EXERCISE-1

If required, you can use the follwoing data:

Mass of proton $m_p = 1.007276 u$, Mass of $_1H^1$ atom = 1.007825 u, Mass of neutron $m_n = 1.008665 u$, Mass of electron = $0.0005486 \text{ u} = 511 \text{ KeV/c}^2$, $1 \text{ u} = 931 \text{ MeV/c}^2$.

SECTION (A) : PROPERTIES OF NUCLEUS

A neutron star has a density equal to that of the nuclear matter. Assuming the star to be spherical, find A.1 the radius of a neutron star whose mass is (i) 4.0×10^{30} kg (twice the mass of the sun) (ii) 6×10^{24} Kg $\frac{0}{00}$ (around mass of the earth).

SECTION (B) : MASS DEFECT AND BINDING ENERGY

- **B.1** Calculate the mass of an α particles Its binding energy is 28.2 MeV
- 58881 Find the binding energy of the nucleus of lithium isotope ${}_{3}Li^{7}$ & hence find the binding energy per $\overline{0}_{0}^{7}$ nucleon in it. Given atomic masses of ${}_{3}Li^{7}$ atom = 7.016005 amu; ${}_{1}H^{1}$ atom = 1.0007825 amu $\overline{0}_{0}^{8}$ $a_{n}n^{1} = 1.008665$) **B.2**
- \circ Find the energy required for separation of a Ne²⁰ nucleus into two α – particles and a C¹² nucleus if it is **B.4** known that the binding energies per nucleon in Ne²⁰, He⁴ & C¹² nuclei are equal to 8.03, 7.07 or & 7.68 MeV respectively. \sim
- (a) Calculate the energy released if ²³⁸ U emits an α -particle. (b) Calculate the energy to be supplied to α B.5 238 U if two protons and two neutrons are to be emitted one by one. The atomic masses of 238 U , 238 Th $^{\circ}_{
 m o}$ and ⁴He are 238.0508 u , 234.04363 u and 4.00260 u respectively 903

SECTION (C) : RADIOACTIVE DECAY

Phone C.1 Show that the minimum energy needed to separate a proton from a nucleus with Z protons and N neutrons is

 $\Delta \mathsf{E} = (\mathsf{M}_{\mathsf{Z}-1,\mathsf{N}} + \mathsf{M}_{\mathsf{H}} - \mathsf{M}_{\mathsf{Z},\mathsf{N}})\mathsf{C}^2$

Bhopal where $M_{z,N}$ = mass of an atom with Z protons and N neutrons in the nucleus and M_{μ} = mass of a hydrogen atom. This energy is known as proton-separation energy.

0

- C.2 A stationary ₈₂Pb²⁰⁰ nucleus emits an α – particle with kinetic energy T_{α} = 5.77 MeV. Find the recoil velocity of a daughter nucleus. What fraction of the total energy liberated in this decay is accounted for on the recoil energy of daughter nucleus? Y
- The kinetic energy of an α particle which flies out of the nucleus of a Ra²²⁶ atom in radioactive \vec{r} C.3 disintegration is 4.78 MeV. Find the total energy evolved during the escape of the α – particle. Ś
- In the decay 64 Cu $\rightarrow {}^{64}$ Ni + e⁺ + v, the maximum kinetic energy carried by the positron is found to be $\stackrel{10}{\geq}$ **C.4** 0.650 MeV (a) What is the energy of the neutrino which was emitted together with a positron of kinetic \overline{a} energy 0.150 MeV ? (b) What is the momentum of this neutrino in kg-m /s ?Use the formula applicable с. to photon
- Potassium -40 can decay in three modes It can decay by β emission, β + emission or electron β C.5 capture. (a) Write the equations showing the end products. (b) Find the Q-values in each of the three $\vec{\omega}$

```
<sup>40</sup><sub>18</sub>Ar, <sup>40</sup><sub>19</sub>K and <sup>40</sup><sub>20</sub>Ca are 39.9624 u, 39.9640u and 39.9626 u respectively.
                                                                                                                                                                                           Teko Classes, Maths
cases. Atomic masses of
```

Calculate the maximum kinetic energy of the beta particle emitted in the following decay scheme: $^{12}N \rightarrow ^{12}C^* + e^+ + v$

 $^{12}C^* \rightarrow ^{12}C + \gamma (4.43 \text{ MeV.})$

The atomic mass of 12N is 12.018613 u.

SECTION (D) : STATISTICAL LAW OF RADIOACTIVE DECAY

- D.1 A free neutron beta-decays to a proton with a half life of 14 minutes.
 - (a) What is the decay constant?
 - (b) Find the energy liberated in the process.
- $^{197}_{79}$ Hg (electron capture to $^{197}_{79}$ Hg) is 1.8×10^{-4} s⁻¹ (a) .What is the half life? **D.2** The decay constant of

(b) What is the average life? (c) How much time will it take to convert 25% of this isotope of mercury into gold?

- D.3 How many β – particles are emitted during one hour by 1.0 µg of Na²⁴ radionuclide whose half–life is 15 hours? [Take $e^{(-0.693/15)} = 0.955$, and avagadro number = 6×10^{23}]
- **D.4** The half-life of ¹⁹⁸Au is 2.7 days. (a) Find the activity of a sample containing 1.00 µg of ¹⁹⁸Au. (b) What will be the activity after 7 days ? Take the atomic weight of ¹⁹⁸ Au to be 198 g/mol.
- page 14 D.5 At the initial moment the activity of certain radionuclide totalled 650 particles per minute. What will be the activity of preparation after half its half - life period. $[take e^{-0.347} = 0.707]$
- Determine the age of ancient wooden items if it is known that the specific activity of C¹⁴ nuclide in them D.6 amounts to 3/5 of that in lately felled trees. The half life of C¹⁴ nuclei is 5570 years.[take ln 0.6 = -0.51] $\frac{1}{20}$
- Calculate the specific activities of Na²⁴ & U²³⁵ nuclides whose half lives are 15 hours and $\overset{\infty}{\Omega}$ **D.7**
- 7.1×10^8 years respectively. Radio active phosphorus 32 has a half life of 14 days. A source containing this isotope has an initial %**D.8** activity of 10 m Ci. 0
 - (i) What is the activity of the source after 42 days?
 - What time elapses before the activity of the source falls to 2.5 m Ci? (ii)
- 7779, The count rate from a radioactive sample falls from 4.0×10^{6} per seconds to 1.0×10^{6} per second in ∞ D.9
- A piece of ancient wood shows an activity of 3.9 disintegration per sec. per gram of C¹⁴. Calculate the 8 D.10 age of the wood. $T_{1/2}$ of C¹⁴ = 5570 years. Activity of fresh C¹⁴ = 15.6 disintegration per second per o gram.
- gram. Half life of radium is 1620 years. How many radium nuclei decay in 5 hours in 5 g radium. [Atomic 9 weight of radium = 226] D.11 weight of radium = 226]
- Assuming the age of the earth to be 10^{10} years, what fraction of the original amount of U²³⁸ is still in existence on the earth? (T_{1/2} of U²³⁸ = 4.5 x 10⁹ years). D.12
- D.13 An experiment is done to determine the half – life of radioactive substance that emits one β – particle $\widehat{\boldsymbol{s}}$ for each decay process. Measurement show that an average of 8.4 β are emitted each second by 2.5 $^{\rm O}$ \mathbf{X} mg of the substance. The atomic weight of the substance is 230. Find the half life of the substance. Ē

SECTION (E) : NUCLEAR FISSION AND FUSION

Consider the case of bombardment of U²³⁵ nucleus with a thermal neutron. The fission products are E.1 Mo⁹⁵ & La¹³⁹ and two neutrons. Calculate the energy released. (Rest masses of the nuclides U²³⁵ = $\frac{\overline{\alpha}}{2}$

235.0439 u, $_{0}^{1}$ n = 1.0087 u, Mo⁹⁵ = 94.9058 u, La¹³⁹ = 138.9061 u). [Use 1amu = 931 Mev]

: Suhag E.2 The radius of a nucleus of a mass number A is given by $R = R_0 A^{1/3}$, where $R_0 = 1.3 \times 10^{-15} \text{ m}$. Calculate

the electrostatic interaction (potential) energy between two equal nuclei produced in the fission of $\frac{238}{92}$ Maths at the moment of their fission.

Ś

с.

E.3 Energy evolved from the fusion reaction is to $be 2^{2}_{1}H = {}^{4}_{2}He + Q$ used for the production of power. eko Classes, Assuming the efficiency of the process to be 30 %. Find the mass of deuterium that will be consumed in a second for an output of 50 MW.

[Atomic masses are ${}^{4}_{2}$ He = 4.002603 u ; ${}^{2}_{1}$ H = 2.014102 u]

About 185 MeV of usable energy is released in the neutron induced fissioning of a ²³⁵₉₂U nucleus. If the reactor using ²³⁵₉₂U as fuel continuously generates 100 MW of power how long will it take for 1 Kg of the uranium to be used up?

E.5 For the D–T fusion reaction, find the rate at which deuterium & tritium are consumed to produce 1 MW. The Q-value of D-T reaction is 17.6 MeV & assume all the energy from the fusion reaction is available.

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

ages & Learn by Video Tutorials n www.MatheRvSuh Get Solution of Th Dr

	Gerc		5501 a	unayes	a Leanny			ww.iviatiisDyS	unay.com						
_		[Atomic masses (A) 4.3 MeV	s are: 40 20	Ca = 39 (B) 8.36	9.962589 u; m 6 MeV	_n = 1.008665 u (C) – 4.3 MeV	;	40.962275 u] (D) – 8.36 MeV							
ag.con	B.2	As the mass nur (A) increases (D) varies in a wa	nber A ir ay that d	ncreases (B) decr lepends	s, the binding er reases on the actual va	nergy per nucleo (C) remains th alue of A.	n in a nuc e same	leus							
hsBySuh:	B.3	Which of the foll (A) It is the energy (B) It is the energy (C) It is the sum (D) It is the sum	owing is gy requi gy made of the re of the ki	a wrong red to br avilable est mass inetic en	description of k eak a nucleus i when free nucl energies of its ergy of all the n	binding energy of nto its constituer eons combine to nucleons minus nucleons in the n	f a nucleu nt nucleon from a nu the rest n ucleus	s ? is. ucleus nass energy of the	e nucleus	page 16					
www.Mat	B.4	The energy of the nuclei are 5.60 (A) 17.3 MeV (D) depends on	he react and 7.00 1 binding	tion Li ⁷ + 6 MeV re (B) – 17 g energy	$p \longrightarrow 2 He^4 i$ espectively.) 7.3 MeV of proton	s (the binding e (C) 1.46 MeV	nergy per	r nucleon in Li ⁷ ai	nd He ⁴	3930 58881.					
т & ́	B.5	The atomic weigl (A) 19 : 81	nt of bord (B) 10 :	on is 10.8 11	1 and it has two (C) 15 : 16	isotopes ¹⁰ ₅ B and (D) 81 : 19	${}^{11}_{5}$ B. The ra	atio of ${}^{10}_{5}B$: ${}^{11}_{5}B$ in na	ature would be	, 0 98					
õ	SECTION (C) : RADIOACTIVE DECAY														
S.C	C.1	The radioactive	nucleus	₋ N ¹³ dec	ays to _c C ¹³ thro	ough the emission	n of			3					
Se		(A) positron		(B) neut	ron	(C) proton		(D) electron		60					
Clas	C.2	An α -particle is be (A) neutron	ombarde	ed on ¹⁴ N. (B) prote	As a result, a ¹⁷ Con	O nucleus is forme (C) electron	ed and a p	article is emitted. T (D) positron	his particle is a	: 0 903					
www.Teko	C.3	In beta decay, (A) the daughter nucleus has one proton more than the parent nucleus (B) the parent and the daughter nuclei have the same number of protons (C) the daughter nucleus has one neutron more than the parent nucleus (D) the daughter nucleus has one proton less than the parent nucleus													
site: V	C.4	In a radioactive particles is emitt (A) proton	decay, r ted in th	neither th e decay (B) neut	ne atomic numb ? orn	per nor the mass (C) electron	number o	changes. Which o (D) photon	f the following	(. Sir), Bł					
from web	C.5	During a negativ (A) an atomic ele (B) an electron v (C) a neutron in t (D) a proton in th	e beta d ectron is vhich is the nucl ne nucle	ecay, s ejected already p eus deca us decay	present within th ays emitted an e rs emitting an e	he nucleus is eje electron lectron	cted			⟨ariya (S. R. k					
۶age	C.6	In which of the fo (A) α-decay	ollowing	decays t (B) β⁺-d	he element doe ecay	es not change ? (C) β ⁻ -decay		(D) γ-decay		ag R. Þ					
Pac	C.7	In which of the form $(A) \alpha$ -decay	ollowing	decays t (B) β⁺-d	he atomic num ecay	ber decreases ? (C) β ⁻ -decay		(D) γ-decay		s : Suh					
tudy	C.8	Which of the follo (A) α -rays	owing ar	e electro (B) beta	magnetic wave -plus rays	s ? (C) beta-minus	srays	(D) gamma rays		Maths					
ad S	C.9	A nucleus raptur of their nuclear s	es into tv sizes (rac	wo nuclea dii) ?	ar parts which h	ave their velocitie	es in the ra	atio of 2 : 1. What $\sqrt{2}$	will be the ratio	asses,					
		(A) 2 ^{1/3} : 1		(B) 1 : 2	1/3	(C) 3 ^{1/2} : 1		(D) 1 : 3 ^{1/2}		Ö					
Dowr	C.10	A free neutron d (A) A neutrino	ecays in	ito a prot (B) An a	on, an electron ntineutrino	and : (C) An α-partic	le	(D) A β -particle		Teko					
Ш	SECTI	ON (D) : STA	TISTIC	CAL LA	W OF RAD	OACTIVE DE	CAY								
ЕRЕ	D.1	In one average-lif	fe												

	Gets	Colution of These Packages & Learn ((A) half the active nuclei decay (C) more than half the active nuclei decay	by VIDEO Tutorials on v (B) less than h (D) all the nuclei decay	www.MathsBySuhag.com alf the active nuclei decay										
l.com	D.2	A freshly prepared radiocative source of half-life safe level. The minimum time after which it w (A) 6 h (B) 12 h	2 h emits radiation of intensi ould be possible to work sa (C) 24 h	h emits radiation of intensity which is 64 times the permissible uld be possible to work safely with this source is (C) 24 h (D) 128 h										
Suhag	D.3	The decay constant of a radoactive sample is λ . (A) 1/ λ and (In 2/ λ) (C) 1(In 2) and 1/ λ	The half-life and the average (B) (ln2/ λ) and 1/ λ (D) λ /(ln 2) and 1/ λ	e-life of the sample are respectively	je 17									
thsBy	D.4	D.4 The activity of a certain preparation decreases by 75% after 7.0 days. The half life of the [take ln $(0.4) = -0.916$] (A) 2.9 days (B) 5.3 days (C) 3.5 days (D) 6 days												
w.Mai	D.5	The half life of $_{92}U^{238}$ against alpha decay is 4 part of this isotope is	.5 x 10 ⁹ years. The time tak	en in years for the decay of 15/16	58881									
Ş		(A) 9.0×10^9 (B) 1.8×10^{10}	(C) 4.5 × 10 ⁹	(D) 2.7 × 10 ¹⁰	330									
om & w	D.6	Two isotopes P and Q of atomic weight 10 and 20 days their weight ratio is found to be 1 : 4. Is (A) zero (B) 5 days	d 20, respectively are mixed sotope P has a half-life of 10 (C) 20 days	d in equal amount by weight. After) days. The half-life of isotope Q is (D) inifinite	79, 0 989									
ses.c	D.7	Ten grams of ⁵⁷ Co kept in an open container material inside the container after 540 days w (A) 10 g (B) proton	beta-decays with a half-lif Il be very nearly (C) electron	e of 270 days. The weight of the (D) positron	903 77									
r.TekoClas	D.8	he half-life of a radioactive substance is 10 days. This means that : b) the substance completely disintegrates in 20 days c) the substance completely disintegrates in 40 days c) 1/8 part of the mass of the substance will be left intact at the end of 40 days c) 7/8 part of the mass of the substance disintegrates in 30 days												
site: www	D.9	The half-life of a radioactive substance depend (A) its temperature (B) the extend (C) the mass of the substance (D) the strength of the nuclear force between	ds upon : mal pressure on it the nucleons of its atom	90	. Sir), Bhopal									
ğ	SECTION (E) : NUCLEAR FISSION AND FUSION													
Š	E.1	During a nuclear fission reaction,			<u>с</u>									
e from v		 (A) a heavy nucleus breaks into two fragment (B) a light nucleus bombarded by thermal neu (C) a heavy nucleus bombarded by thermal neu (D) two light nuclei combine to give a heavier 	s by itself trons break up eutrons breaks up nucleus and possibly other	products.	l. Kariya (S									
ackag	E.2	$_{92}$ U ²³⁵ nucleus absorbs a slow neutron and uno porduced in this fission process are (A) 1 β and 1 α (B) 2 β and 1 neutron	lergoes fission into ₅₄ X ¹³⁹ ar n (C) 2 neturons	nd ₃₈ Sr ⁹⁴ nuclei.The other particles (D) 3 neutrons	Suhag F									
ad Study P	E.3	Two lithium nuclei in a lithium vapour at room te (A) a lithium nucleus is more tightly bound tha (B) carbon nucleus is an unstable particle (C) it is not energetically favourable (D) Coulomb repulsion does not allow the nuc	mperature do not combine to an a carbon nucleus lei to come very close	o form a carbon nucleus because ?	sses, Maths :									
Downloa	E.4	In a uranium reactor whose thermal power is in each nuclear splitting is 2.5. Each splitt number of neutrons generated per unit time (A) $4 \times 10^{18} \text{ s}^{-1}$ (B) $8 \times 10^{23} \text{ s}^{-1}$	s P = 100 MW, if the avera ing is assumed to releas is (C) 8 × 10 ¹⁹ s ⁻¹	ge number of neutrons liberated e an energy E = 200 MeV. The (D) 8 × 10 ¹⁸ s ⁻¹	Teko Cla									
FREE	E.5	A fusion reaction of the type given below production of power. Here D & T stand for de the process to be 50 %, the mass of deutering	${}^{2}_{1}D + {}^{2}_{1}D \longrightarrow {}^{3}_{1}T + {}^{1}_{1}p +$ euterium & tritium, respect um required per day for a p	→ ΔE, is most promising for the ively. Assuming the efficiency of power output of 10 ⁹ W is (Given:) f :									

		mass of ${}^{2}_{1}D = 2.0145$	8 amu; mass of ${}_{1}^{3}T = 3.0$	01605 amu; mass of $\frac{1}{1}$ p	= 1.00728 amu & 1 amu = 930)						
E		(A) 0.66 Kg/ day	(B) 2.64 kg/ day	(C) 132 gm/day	(D) 1.32 kg/day							
ihag.co	E.6	In a nuclear reactor l efficiency and produc uranium required is	J ²³⁵ undergoes fission lises 1000 MW power. If t	iberating 200 MeV of er he reactor is to function	hergy. The reactor has a 10 % for 10 years, the total mass o	f so						
ຸ່		(A) 3847 kg	(B) 38470 kg	(C) 384700 kg	(D) 384.7 kg	ge 1						
MathsB	E.7	A star initially has 10^4 & $_1H^2 + _1H^3 \rightarrow _2He^4 + n$ is exhausted in a time $[m_p = 1.007u; m_n = 1.4]$	to deutrons. It produces to . If the average power race of the order of : 008 u; m $(_1H^2) = 2.014u$ (B) 10 ⁸ sec	energy via, the processe diated by the star is 10^{16} ; m(₂ He ⁴) = 4.002 u] (C) 10^{12} sec	es ${}_{1}H^{2} + {}_{1}H^{2} \rightarrow {}_{1}H^{3} + p$ W, the deutron supply of the sta (D) 10^{16} sec	881. bag						
om & www.l	E.8	Pick out the statement which is true. (A) The energy released per unit mass is more in fission than in fusion (B) The energy released per atom is more in fusion than in fission. (C) The energy released per unit mass is more in fusion and that per atom is more in fission. (D) Both fission and fusion produce same amount of energy per atom as well as per unit mass.										
Classes.c	E.9	Fusion reaction takes (A) atoms are ionised (B) molecules break-u (C) nuclei break-up at (D) kinetic energy is h	place at high temperatu at high temperature up at high temperature high temperature igh enough to overcome	ure because e repulsion between nucl	ei.	0 903 903 77						
./Teko(E.10	In 1935, Yukawa sugge nucleons. These partic (A) protons	ested that nuclear forces a les are : (B) mesons	arise as a result of intercha (C) photons	ange of certain particles between (D) positrons	Phone :						
www	E.11	The average number o (A) 1	f neutrons released by the	e fission of one uranium a (C) 2.5	tom is : (D) 3	, Bhopal						
site	E.12	A radioactive element alpha particle and a ga	X has atomic number Z a mma ray. The new eleme	nd atomic mass number / ent is :	4. It decays by the emission of a	Sir,						
ebs		(A) $\frac{A-2}{Z-1}Y$	(B) $^{A-4}_{Z-2}Y$	(C) $^{A+1}_{Z}Y$	(D) $^{A+4}_{Z+2}Y$	ц Ч						
om w	E.13	In a fission reaction	$^{236}_{92}U \longrightarrow ^{11}$	¹⁷ X + ¹¹⁷ Y + <i>n</i> + <i>n</i>		iya (S. I						
efr		the binding energy per	r nucleon of X and Y is 8	.5 MeV whereas that of 2	¹⁶ U is 7.6 MeV. The total energy	K ^A						
ckag		(A) 200 keV	(B) 2 MeV	(C) 200 MeV	(D) 2000 MeV	ihag R						
nload Study Pa	E.14	Graphite and heavy wate (A) to slow down the net (B) to absorb the neutr (C) to cool the reactor (D) to control the energy	er are two common modera eutrons to thermal energie ons and stop the chain re by released in the reactor EXER	ators used in a nuclear reacters action	or. The function of the moderator is	o Classes, Maths : Su						
Dow	SECTION 1.	ON (A) : ONLY ON The graph of $In(R/R_0) v$ (A) a straight line	ersus In A(R=radius of a (B) a parabola	ECT nucleus and A = its mass (C) an ellipse	number) is (D) none of them	Tek						
FREE	2.	Let F_{pp} , F_{pn} and F_{nn} defined the neutron and by a neutron (A) $F_{pp} > F_{pn} = F_{nn}$	note the magnitudes of th on on a neutron respectiv (B) $F_{pp} = F_{pn} = F_{nn}$	the nuclear force by a protect velocity of the separation $(C) F_{pp} > F_{pn} > F_{nn}$	ton on a proton, by a proton on a is 1 fm, (D) $F_{pp} < F_{pn} = F_{nn}$	ł						

- Let F_m, F_m and F_m denote the magnitudes of the net force by a proton on a proton by a proton on a neutron 3. and by a neutron on a neutron respectively. Neglect gravitational force. When the separation is 1 fm, (A) $F_{pp} > F_{pn} = F_{nn}$ (B) $F_{pp} = F_{pn} = F_{nn}$ $(C) F_{pp} > F_{pn} > F_{nn}$
- (D) $F_{pp} < F_{pn} = F_{nn}$ FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com Two protons are kept at a separation of 10 nm. Let F, and F, be the nuclear force and the electromagnetic 4. force between them. (C) F_ << F_ (B) F_>> F_ (D) F and F differ only slightly. $(A) F_a = F_a$ Four physical quantities are listed in column I. Their values are listed in Column II in a random 19 order. page Column I Column II 0.02 eV (a) Thermal energy of air molecules at room temprature (e) 2 eV (b) Binding energy of heavy nuclei per nucleon (f) 98930 58881. 1 KeV (c) X-ray photon energy (g) (d) Photon energy of visible light 7 MeV (h) The correct matching of columns I & II is given by : (A) a - e, b - h, c - g, d - f(B) a - e, b - g, c - f, d - h(D) a - f, b - h, c - e, d - g(C) a - f, b - e, c - g, d - hOn an average neutron loses half of its energy per collision with a free proton. How many collisions, on O 6. the average are required to reduce a 2 MeV neutron to a thermal energy of 0.04 eV ? 7779, (A) 22 (B) 26 (C) 18 (D) 30 Protons and singly ionized atoms of U²³⁵ & U²³⁸ are passed in turn (which means one after the other on and not at the same time) through a velocity selector (where a magnetic field causes them to describe on the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnetic field causes the same time) through a velocity selector (where a magnet 7. semicircular path). The protons describe semicircles of radius 10 mm. The separation between the g ions of U²³⁵ and U²³⁸ after describing semicircle is given by 0 (B) 30 mm (D) 2380 mm (A) 60 mm (C) 2350 mm Phone When a β^{-} -particle is emitted from a nucleus, the neutron-proton ratio : 8. (A) is decreased (B) is increased (C) remains the same (D) first (A) then (B) Bhopal The e/m for β-particles emitted out from the nucleus in comparison to the value of e/m for photoelec-9. trons is (D) none of these. (A) equal (B) more (C) less At time t = 0, some radioactive gas is injected into a sealed vessel. At time T, some more of the same $\frac{1}{50}$ 10. gas is injected into the same vessel. Which one of the following graphs best represents the variation of the logarithm of the activity A of the gas with time t? с. 11. beomes x in time t after the decay. If a decay takes place when the train is moving at a uniform speed v, the \overline{O} distance between the alpha particle and the recoiling nucleus at a time t after the decay, as measured by the passenger will be (B) x - บt (C) x (D) depends on the direction of the train (A) x + υt The half – life of uranium 238 is about 4.5 × 10⁹ years & its end product is Pb²⁰⁶. We find that the oldest 12. uranium bearing rocks on earth contain about 50 - 50 mixture of U²³⁸ and Pb ²⁰⁶. The age of those rocks is [ln(222/103) = 0.768]

(D) 2.6 × 10⁹ years

13.	A radioactive material decays by β -particle emission. During the first 2 seconds of a measurement, n β -particles are emitted and in the next 2 seconds 0.75n β -particles are emitted. The mean-life of this material in seconds to the nearest whole number is (In 3 = 1.0986 and In 2 = 0.6931) (A) 7 sec. (B) 7 minutes (C) 10 sec. (D) 4 sec.	
ה 14.	Assuming initially no lead is present and all lead forms from uranium only. The ratio of atom of Pb: U after time 1.5×10^9 years is (Given T _{1/2} = 4.5×10^9 years Take $2^{1/3} = 1.259$) (A) 0.741 (B) 0.259 (C) 1.259 (D) 0.482	70
15.	A sample of radioactive material has mass <i>m</i> , decay constant λ , and molecular weight <i>M</i> . Avogadro constant $\stackrel{\circ}{}_{A}$. = N_{A} . The initial acitvity of the sample is :	שמע
	(A) λm (B) $\frac{\lambda m}{M}$ (C) $\frac{\lambda m N_A}{M}$ (D) $m N_A e^{\lambda}$	
16.	In the previous question, the acitvity of the sample after time t will be :	Ś
	(A) $\left(\frac{mN_A}{M}\right)e^{-\lambda t}$ (B) $\left(\frac{mN_A\lambda}{M}\right)e^{-\lambda t}$ (C) $\left(\frac{mN_A}{M\lambda}\right)e^{-\lambda t}$ (D) $\frac{m}{\lambda}(1-e^{-\lambda t})$	
17.	The activity of a sample of radioactive material is A_1 at time t_1 and A_2 at time t_2 ($t_2 > t_1$). Its mean life is T :	ົ້
	(A) $A_1 t_1 = A_2 t_2$ (B) $\frac{A_1 - A_2}{t_2 - t_1}$ = constant (C) $A_2 = A_1 e^{(t_1 - t_2/T)}$ (D) $A_2 = A_1 e^{(t_1/Tt_2)}$	
18.	Two radioactive source <i>A</i> and <i>B</i> initially contain equal number of radioactive atoms. Source <i>A</i> has a half-life of 1 hour and source <i>B</i> has a half-life of 2 hours. At the end of 2 hours, the ratio of the rate of disintegration of <i>A</i> to that of <i>B</i> is :	
	(A) 1 : 2 (B) 2 : 1 (C) 1 : 1 (D) 1 : 4	; ;
SECT	ON (B) : ONE OR MORE THAN ONE OPTIONS MAY BE CORRECT	
10.	(A) mass (B) vloume (C) density (D) binding energy	-
20	The heavier nuclei tend to have larger N/Z ratio because (A) a neutron is heavier than a proton (B) a neutron is an unstable particle (C) a neutron does not exert electric repulsion (D) Coulomb forces have longer range compared to nuclear forces	·
21.	A free neutron decays to a proton but a free proton does not decay to a neutron. This is beacuse (A) neutron is a composite particle made of a proton and an electron whereas proton is fundamental particle (B) neutron is an uncharged particle whereas proton is a charged particle (C) neutron has larger rest mass than the proton (D) weak forces can operate in a neutron but not in a proton.	יייי יער אין
, 22.	Consider a sample of a pure beta-active materialConsider a sample of a pure beta-active materialConsider a sample of a pure beta-active material(A) All the beta particles emitted have the same energy(B) The beta particles originally exist inside the nucleus and are ejected at the time of beta decay(C) The antineutrino emitted in a beta decay has zero mass and hence zero momentum.(C) The active nucleus changes to one of its isobars after the beta decay	ייי - אטויטס
23.	Magnetic field does not cause deflection in (A) α-raysC) beta-minus raysD) gamma rays	מש, ועומו
24.	For nuclei with A > 10030(A)the binding energy of the nucleus decreases on an average as A increases30(B)the binding energy per nucleon decreases on an average as A increases30(C)if the nucleus breaks into two roughly equal parts, energy is released30(D)if two nuclei fuse to form a bigger nucleus, energy is released.40	
25.	If the activity of Co^{55} radionuclide is known to decrease 4.0 % in one hour. The decay product is non – radioactive, then the decay constant and the mean life time of Co^{55} radionuclide are given by	

	Get S	Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com	
		$ \begin{array}{ll} (A) \ 1.1 \times 10^{-5} \text{s}^{-1} \& \ 1 \ \text{day} \\ (B) \ 1.1 \times 10^{-3} \text{s}^{-1} \& \ 1.5 \ \text{min.} \\ (D) \ 1.1 \times 10^{-3} \text{s}^{-1} \& \ 90 \ \text{sec.} \end{array} $	
hag.com	26.	 A U²³⁸ sample of mass 1.0 g emits alpha particles at the rate 1.24 x 10⁴ particles per second. (A) The half life of this nuclide is 4.5 x 10⁹ years (B) The half life of this nuclide is 9 x 10⁹ years (C) The activity of the preparation is 2.48 x 10⁴ particles/sec (D) The activity of the preparation is 1.24 x 10⁴ particles/sec. 	_
MathsBySu	27.	 Radio active phosphorus 32 has a half life of 14 days. A source containing this isotope has an initial activity of 10 m Ci. (A) The activity of the source after 42 days is 1.25 mCi (B) The activity of the source after 42 days is 2.5 mCi (C) Time elapses before the activity of the source falls to 2.5 mCi is 42 days (D) Time elapses before the activity of the source falls to 2.5 mCi is 28 days 	881. page 21
Ň.	28.	The quantity of $^{210}_{84}$ Po necessary to provide a source of α - particles of 5 mCi strength is	30 58
⊗ ≷		$\begin{bmatrix} T_{1/2} \text{ of Po} = 138 \text{ days} \end{bmatrix}$ (A) 2.43 × 10 ⁻⁹ kg (B) 1.107 × 10 ⁻⁹ kg (C) 3.56 × 10 ⁻⁶ gm (D) 1.107 × 10 ⁻⁶ gm	0 9893
oClasses.com	29.	The $_{92}U^{235}$ absorbs a slow neutron (thermal neutron) & undergoes a fission represented by $_{92}U^{235} + _{0}n^{1} \longrightarrow _{92}U^{236} \longrightarrow _{56}Ba^{141} + _{36}Kr^{92} + 3_{0}n^{1} + E.$ (Given atomic masses : $_{92}U^{235} = 235.1175$ amu ; $_{56}Ba^{141} = 140.9577$ amu; $_{36}Kr^{92} = 91.9264$ amu ; $_{0}n^{1} = 1.00898$ amu) (A) The energy released per fission is 200.68 MeV (B) The energy released per fission is 20.1 MeV (C) The energy released when 1 g of $_{92}U^{236}$ undergoes complete fission is 22.8 Mwh (D) Q value of the reaction is negative	e : 0 903 903 7779,
ite: www.Tek	30.	A nucleus at rest undergoes a decay emitting an α particle of De-Broglie wavelength $\lambda = 5.76 \times 10^{-15}$ m. If the mass of the daughter nucleus is 223.610 a.m.u. and that of the α particle is 4.002 a.m.u. [1 amu = 931.47 MeV/c ²] (A) The total kinetic energy in the final state is 6.31 KeV (B) The total kinetic energy in the final state is 6.31 MeV (C) The mass of the parent nucleus in a.m.u. is 227.62 amu (D) The mass of the parent nucleus in a.m.u. is 525.23 amu	Sir), Bhopal Phone
cage from webs	31.	A radioactive nucleus X decays to a nucleus Y with a decay constant $\lambda_{\chi} = 0.1 \text{sec}^{-1}$. Y further decays to a stable nucleus Z with a decay constant $\lambda_{\gamma} = 1/30 \text{ sec}^{-1}$, initially there are only X nuclei and their number is $N_0 = 10^{20}$. The population of the Y nucleus as a function of time is given by N_Y (t) = $(N_0\lambda_X/(\lambda_X - \lambda_Y))$ [exp $(-\lambda_Y t) - \exp(-\lambda_X t)$]. (A) The time at which N_Y is maximum is 15 ln3 (B) The population of X at that instant is $\frac{N_0}{3\sqrt{3}}$ where $N_0 = 10^{20}$	ag R. Kariya (S. R. K.
udy Pach		(C) The population of Z at that instant is N ₀ $\left(1 - \frac{4}{3\sqrt{3}}\right)$ where N ₀ = 10 ²⁰ (D) None of these	/aths : Suha
Download Stu	32.	A nitrogen nucleus ₇ N ¹⁴ absorbs a neutron and can transform into lithium nucleus ₃ Li ⁷ under suitable conditions, after emitting (A) 4 protons and 3 neutrons (B) 5 protons and 1 negative beta particle (C) 2 alpha particles and 2 gama particles (D) 1 alpha particle, 4 protons and 2 negative beta particles. (E) 4 protons and 4 neutrons.	Teko Classes, N
FREE	33.	 ⁹²U²³⁵ is 'α'(alpha) active. Then in a large quantity of the element (A) the probability of a nucleus disintegrating during one second is lower in the first half life and greater in the fifth half life (B) the probability of a nucleus disintegrating during one second remains constant for all time 	

- every nucleus must integrate by the lapse of the average life of the population (C)
- (D) quite and apreciable quantity of U²³⁵ will remain even after the average life.
- (E) the energy of the emitted ' α ' particle is less than the disintegration energy of the U²³⁵ nucleus.
- 34. In case of radioactive radiations

35.

36.

- some are not deviated by electric and magnetic fields (A)
- (B) some carry negative charge
- (C) all are electromagnetic waves
- (D) all produce X-rays when suddenly stopped.

Two identical nuclei A and B of the same radioactive element undergo β decay. A emits a β -particle and β changes to A'. B emits a β -particle and then a γ -ray photon immediately afterwards, and changes to B':

- A' and B' have the same atomic number and mass number (A)
- A' and B' have the same atomic number but different mass numbers (B)
- (C) A' and B' have different atomic numbers but the same mass number
- (D) A' and B' are isotopes

When a nucleus with atomic number Z and mass number A undergoes a radioactive decay process :

- (A) Both Z and A will decrease, if the proces is α decay
- (B) Z will decrease but A will not change, if the process is β^+ decay
- (C) Z will increase but A will not change, if the process is β^- decay
- (D) Z and A will remain unchanged, if the process is γ decay
- 37. Which of the following assertions are correct?
 - (A) A neutron can decay to a proton only inside a nucleus
 - (B) A proton can change to a neutron only inside a nucleus
 - (C) An isolated neutron can change into a proton
 - (D) An isolated proton can change into a neutron

EXERCISE-4

The half-life of radioactive Radon is 3.8 days. The time at the end of which (1/20)th of the Radon 1. [JEE 81] sample will remain undecayed is (given $\log_{10} e = 0.4343$) (C) 33 days (A) 13.8 days (B) 16.5 days (D) 76 days If elements with principal quantum number n > 4 were not allowed in nature, the number of possible $\dot{\prec}$ 2. elements would be [JEE 83]

- (A) 60 (B) 32 (C) 4 (D) 64
- β -rays emitted by a radioactive material are : 3. (A) Electromagnetic waves (B) Electrons orbiting around the nucleus (C) Charged particles emitted by the nucleus (D) Neutral particles.
 - The mass number of a nucleus is -
 - (A) Always less than its atomic number
 - (B) Always more than its atomic number
 - (C) Sometimes equal to its atomic number
 - (D) Sometimes more than and sometimes equal to its atomic number.
- FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com 5. During a nuclear fusion reaction [JEE - 87] (A) A heavy nucleus breaks into two fragments by itself (B) A light nucleus bombarded by thermal neutrons breaks up (C) A heavy nucleus bombarded by thermal neutrons breaks up (D) Two light nuclei combine to give a heavier nucleus and possibly other products. During a negative beta decay [JEE - 87] 6. (A) An atomic electron is ejected (B) An electron which is already present within the nucleus is ejected
 - (C) A neutron in the nucleus decay emitting an electron
 - (D) A part of the binding energy of the nucleus is converted into an electron.
 - 7. Two radioactive elements X and Y have half-lives of 50 minutes and 100 minutes respectively. Initial samples of both the elements have equal number of atoms. The ratio of the remaining

[JEE - 83]

[JEE - 86]

	Get S	Solution	n of These Pa	ckages & Learn by	Video Tutorials o	n www.MathsByS	Suhag.com					
		number (A) 2	r of atoms of X a	and Y after 200 minutes (B) 1/2	s, is (C) 4	(D) 1/4	[REE - 90]					
сот	8.	In the o (A)	c-decay process The kinetic end	s occurring in different t ergy of the daughter nu	types of nuclei at res cleus is always great	t ; ter than the kinetic e	energy of the α -					
lag.c		(B)	The kinetic en	ergy of the daughter n	ucleus is always les	s than the kinetic e	nergy of the α -					
Suh		(C)	C) The magnitude of the linear momenta of the α-particle and the daughter nucleu equal									
Bys		(D)	The daughter i	nucleus is always in a s	table state.		[JEE - 94] Bed					
laths	9.	Fast neutrons can easily be slowed down by (A) The use of lead shielding(B) Passing them through water(C) Elastic collisions with heavy nuclei(D) Applying a strong electric field.										
www.N	10.	Conside penetra (A) α, β	er α-particles, $β$ ating powers, th 3, γ	-particles and γ -rays, ea e radiations are : (B) α , γ , β	ach having an energy (C) β, γ, α	r of 0.58 MeV. In incr (D) γ, β, α	easing order of ເດິດ [JEE - 94] O ເດິດ					
à	11.	A slow	neutron (n) is c	aptured by a $^{235}_{92}$ Unucl	eus forming a highly	unstable nucleus	²³⁶ U* (where * 0					
ШO		denotes that the nucleus is in an excited state). The fission of the nucleus occurs by $(A) = \frac{236}{140} = \frac{140}{140} = \frac{89}{140} = \frac{68}{140} = \frac{68}{140} = \frac{140}{140} = \frac{140}{1$										
S.C		$(C) \frac{236}{23}$	$U^* \rightarrow \frac{144}{50} \text{Te} + \frac{14}{50} \text{Te} + \frac{14}$	$^{89}_{42}$ Mo + 3n + Q	(D) $^{236}_{52}$ U * \rightarrow $^{144}_{56}$ Xe	$2 + \frac{89}{38}$ Kr + 3n + Q	3 77					
SSE	12.	At a giv	en instant there	are 25% undecaved radi	(7) $\frac{1}{92}$ 1	nple. After 10 second	ය Is the number of ප					
oCla		undecayed nuclei reduces to 12.5%. Calculate (a) the mean life of he nuclei and (b) the time in which number of undecayed nuclei will further reduce to 6.25% of the reduced number. [IIT - 96]										
r.Tek	13.	Masses these d	s of two isobars $\frac{6}{2}$ ata that :	$^{4}_{29}$ Cu and $^{64}_{30}$ Zn are 63.929	98 u and 63.9292 u re	spectively. It can be	concluded from 6 [IIT - 97]					
	\langle	(A) Both (B) ⁶⁴ Zr (C) ⁶⁴ Cu (D) ⁶⁴ Cu	h the isobars are h is radioactive, c u is radioactive, d u is radioactive, c	e stable decaying to ⁶⁴ Cu through decaying to ⁶⁴ Zn through decaying to ⁶⁴ Zn through	β-decay γ-decay β-decay), Bhopal					
site	14.	In an or	e, assuming that									
veb		all the le	[IIT - 97]									
ge from v	15.	The ele fission a latter wi are as f	ement Curium ${}^{24}_{9}$ and α -decay mod ith a probability o ollows : (1 u = 93	⁸ ₆ Cm has a mean life of des are spontaneous fissi of 92%. Each fission rele 31 MeV/ <i>c</i> ²). Calculate the	10^{13} seconds. Its prin on and α -decay, the for ases 200 MeV of energy power output from a	nary decay modes a ormer with a probabili rgy. The masses invo a sample of 10 ²⁰ Cm a	re spontaneous (y) ty of 8% and the <u>kine</u> lived in α-decay atoms. [IIT - 97] (y)					
kaç	16.	Let m _p	be the mass of	a proton, m _n the mass	of a neutron, M_1 the	mass of a $^{20}_{10}$ Ne nu	Icleus & M_2 the B_2					
Pac		mass o (A) M ₂	f a ${}^{40}_{20}$ Ca nucleu = 2 M ₁	is. Then: (B) M ₂ > 2 M ₁	(C) M ₂ < 2 M ₁	[JE (D) M ₁ < 10 (m	EE '98, 2]					
ad Study	17.	Nuclei α λ. At tin (a) (b)	of radioactive element $t = 0$, there N_0 Calculate the milling $\alpha = 2N_0\lambda$, calculate the milling $\alpha = 2N_0\lambda$, calcul	ement A are being produc o nuclei of the element. umber <i>N</i> of nuclei of A at culate the number of nucl	ced at a constant rate of time <i>t</i> . ei of A after one half-lif	α. The element has a fe of A and also the lin	decay constant t [IIT - 98] ک niting value of N အ					
nlo	18.	Radio i	as $\iota \to \infty$. sotope ²³⁴ Ra. ι	decays by a series emi	ssion of three ß-part	icles and two α -par	ticles. The end Q					
MOC		product (A) ²²⁰ X	t X is	(B) ²²⁶ X ₈₇	(C) ²³⁴ X _{on}	(D) ²¹⁶ X ₂₀	[JEE - 99] 🛱					
FREE [19.	The ha (A) No (B) No	If-life of ¹³¹ I is 8 nucleus will deo nucleus will deo	days. Given a sample cay before t = 4 days cay before t = 8 days	of ¹³¹ I at time t = 0, v	ve can assert that						

	GetS	C) All nuc (C) All nuc (D) A give	of These Pac clei will decay en nucleus ma	ckages & Learn by before t = 16 days y decay at any time af	Video Tutorials on iter t = 0.	www.MathsBy	Suhag.com [JEE - 99]	
ag.com	20.	The half-I element Y (A) X and (C) Y will	ife period of a 7. Initially both Y have the sa decay at a fas	a radioactive element of them have the sam me decay rate initially ster rate than X	X is same as the mea e number of atoms. Th (B) X and Y decay a (D) X will decay at a	n-life time of anot nen at the same rate al a faster rate than Y	her radioactiv [JEE - 99] ways	е
ySuh	21.	The order (A) 10 ²⁰ kg	of magnitude o g m ⁻³	of density of uranium nu (B) 10 ¹⁷ kg m ⁻³	ucleus is, $(m_p = 1.67 \times 1)$ (C) 10^{14} kg m ⁻³	10 ^{–27} kg) : (D) 10 ¹¹ kg m ^{–3}	[IIT - 99]	ige 24
thsB	22.	22Ne nucl nucleus is	eus, after abso :	orbing energy, decays ir	nto two α -particles and α	an unknown nucleu	s. The unknow [IIT - 99]	'n å.
Λa		(A) Nitroge	en	(B) Carbon	(C) Boron	(D) Oxygen		881
www.N	23.	Two radio the same time.	active materia number of nu	als X_1 and X_2 have deca clei, then the ratio of t	ay constants 10λ and λ he number of nuclei o	respectively. If ini f X_1 to that of X_2 wi	tially they hav Il be 1/e after [JEE - 99]	8330 588
Ś		(A) 1/(10A)	(B) 1/(11)	(C) 11/(10 <i>k</i>)	(D) 1/(9x)		8 0
ses.com	24.	Which of t (A) beta ra (B) gamm (C) alpha (D) protor	the followings ays are same a rays are hig particles are s is and neutror	is a correct statemen as cathode rays. h energy neutrons. singly-ionized helium a ns have exactly the sa	t ? atoms. me mass.		[JEE - 99]	3 903 7779,
oClas	25.	The half-li disintegra (A) 2000	ife of radioact tions in 24 ho	ive Polonium (Po) is 1 urs is - (B) 3000	38.6 days. For ten lak (C) 4000	h Polonium atoms (D) 5000	, the number o [REE - 99]	of 0 : 0 000
ww.Tek	26.	Binding er in the figu process th (A) $Y \rightarrow 2$	nergy per nucl re. W, X, Y an nat would rele 7	eon vs. mass number of d Z are four nuclei indi ase energy is: [JEE (B) $W \rightarrow X + 7$	curve for nuclei is show cated on the curve. Th '99, 2]	vn ne state	×	opal Phon
\$		(C) W \rightarrow 2	2Y	(D) $X \rightarrow Y + Z$		30 60 Mass Nu	90 120 mber Nuclei	Bhc
vebsite:	27.	A radioact life time o plot is ma best repre	ive sample co f one species de of total nur esents the form	insists of two distinct spins τ and that of the oth nber of radioactive number of this plot?	becies having equal nuter is 5τ. The decay pr clei as a function of tir	umber of atoms init oducts in both case ne. Which of the fo	ially. The mea es are stable. blowing figure [IIT 2001]	. R. K. Sir),
j		N		Ν	Ν	Ν		a (S
ē					\sim			ariya
ef		(A)		(B)	(C)	(D)	_	بر
ag		τ	t	$\frac{\tau}{\tau}$ t	τ t	τ.	t	ы Б
Ş	28	(I) W	hich of the fo	llowing processes repr	asonte a camma doca	av2		uha
Ба	20.	(I) (A	$(A) ^{A}X_{7} + \gamma \longrightarrow$	$AX_{7-1} + a + b$	(B) ${}^{A}X_{7} + {}^{1}n_{0} \longrightarrow {}^{A}$	$^{-3}X_{7-2} + C$		S
λ		(C	$() ^{A}X_{Z}^{-} \longrightarrow {}^{A}X_{Z}$	+ f	$(D)^{A}X_{Z}^{-} + e_{-1}^{-} \longrightarrow A$	$X_{Z-1} + g$	f	aths
ituc		(II) I I 21	ne hait life o 5At to decav t	ο 1/16 th of its initial va	ne time taken for tr Ilueis:	ie radioactivity o	r a sample c	"≌
С С		(A	λ) 400 μs	(B) 6.3 μs	(C) 40 μs	(D) 300	Dμs	ses
oa					[JE	E 2002 (Screenin	g) 2 × 3 = 6]	Clas
Jown	29.	A nucleus MeV, calc (A) 4.4 Me	with mass nu ulate the kine eV	mber 220 initially at rest tic energy of the α -par (B) 5.4 MeV	st emits an α-particle. ticle (C) 5.6 MeV	lf the Q value of the (D) 6.5 MeV	e reaction is 5. [IIT 2003]	⁵ Teko (
FREEC	30.	A radioact particles a material in	ive material d re emitted and seconds to th	ecays by β-particle em I the next 2 seconds 0.7 e nearest whole numbe	ission. During the first 75 <i>n</i> β-particles are emi er. (In 3 = 1.0986 and In	2 seconds of a meated. Calculate the r $2 = 0.6931$).	asurement, <i>n</i> (nean-life of thi [IIT - 2003]	}- is

3	Get S 1.	Solution of These A 280 days old sam 3000 dps. Then initi (A) 9000	Packages ple of a radioa al activity of sa (B) 2400	s & Lea active su ample w 00	arn by Video Tutorials ubstance has activity of 60 vould have been (C) 12,000	on www.Ma 00 dps. In next (D) 18,0	thsBySuhag.com 140 days activity falls t [JEE 2004 (Scr.)] 000	to
53 52 57 57	2.	The age of a rock co with half life equal to lead was present in	ontaining leac o 4.5 × 10 ⁹ yrs the rock. (Giv	d and ura 5. Find th 7 en 2 ^{1/3}	anium is equal to 1.5 × 10 ⁹ ne ratio of lead to uranium p = 1.259)	yrs. The uraniu present in the ro	um is decaying into lea ck, assuming initially n [IIT - 2004]	ເd ເວ
- 3 - 3	3.	Helium nuclie comb $m_O = 15.834$ amu a (A) 10.24 MeV	nd m _{He} = 4.00 (B) 0 Me	an oxyge)26 amu eV	en nucleus. The binding en J (C) 5.24 MeV	ergy per nucleo (D) 4 M	n of oxygen nucleus is [JEE 2005 (Scr.) 3] eV	page 25
23	4.	Half life of a radio a	ctive substand	ce 'A' is 4	4 days. The probability that	a nucleus will c	lecay in two half lives is [JEE 2006 3/184]	s:
		(A) $\frac{1}{4}$	(B) $\frac{3}{4}$		(C) $\frac{1}{2}$	(D) 1) 5888
	5.	Match the followin Column 1 (a) Fission (c) β - decay (d) Exothermic nucl	ear reaction	(P) (Q) (R) (S)	Column 2 Matter - energy In atoms of high atomic nu Involves weak nuclear ford	umber only bes	[JEE 2006 5/184]	Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930

ANSWER

									<u> </u>								
Ы			E	xer	cise	# 1											
0	SECT	TION (A	A):							SECI	TION (D):	_	-	_	_	_
g	A.1	(i) 15	km	(ii) 15	58.4 m	•				D.1	С	D.2	В	D.3	B	D.4	В
	SECT		B):							D.5	В	D.6	D	D.7	A	D.8	D
Š	B.1	4.001	6u							D.9	D						
5	B.2	19.5	MeV, 2	2.78 M	eV					SECT	ION (E):	_		_	_	_
ũ	B.4	11.91	MeV							E.1	C	E.2	C	E.3	D	E.4	D
n L	B.5	(a) 4.	255 M	eV(b) 24.03	3 Me V				E.5	D	E.6	В	E.7	C	E.8	C
at	SECT		C):							E.9	D	E.10	B	E.11	C	E.12	в
Š	C.2	3.4 ×	10 ⁵ m	/s, 0.0)20					E.13	C	E.14	А				
Ś	C.3	4.87	MeV.										vor	vico	# 3		
≶	C.4	(a) 50	00 Ke \	V (b) 2	2.67 ×	10 ⁻²² k	g–m/s	6		SECT		<u>■</u>		,13C	# J		
≥	o -	()	40 1	400		-				1		-y. 2	в	3	D	4	в
∞	C.5	(a)	19 K -	$\rightarrow 20^{\circ}$	a+e -	-ν,				5	^	6	D	7	٨	ч. Q	^
3			⁴⁰ K-	$\rightarrow \frac{40}{10} \text{Ar}$	+ + e + ν					о. О	A C	10	D	7. 11	A C	0. 10	^
ō			40	- 187	40	,				9. 12	Δ	10.	B	15	C	12.	R
0			19 K +	-e →	$_{18}^{10}$ Ar +	v				17	C.	18	C	15.	0	10.	D
e S		(b) 1.	3034 N	/leV, 0	.4676	MeV, 1	.490 	MeV			0	10.	0				
ŝ	C.6	11.88	MeV							SEC1	TION (B):					
g	SEC1		י (ח							19.	С	20.	CD	21.	С	22.	D
\overline{O}	D.1	(a) 8.	25 × 1	0-4 s-	¹ (b) 78	2 KeV				23.	D	24.	BC	25.	AC	26.	AD
õ	D.2	(a) 64	l min (b) 92 r	min (c)	1600s	5			27.	AD	28.	BD	29.	AC	30.	BC
<u>ð</u>	D.3	1.125	5 × 10 ¹	5	D.4	(a) 0.	244 Ci	i (b) 0.0)40	31.	ABC	32.		33.	BDE	34.	AB
F.	D.5	4.6 ×	10 ² pa	articles	s/minu	te				35.	А	36.	ABCL) 37.	BC		
≷	D.6	4.1 ×	10 ³ ye	ears								V E	Exerc	sise	# 4		
≶	D.7	3.2 ×	1017 8	2 0.8 ×	< 10⁵ d	ps						V					
>	D.8	(i) 1.2	25 mCi	(ii) 28	8 days	D 10				1.	В	2.	А	3.	С	4.	CD
 თ	D.9	3.9 ×	10°p		ond	D.10	1114	J yrs	~	5.	D	6.	C	7.	D	8.	BC
.≝	D.11	323.1	9 × 10			D.12	0.214	-3		9.	B	10.	A	11.	D	-	
ő	D.13	1.7 ×	ΨŪ ^{το} y	ears						12.	(a) 14	1.43 S;	(b) 40 :	S	13.	D	
é	SECT	ION (E):							14. ∡⊂	1.867	× 10°	years	10	0		
2	E.1	207.9	MeV	Γ	E.2	239.3	MeV			15.	3.32	× 10 °	JS	16.	C		
F	E.3	2.9 ×	10 ⁻⁷ k	g	E.4	8.781	days			17.	(a) <i>N</i>	$=\frac{1}{\lambda}$ [C	x - (a -	λN_0) ϵ	ə¯λ <i>t</i>]; (b) 2 N ₀	
2	E.5	1.178	0 × 10	° Kg/S	, 1.768	9 × 10 ⁻	° Kg/S			18.	В	19.	D	20.	С	21.	В
Ð	E.0 E 7	(I) ∠0 M – A	0.00 IV	10-8	(II) 22 ka	2.00 101	vvri			22.	В	23.	D	24.	А	25.	D
ğ	E./	(a) 8	r.077 > ク ~ 10	10 k.l	7 y 1	10 ⁶ ka	(h) 1	5 am		26	С	27	D	28	Ф	С	(II)
× ×	F 9	(a) 3	496 M	eV 17	2.7 X 258 Me	-V (h) '	72Me	.o giii. ∍V		29	B	30	6 954	Sec	31	B	()
g	2.0	(a) 0.	384 %	•••, ••	.00 100					32	0 259	33	Δ	34	в.	5	
പ്		(0) 01								35	(A) (a	$\rightarrow (P$) and (())	$(h) \rightarrow$	(P) and	d (B)
>			E	xer	<u>cise</u>	# 2					$(c) \rightarrow$	(P) ar	nd (S),	$(d) \rightarrow$	(P) and	d (R)	a (),
g	SECT	ION (A):								()	()	())	()	()	()	
5	A.1	Α	A.2	С	A.3	С											
	A .4	D	A.5	А													
ğ	SECT		B):														
ē	B.1	B	, B.2	D	B.3	D	B. 4	А									
Ž	B.5	А															
8	SECT		C) •														
$\overline{\Box}$			C 2	в	C 3	Α	C4	D									
Щ	C.5	C	C.6	D	C.7	AB	C.8	D									
Щ	C.9	B	C.10	B				-									

A