
 jfor /edco/leZ tsk I nexf J hj. Na

STUDY PACKAGE Subject: PHYSICS
 Topic : SIMPLE HARMONIC MOTION

Available Online: www.MathsBySuhag.com

Index

1. Theory
2. Short Revision
3. Exercise (Ex. $1+5=6$)
4. Assertion \& Reason
5. Que. from Compt. Exams
6. 39 Yrs. Que. from IIT-J EE(Advanced)
7. 15 Yrs. Que. from AIEEE (J EE Main)

Student's Name :

Class
Roll No.
Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal届: 0903903 7779, 98930 58881, WhatsApp 9009260559 www.TekoClasses.com www.MathsBySuhag.com

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com EXERCISE-I

Q. 1 A body is in SHM with period T when oscillated from a freely suspended spring. If this spring is cut in two parts of length ratio $1: 3 \&$ again oscillated from the two parts separately, then the periods are $T_{1} \&$ T_{2} then find $\mathrm{T}_{1} / \mathrm{T}_{2}$.
Q. 2 The system shown in the figure can move on a smooth surface. The spring is initially compressed by 6 cm and then released. Find
 N
®
O
(a) time period
(b) amplitude of 3 kg block
(c) maximum momentum of 6 kg block
Q. 3 A body undergoing SHM about the origin has its equation is given by $x=0.2 \cos 5 \pi t$. Find its average speed from $t=0$ to $t=0.7 \mathrm{sec}$.
Q. 4 The acceleration-displacement $(a-x)$ graph of a particle executing simple harmonic motion is shown in the figure. Find the frequency of oscillation.

Q. 5 A block of mass 0.9 kg attached to a spring of force constant k is lying on a frictionless floor. The spring is compressed to $\sqrt{2} \mathrm{~cm}$ and the block is at a distance $1 / \sqrt{2} \mathrm{~cm}$ from the wall as shown in the figure. When the block is released, it makes elastic collision with the wall and its period of motion is 0.2 sec . Find the approximate value of k .
Q. 6 Two identical rods each of mass mand length L, are rigidly joined and then suspended in a vertical plane so as to oscillate freely about an axis normal to the plane of paper passing through 'S' (point of supension). Find the time period of such small oscillations.
Q. 7 A force $\mathrm{f}=-10 \mathrm{x}+2$ acts on a particle of mass 0.1 kg , where ' k ' is in m and F in newton. If it is released from rest at $x=-2 m$, find :
(a) amplitude; (b) time period; (c) equation of motion. by, $\quad U=\left(x^{2}-4 x+3\right)$. All units are in S.I.

(i) Find the equilibrium position of the body.
(ii) Show that oscillations of the body about this equilibrium position is simple harmonic motion \& find its time period.
(iii) Find the amplitude of oscillations if speed of the body at equilibrium position is $2 \sqrt{6} \mathrm{~m} / \mathrm{s}$.
Q. 9 The resulting amplitude A^{\prime} and the phase of the vibrations δ
$\mathrm{S}=\mathrm{A} \cos (\omega \mathrm{t})+\frac{\mathrm{A}}{2} \cos \left(\omega \mathrm{t}+\frac{\pi}{2}\right)+\frac{\mathrm{A}}{4} \cos (\omega \mathrm{t}+\pi)+\frac{\mathrm{A}}{8} \cos \left(\omega \mathrm{t}+\frac{3 \pi}{2}\right)=\mathrm{A}^{\prime} \cos (\omega \mathrm{t}+\delta)$ are \qquad and $\stackrel{\circ}{\stackrel{\circ}{6}}$
\qquad respectively.

Q. 6 The period of oscillation of simple pendulum of length L suspended from the roof of a vehicle which moves without friction down an inclined plane of inclination α is given by
[JEE' 2000]
(A) $2 \pi \sqrt{\frac{L}{g \cos \alpha}}$
(B) $2 \pi \sqrt{\frac{L}{g \sin \alpha}}$
(C) $2 \pi \sqrt{\frac{L}{g}}$
(D) $2 \pi \sqrt{\frac{\mathrm{~L}}{\mathrm{~g} \tan \alpha}}$
Q. 7 A bob of mass M is attached to the lower end of a vertical string of length L and cross sectional area A. The Young's modulus of the material of the string is Y . If the bob executes SHM in the vertical direction, find the frequency of these oscillations.
[REE' 2000]
Q. 8 A particle executes simple harmonic motion between $\mathrm{x}=-\mathrm{A}$ and $\mathrm{x}=+\mathrm{A}$. The time taken for it to go from 0 to $\mathrm{A} / 2$ is T_{1} and to go from $\mathrm{A} / 2$ to A is T_{2}. Then
[JEE (Scr)' 2001]
(A) $\mathrm{T}_{1}<\mathrm{T}_{2}$
(B) $\mathrm{T}_{1}>\mathrm{T}_{2}$
(C) $\mathrm{T}_{1}=\mathrm{T}_{2}$
(D) $\mathrm{T}_{1}=2 \mathrm{~T}_{2}$
Q. 9 A diatomic molecule has atoms of masses m_{1} and m_{2}. The potential energy of the molecule for the interatomic separation r is given by $V(r)=-A+B\left(r-r_{0}\right)^{2}$, where r_{0} is the equilibrium separation, and A and B are positive constants. The atoms are compressed towards each other from their equilibrium positions and released. What is the vibrational frequency of the molecule?
[REE' 2001]
Q. 10 A particle is executing SHM according to $\mathrm{y}=\mathrm{a} \cos \omega \mathrm{t}$. Then which of the graphs represents variations of potential energy
[JEE (Scr)' 2003]

(B) (II) \& (IV)
(C) (I) \& (IV)
(D) (II) \& (III)
Q. 11 Two masses m_{1} and m_{2} connected by a light spring of natural length l_{0} is compressed completely and tied by a string. This system while moving with a velocity v_{0} along +ve x -axis pass through the origin at $t=0$. At this position the string snaps. Position of mass m_{1} at time t is given by the equation.

$$
x_{1}(t)=v_{0} t-A(1-\cos \omega t)
$$

Calculate:
(a) Position of the particle m_{2} as a function of time.
(b) $\quad l_{0}$ interms of A.
[JEE' 2003]
Q. 12 Ablock P of mass m is placed on a frictionless horizontal surface. Another block Q of same mass is kept on P and connected to the wall with the help of a spring of spring constant k as shown in the figure. μ_{s} is the coefficient of friction between P and Q. The blocks move together performing SHM of amplitude A. The maximum value of the friction force between P and Q is
(A) kA
(B) $\frac{\mathrm{kA}}{2}$
(C) zero
(D) $\mu_{\mathrm{s}} \mathrm{mg}$

[JEE' 2004]

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

Q. 13 A simple pendulum has time period T_{1}. When the point of suspension moves vertically up according to the equation $\mathrm{y}=\mathrm{kt}{ }^{2}$ where $\mathrm{k}=1 \mathrm{~m} / \mathrm{s}^{2}$ and 't' is time then the time period of the pendulum is T_{2} then $\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)^{2}$ is
[JEE' 2005 (Scr)]
(A) $\frac{5}{6}$
(B) $\frac{11}{10}$
(C) $\frac{6}{5}$
(D) $\frac{5}{4}$
Q. 14 A small body attached to one end of a vertically hanging spring is performing SHM about it's mean position with angular frequency ω and amplitude a. If at a height y^{*} from the mean position the body gets detached from the spring, calculate the value of $y *$ so that the height H attained by the mass is maximum. The body does not interact with the spring during it's subsequent motion after detachment. $\left(a \omega^{2}>\mathrm{g}\right)$.
[JEE 2005]
Q. 15 Function $x=A \sin ^{2} \omega t+B \cos ^{2} \omega t+C \sin \omega t \cos \omega t$ represents SHM
(A) for any value of A, B and $\mathrm{C}($ except $\mathrm{C}=0)$
(B) if $A=-B ; C=2 B$, amplitude $=|B \sqrt{2}|$
(C) if $\mathrm{A}=\mathrm{B} ; \mathrm{C}=0$
(D) if $\mathrm{A}=\mathrm{B} ; \mathrm{C}=2 \mathrm{~B}$, amplitude $=|\mathrm{B}|$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com ANSWER KEY

