }]{\lambda} B$
Let N be the number of nuclei of A at any time t

$$
\therefore \quad \frac{\mathrm{dN}}{\mathrm{dt}}=\mathrm{R}-\lambda \mathrm{N} \quad \int_{0}^{\mathrm{N}} \frac{\mathrm{dN}}{\mathrm{R}-\lambda \mathrm{N}}=\int_{0}^{\mathrm{t}} \mathrm{dt}
$$

On solving we will get

$$
N=R / \lambda\left(1-e^{-\lambda t}\right)
$$

(ii) Number of nuclei of B at any time $t, N_{B}=R t-N_{A}=R t-R / \lambda\left(1-e^{-\lambda t}\right)=R / \lambda\left(\lambda t-1+e^{-\lambda t}\right)$.
(iii) Maximum number of nuclei of ' A ' present at any time during its formation $=R / \lambda$.

Ex. 19 A radioactive substance " A " having N_{0} active nuclie at $t=0$, decays to another radioactive substance " B " with decay constant λ_{1}. B further decays to a stable substance " C " with decay constant λ_{2}. (a) Find the number of nuclei of A, B and C after timet. (b) What would be the answer of part (a) if $\lambda_{1} \gg \lambda_{2}$ and $\lambda_{1} \ll \lambda_{2}$.
Sol: The deacy scheme is as shown

$$
A \xrightarrow{\lambda_{1}} B \xrightarrow{\lambda_{2}} C \text { (stable) }
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

Ans. $t_{m}=\frac{\ln \left(\lambda_{1} / \lambda_{2}\right)}{\lambda_{1}-\lambda_{2}}$.

9. NUCLEAR FISSION

In nuclear fission heavy nuclei of A, above 200, break up into two or more fragments of comparable masses. The most attractive bid, from a practical point of view, to achieve energy from nuclear fission
is to use ${ }_{92} \mathrm{U}^{236}$ as the fission material. The technique is to hit a uranium sample by sample by slowmoving neutrons (kinetic energy $\approx 0.04 \mathrm{eV}$, also called thermal neutrons). $\mathrm{A}_{92} \mathrm{U}^{235}$ nucleus has large probability of absorbing a slow neutron and forming ${ }_{92} \mathrm{U}^{236}$ nucleus. This nucleus then fissions into two parts. A variety of combinations of the middle-weight nuclei may be formed due to the fission. For example, one may have

$$
\begin{aligned}
& { }_{92} \mathrm{U}^{236} \rightarrow{ }_{53} \mathrm{I}^{197}+{ }_{39} \mathrm{Y}^{97}+2 \mathrm{n}, \\
& \mathrm{U}^{236} \rightarrow{ }_{53} \mathrm{I}^{140}+{ }_{36} \mathrm{Y}^{94}+2 \mathrm{n},
\end{aligned}
$$

and a number of other combinations.

* On an average 2.5 neutrons are emitted in each fission event.
* Mass lost per reaction $\simeq 0.2$ a.m.u.
* In nuclear fission the total B.E. increases and excess energy is released.
* In each fission event, about 200 MeV of energy is released a large part of which appears in the form of kinetic energies of the two fragments. Neutrons take away about 5 MeV .

$$
\begin{aligned}
& \text { eg. }{ }_{92}^{235} U+{ }_{0} \mathrm{n}^{1} \rightarrow{ }_{92}^{236} \mathrm{U} \rightarrow{ }_{56}^{141} \mathrm{Ba}+{ }_{36}^{92} \mathrm{Kr}+3{ }_{0} \mathrm{n}^{1}+\text { energy } \\
& \text { Q value }=\left[\left(M_{U}-92 m_{e}+m_{n}\right)-\left\{\left(M_{B_{B a}}-56 m_{e}\right)+\left(M_{\text {Kr }}-36 m_{e}\right)+3 m_{n}\right\}\right] c^{2} \\
& =\left[\left(M_{U}+m_{n}\right)-\left(M_{B a}^{n}+M_{\mathrm{Kr}}+3 m_{n}\right)\right] c^{2}
\end{aligned}
$$

* A very important and interesting feature of neutron-induced fission is the chain reaction. For working of nuclear reactor refer your text book.

10. NUCLEAR FUSION (THERMO NUCLEAR REACTION)

(a) Some unstable light nuclei of A below 20, fuse together, the B.E. per nucleon increases and hence the excess energy is released. The easiest thermonuclear reaction that can be handled on earth is the fusion of two deuterons ($D-D$ reaction) or fusion of a deuteron with a triton ($D-$ Treaction).

$$
\mathrm{H}^{2}+\mathrm{H}^{2} \rightarrow{ }_{2} \mathrm{He}^{3}+\mathrm{n}+3.3 \mathrm{MeV}(\mathrm{D}-\mathrm{D})
$$

$=\left[2 M_{D}-\left(M_{H e-3}+m_{n}\right)\right] c^{2}$

$$
{ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{1} \mathrm{H}^{3}+{ }_{1} \mathrm{H}^{1}+4.0 \mathrm{MeV}(\mathrm{D}-\mathrm{D})
$$

Q value $=\left[2\left(M_{D}-m_{e}\right)-\left\{\left(M_{T}-m_{e}\right)+\left(M_{H}-m_{e}\right)\right\}\right] c^{2}$

$$
\begin{aligned}
& =\left[2 \mathrm{M}_{\mathrm{D}}-\left(\mathrm{M}_{T}+\mathrm{M}_{\mathrm{H}}\right)\right] \mathrm{c}^{2} \\
& { }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{3} \rightarrow{ }_{2} \mathrm{He}^{4}+\mathrm{n}+17.6 \mathrm{MeV}(\mathrm{D}-\mathrm{D})
\end{aligned}
$$

Q value $=\left[\left\{\left(M_{D}-m_{e}\right)+\left(M_{T}-m_{e}\right)\right\}-\left\{\left(M_{H e-4}-2 m_{e}\right)+m_{n}\right\}\right] c^{2}$
$=\left[\left(M_{D}+M_{T}\right)-\left(M_{H e-4}+m_{n}\right)\right] c^{2}$
Note : In case of fission and fusion, $\Delta m=\Delta m_{\text {atom }}=\Delta m_{\text {nucleus }}$.
(b) These reactions take place at ultra high temperature ($\cong 10^{7}$ to 10^{9}). At high pressure it can take place at law temperature also. For these reactions to take place nuclei should be brought upto 1 fermi distance which requires very high kinetic energy.
(c) Energy released in fusion exceeds the energy liberated in the fission of heavy nuclei.

Ex. 20 Calculate the energy released when three alpha particles combine to form a ${ }^{12} \mathrm{C}$ nucleus. The atomic mass of ${ }_{2}^{4} \mathrm{He}$ is 4.002603 u .
Sol. The mass of a ${ }^{12} \mathrm{C}$ atom is exactly 12 u . The energy released in the reaction $3\left({ }_{2}^{4} \mathrm{He}\right) \rightarrow{ }_{6}^{12} \mathrm{C}$ is

$$
\left[3 \mathrm{~m}\left({ }_{2}^{4} \mathrm{He}\right)-\mathrm{m}\left({ }_{6}^{12} \mathrm{C}\right)\right] \mathrm{c}^{2} \quad=[3 \times 4.002603 \mathrm{u}-12 \mathrm{u}](931 \mathrm{MeV} / \mathrm{u})=7.27 \mathrm{MeV} .
$$

Ex. 21 Consider two deuterons moving towards each other with equal speeds in a deutron gas. What should be their kinetic energies (when they are widely separated) so that the closest separation between them becomes 2 fm ? Assume that the nuclear force is not effective for separations greater than 2 fm . At what temperature will the deuterons have this kinetic energy on an average?
Sol. As the deuterons move, the Coulomb repulsion will slow them down. The loss in kinetic energy will be equal to the gain in Coulomb potential energy. At the closest separation, the kinetic energy is zero and the

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
potential energy is $\frac{e^{2}}{4 \pi \varepsilon_{0} r}$. If the initial kinetic energy of each deuteron is K and the closest separation is 2 fm , we shall have

$$
\begin{aligned}
2 \mathrm{~K} & =\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0}(2 \mathrm{fm})} \\
& =\frac{\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2} \times\left(9 \times 10^{9} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{C}^{2}\right)}{2 \times 10^{-15} \mathrm{~m}}
\end{aligned}
$$

$$
\mathrm{K}=5.7 \times 10^{-14} \mathrm{~J}
$$

If the temperature of the gas is T , the average kinetic energy of random motion of each nucleus will be 1.5 kT . The temperature needed for the deuterons to have the average kinetic energy of $5.7 \times 10^{-14} \mathrm{~J}$ will be given by $1.5 \mathrm{kT}=5.7 \times 10^{-14} \mathrm{~J}$ where $\mathrm{k}=$ Botzmann constant

$$
\text { or, } \quad \begin{aligned}
\mathrm{T} & =\frac{5.7 \times 10^{-14} \mathrm{~J}}{1.5 \times 1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}} \\
& =2.8 \times 10^{9} \mathrm{~K} .
\end{aligned}
$$

