Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

SIMPLE HARMONIC MOTION

1. PERIODIC MOTION

When a body or a moving particle repeats its motion along a definite path after regular intervals of time, its motion is said to be Periodic Motion and interval of time is called time period or harmonic motion period (T). The path of periodic motion may be linear, circular, elliptical or any other curve. For example, rotaion of earth about the sun.

2. OSCILLATORY MOTION

'To and Fro' type of motion is called an Oscillatory Motion. It need not be periodic and need not have fixed extreme positions. For example, motion of pendulum of a wall clock.
The oscillatory motions in which energy is conserved are also periodic.
The force / torque (directed towards equilibrium point) acting in oscillatory motion is called restoring force / torque.
Damped oscillations are those in which energy is consumed due to some resistive forces and hence total mechanical energy decreases.

3. SIMPLE HARMONIC MOTION

If the restoring force/ torque acting on the body in oscillatory motion is directly proportional to the displacement of body/particle and is always directed towards equilibrium position then the motion is called simple Harmonic Motion (SHM). It is the simplest (easy to analyse) form of oscillatory motion.
3.1 TYPES OF SHM
(a) Linear SHM : When a particle moves to and fro about an equilibrium point, along a straight line. A and B are extreme positions. M is mean position. $A M=M B=$ Amplitude
(b) Angular SHM : When body/particle is free to rotate about a given axis executing angular oscillations.

3.2 EQUATION OF SIMPLE HARMONIC MOTION (SHM) :

or $m \frac{d^{2} x}{d t^{2}}=-k x$
$\Rightarrow \quad \frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}+\frac{\mathrm{k}}{\mathrm{m}} \mathrm{x}=0 \quad$ [differential equation of SHM]

$$
\Rightarrow \quad \frac{d^{2} x}{d t^{2}}+\omega^{2} x=0 \quad \text { where } \omega=\sqrt{\frac{k}{m}}
$$

$$
\text { It's solution is } \quad x=A \sin (\omega t+\phi)
$$

3.4 CHARACTERISTICS OF SHM

Note : In the figure shown, path of the particle is on a straight line.
(a) Displacement - It is defined as the distance of the particle from the mean position at that instant. Displacement in SHM at time t is given by $x=A \sin (\omega t+\phi)$
(b) Amplitude - It is the maximum value of displacement of the particle from its equilibrium position.

Amplitude $=\frac{1}{2}$ [distance between extreme points/position] It depends on energy of the system.

(c) Angular Frequency $(\omega): \omega=\frac{2 \pi}{T}=2 \pi f$ and its units is rad $/ \mathrm{sec}$.
(d) Frequency (f) : Number of oscillations completed in unit time interval is called frequency of
oscillations, $f=\frac{1}{T}=\frac{\omega}{2 \pi}$, its units is $\sec ^{-1}$ or Hz .
(e) Time period (T) : Smallest time interval after which the oscillatory motion gets repeated is called time period, $T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$

Ex. 1 For a particle performing $S H M$, equation of motion is given as $\frac{d^{2} x}{d t^{2}}+4 x=0$. Find the time period.
Sol. $\frac{d^{2} x}{d t^{2}}=-4 x$ $\omega^{2}=4$ $\omega=2$

Time period;

$$
\mathrm{T}=\frac{2 \pi}{\omega}=\pi
$$

(f) Phase : The physical quantity which represents the state of motion of particle (eg. its position and direction of motion at any instant).
The argument $(\omega t+\phi)$ of sinusoidal function is called instantaneous phase of the motion.
(g) Phase constant (ϕ) : Constant ϕ in equation of SHM is called phase constant or initial phase. It depends on initial position and direction of velocity.
(h) Velocity(v) : It is the rate of change of particle's displacemnet w.r.t time at that instant.

Let the displacemnet from mean position is given by

$$
x=A \sin (\omega t+\phi)
$$

Velocity, $\quad v=\frac{d x}{d t}=\frac{d}{d t}[A \sin (\omega t+\phi)]$
or, $\quad v=\omega \sqrt{A^{2}-x^{2}}$
At mean position ($x=0$), velocity is maximum.

$$
v_{\text {max }}=\omega A
$$

At extreme position $(x=A)$, velocity is minimum.

$$
v_{\text {min }}=\text { zero }
$$

GRAPH WOULD BE AN ELLIPSE

$$
\begin{aligned}
& v^{2}=\omega^{2}\left(A^{2}-x^{2}\right) \\
& \frac{v^{2}}{\omega^{2} A^{2}}+\frac{x^{2}}{A^{2}}=1
\end{aligned}
$$

(i) Acceleration : It is the rate of change of particle's velocity w.r.t. time at that instant.

$$
\text { Acceleration, } \begin{aligned}
a & =\frac{d v}{d t}=\frac{d}{d t}[A \omega \cos (\omega t+\phi)] \\
a & =-\omega^{2} A \sin (\omega t+\phi) \\
a & =-\omega^{2} x
\end{aligned}
$$

NOTE: Negative sign shows that acceleration is always directed towards the mean postion.
At mean position ($x=0$), acceleration is minimum.

$$
\mathrm{a}_{\text {min }}=\text { zero }
$$

At extreme position $(x=A)$, acceleration is maximum.

$$
a_{\max }=\omega^{2} \mathrm{~A}
$$

GRAPH OF ACCELERATION (A) VS DISPLACEMENT (x)

$$
a=-\omega^{2} x
$$

Ex. 2 The equation of particle executing simple harmonic motion is $x=(5 \mathrm{~m}) \sin \left[\left(\pi \mathrm{s}^{-1}\right) t+\frac{\pi}{3}\right]$. Write down the
Sol. Comparing with equation $x=A \sin (\omega t+\delta)$, we see that the amplitude $=5 \mathrm{~m}$,
and time period $=\frac{2 \pi}{\omega}=\frac{2 \pi}{\pi \mathrm{~s}^{-1}}=2 \mathrm{~s}$.
The maximum speed $=A \omega=5 \mathrm{~m} \times \pi \mathrm{s}^{-1}=5 \pi \mathrm{~m} / \mathrm{s}$.
The velocity at time $\mathrm{t}=\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{A} \omega \cos (\omega \mathrm{t}+\delta)$

$$
\text { At } \quad \mathrm{t}=1 \mathrm{~s}, \quad \mathrm{v}=(5 \mathrm{~m})\left(\pi \mathrm{s}^{-1}\right) \cos \left(\pi+\frac{\pi}{5}\right)=-\frac{5 \pi}{2} \mathrm{~m} / \mathrm{s}
$$

Ex. 3 A particle executing simple harmonic motion has angular frequency $6.28 \mathrm{~s}^{-1}$ and ampitude 10 cm . Find (a)
Sol. (a) Time period $=\frac{2 \pi}{\omega}=\frac{2 \pi}{6.28} \quad s=1 \mathrm{~s}$.
(b) Maximum speed $=\mathrm{A} \omega=(0.1 \mathrm{~m})\left(6.28 \mathrm{~s}^{-1}\right)$

$$
=0.628 \mathrm{~m} / \mathrm{s}
$$

(c) Maximum acceleration $=\mathrm{A} \omega^{2}$

$$
\begin{aligned}
& =(0.1 \mathrm{~m})\left(6.28 \mathrm{~s}^{-1}\right)^{2} \\
& =4 \mathrm{~m} / \mathrm{s}^{2} \\
v=\omega \sqrt{A^{2}-x^{2}} & =\left(6.28 \mathrm{~s}^{-1}\right) \sqrt{(10 \mathrm{~cm})^{2}-(6 \mathrm{~cm})^{2}}
\end{aligned}
$$

(d)

$$
=50.2 \mathrm{~cm} / \mathrm{s}
$$

(e) At $t=0$, the velocity is zero i.e., the particle is at an extreme. The equation for displacement may be written as

$$
\mathrm{x}=\mathrm{A} \cos \omega \mathrm{t} .
$$

$x=A \cos \omega t$.
The velocity is $v=-A \omega \sin \omega t$.

At $t=\frac{1}{6} s, \quad v=-(0.1 m)\left(6.28 s^{-1}\right) \sin \left(\frac{6.28}{6}\right)$ $=(-0.628 \mathrm{~m} / \mathrm{s}) \sin \frac{\pi}{3} \quad=54.4 \mathrm{~cm} / \mathrm{s}$.
Ex. 4 A particle starts from mean position and moves towards positive extreme as shown. Find the equation of the SHM. Amplitude of SHM is A.

Sol. General equation of SHM can be written as $x=A \sin (\omega t+\phi)$

	At $\mathrm{t}=0, \mathrm{x}=0$	
\therefore	$0=\mathrm{A} \sin \phi$	
\therefore	$\phi=0, \pi$	$\phi \in[0,2 \pi)$

Also; at $t=0, v=+v e$
$\therefore \quad \mathrm{A} \omega \cos \phi=+\mathrm{ve}$
or, $\quad \phi=0$
Hence, if the particle is at mean position at $t=0$ and is moving towards + ve extreme, then the equation of SHM is given by $x=A \sin \omega t$

Similarly

for

$\phi=\pi$
$\therefore \quad$ equation of $S H M$ is $x=A \sin (\omega t+\pi) \quad$ or, $\quad x=-A \sin \omega t$
NOTE: If mean position is not at the origin, then we can replace x by $x-x_{0}$ and the eqn. becomes $x-x_{0}=-A \sin \omega t, \quad$ where x_{0} is the position co-ordinate of the mean position.
Q. 1 Write the equation of SHM for the situations shown below:
(a)
(b) ${ }^{t}$
$\xrightarrow[-A]{t=0} \quad 0 \quad A$
(c) $-\mathrm{A} \quad 0 \stackrel{t=0}{\stackrel{\mathrm{~A}}{\mathrm{~A}} / 2} \mathrm{~A}$

Ans.
(a) $x=A \cos \omega t$;
; (b) $x=-A \cos \omega t$
(c) $x=A \sin \left(\omega t+150^{\circ}\right)$

Ex. 5 A particle is performing SHM of amplitude "A" and time period "T". Find the time taken by the particle to go هr from 0 to $\mathrm{A} / 2$.
Sol. Let equation of SHM be $\mathrm{x}=\mathrm{A}$ sin ωt

Ex. 6 A particle of mass 2 kg is moving on a straight line under the action force $F=(8-2 x) \mathrm{N}$. It is released at rest from $x=6 \mathrm{~m}$.
(a) Is the particle moving simple harmonically.
(b) Find the equilibrium position of the particle.
(c) Write the equation of motion of the particle.
(d) Find the time period of SHM.

Sol. $F=8-2 x \quad$ or $\quad F=-2(x-4)$
for equilibrium position $F=0$
$\Rightarrow \quad x=4$ is equilibrium position
Hence the motion of particle is SHM with force constant 2 and equilibrium position $x=4$.
(a) Yes, motion is SHM.
(b) Equilibrium position is $x=4$
(c) At $x=6 \mathrm{~m}$, particle is at rest i.e. it is one of the extreme position

Hence amplitude is $\mathrm{A}=2 \mathrm{~m}$ and initially particle is at the extreme position.
Equation of SHM can be written as
$x-4=2 \cos \omega t$,

$$
A / 2=A \sin \omega t
$$

when $x=A / 2 ; \quad A / 2=A \sin \omega t$
or $\quad \sin \omega t=1 / 2 \quad \omega t=\pi / 6$

$$
\frac{2 \pi}{T} t=\pi / 6 \quad t=T / 12
$$

Hence, time taken is $\mathrm{T} / 12$, where T is time period of SHM.
where $\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{2}{2}}=1$
i.e. $\quad x=4+2 \cos t$
(d) Time period, $\mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \mathrm{sec}$.
4. SHM AS A PROJECTION OF UNIFORM CIRCULAR MOTION

Consider a particle moving on a circle of radius A with a constant angular speed ω as shown in figure.

Suppose the particle is on the top of the circle (Y -axis) at $t=0$. The radius OP make an angle $\theta=\omega$ t with the Y -axis at time t . Drop a perpendicular PQ on X -axis. The components of position vector, velocity vector and acceleration vector at time t on the X -axis are

$$
\begin{aligned}
& x(t)=A \sin \omega t \\
& v_{x}(t)=A \omega \cos \omega t \\
& a_{x}(t)=-\omega^{2} A \sin \omega t
\end{aligned}
$$

Above equations show that the foot of perpendicular Q executes a simple harmonic motion on the X-axis. The amplitude is A and angular frequency is ω. Similarly the foot of perpendicular on Y-axis will also executes SHM of amplitude A and angular frequency $\omega[y(t)=A \cos \omega t]$. The phases of the two simple harmonic motions differ by $\pi / 2$.
5. GRAPHICAL REPRESENTATION OF DISPLACEMENT, VELOCITY \& ACCELERATION IN SHM

Displacement,
Velocity,
or
Acceleration,
or
$x=A \sin \omega t$
$v=A \omega \cos \omega t=A \omega \sin \left(\omega t+\frac{\pi}{2}\right)$
$v=\omega \sqrt{A^{2}-x^{2}}$
$a=-\omega^{2} A \sin \omega t=\omega^{2} A \sin (\omega t+\pi)$
$a=-\omega^{2} x$

1. All the three quantities displacement, velocity and acceleration vary harmonically with time, having same period.
2. ENERGY OF SHM
6.1 Kinetic Energy (KE)
$\frac{1}{2} m v^{2}=\frac{1}{2} m \omega^{2}\left(A^{2}-x^{2}\right)=\frac{1}{2} k\left(A^{2}-x^{2}\right)($ as a function of $x)$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

$$
=\frac{1}{2} m A^{2} \omega^{2} \cos ^{2}(\omega t+\theta)=\frac{1}{2} K A^{2} \cos ^{2}(\omega t+\theta)(\text { as a function of } t)
$$

$\langle\mathrm{KE}\rangle_{0-\mathrm{A}}=\frac{1}{3} \mathrm{kA} \mathrm{A}^{2}$
Frequency of KE $=2$ (frequency of SHM)
6.2 Potential Energy (PE)
$\frac{1}{2} K x^{2}($ as a function of $x)=\frac{1}{2} \mathrm{KA}^{2} \sin ^{2}(\omega t+\theta)$ (as a function of time)
6.3 Total Mechanical Energy (TME)

Total mechanical energy = Kinetic energy + Potential energy

$$
=\frac{1}{2} k\left(A^{2}-x^{2}\right)+\frac{1}{2} K x^{2}=\frac{1}{2} K A^{2}
$$

Hence total mechanical energy is constant in SHM.
6.4 Graphical Variation of energy of SHM.

Ex. 7 A particle of mass 0.50 kg executes a simple harmonic motion under a force $F=-(50 \mathrm{~N} / \mathrm{m}) \mathrm{x}$. If it crosses the centre of oscillation with a speed of $10 \mathrm{~m} / \mathrm{s}$, find the amplitude of the motion.

Sol. The kinetic energy of the particle when it is at the centre of oscillation is
7. SPRING-MASS SYSTEM

$$
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}
$$

$$
=\frac{1}{2}(0.50 \mathrm{~kg})(10 \mathrm{~m} / \mathrm{s})^{2}
$$

(2)

The force on the particle is given by
$F=-(50 \mathrm{~N} / \mathrm{m}) \mathrm{x}$.
Thus, the spring constant is $\mathrm{k}=50 \mathrm{~N} / \mathrm{m}$.
Equation (i) gives

$$
\frac{1}{2}(50 \mathrm{~N} / \mathrm{m}) \mathrm{A}^{2}=25 \mathrm{~J}
$$

or, $\quad A=1 \mathrm{~m}$.
(1)

(i)
$=-(5$

kinetic energy is zero. The potential energy here is $\frac{1}{2} k A^{2}$. As there is no loss of energy,

$$
\begin{equation*}
\frac{1}{2} \mathrm{kA}^{2}=25 \mathrm{~J} \tag{i}
\end{equation*}
$$

\qquad

Ex. 8 A particle of mass 200 g executes a simple harmonic motion. The restoring force is provided by a spring of spring cosntant $80 \mathrm{~N} / \mathrm{m}$. Find the time period.
Sol. The time period is

$$
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}} \quad=2 \pi \sqrt{\frac{200 \times 10^{-3} \mathrm{~kg}}{80 \mathrm{~N} / \mathrm{m}}} \quad=2 \pi \times 0.05 \mathrm{~s}=0.31 \mathrm{~s}
$$

Ex. 9 The friction coefficient between the two blocks shown in figure is μ and the horizontal plane is smooth. (a) If the system is slightly displaced and released, find the time period. (b) Find the magnitude of the frictional force between the blocks when the displacement from the meanposition is x. (c) What can be the maximum amplitude if the upper block does
 not slip relative to the lower block?
Sol. (a) For small amplitude, the two blocks oscillate together. The angular frequency is

$$
\omega=\sqrt{\frac{k}{M+m}}
$$

(b) The acceleration of the blocks at displacement x from the mean position is

$$
a=-\omega^{2} x=\left(\frac{-k x}{M+m}\right)
$$

The resultant force on the upper block is, therefore,
and so the time period $\quad T=2 \pi \sqrt{\frac{M+m}{k}}$.

This force is provided by the friction of the lower block.

Ex. 10 A block of mass m is suspended from the ceiling of a stationary elevator through a spring of spring constant k it is in equilibrium. Suddenly, the cable breaks and the elevator starts falling freely. Show that block now executes a simple harmonic motion of amplitude mg / k in the elevator.

Sol. When the elevator is stationary, the spring is stretched to support the block. If the extension is x, the tension is $k x$ which should balance the weight of the block.

Thus, $x=m g / k$. As the cable breaks, the elevator starts falling with acceleration ' g '. We shall work in the frame of reference of the elevator. Then we have to use a psuedo force mg upward on the block. This force will 'balance' the weight. Thus, the block is subjected to a net force kx by the spring when it is at a distance x from the position of unstretched spring. Hence, its motion in the elevator is simple harmonic with its mean \vdash position corresponding to the unstretched spring. Initially, the spring is stretched by $x=m g / k$, where the velocity of the block (with respect to the elevator) is zero. Thus, the amplitude of the resulting simple harmonic motion is mg / k.

Ex. 11 The left block in figure collides inelastically with the right block and sticks
x co-ordinate of particles can be written as

Successful People Replace the words like; "wish", "try" \& "should" with "xwill. Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

$x_{1}=A_{1} \cos \omega t$
and
$x_{2}=\ell-A_{2} \cos \omega t$

Hence, length of spring can be written as;
length $=x_{2}-x_{1} \quad=\quad \ell-\left(A_{1}+A_{2}\right) \cos \omega t$
Q. 2 Block A of mass m is performing SHM of amplitude a. Another block B of mass m is gently placed on A when it passes through mean position and B sticks to A. Find the time period and amplitude of new SHM.
Ans. $\quad \mathrm{T}=2 \pi \sqrt{\frac{2 \mathrm{~m}}{\mathrm{~K}}}$ Amplitude $=\frac{\mathrm{a}}{\sqrt{2}}$
Q. 3 Repeat the above problem assuming B is placed on A at a distance $\frac{a}{2}$ from mean position.

Ans. $\quad \mathrm{T}=2 \pi \sqrt{\frac{2 \mathrm{~m}}{\mathrm{~K}}}$, Amplitude $=a \sqrt{\frac{5}{8}}$
Q. 4 The block is allowed to fall, slowly from the position where spring is in its natural length. Find, maximum extension in the string.

Ans. $\frac{\mathrm{mg}}{\mathrm{K}}$

Q. 5 In the above problem if block is released from there, what would be maximum extension.

Ans. $\frac{2 \mathrm{mg}}{\mathrm{K}}$

Ex. 13 The system is in equilibrium and at rest. Now mass m is removed from m_{r}.
Find the time period and amplitude of resultant motion. Spring constant is ${ }^{2} \mathrm{~K}$.
Sol. Initial extension in the spring

$$
x=\frac{\left(m_{1}+m_{2}\right) g}{K}
$$

At the initial position, since velocity is zero i.e. it is the extreme position.

$$
\text { Hence Amplitude } \quad=\frac{m_{1} g}{\mathrm{~K}} \quad \text { Time period } \quad=2 \pi \sqrt{\frac{m_{2}}{\mathrm{~K}}}
$$

Q. 6 Block of mass m_{2} is in equilibrium as shown in figure. Another block of mass m_{1} is kept gently on m_{2}. Find the time period of oscillation and amplitude.

Ans. $\quad \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}_{1}+\mathrm{m}_{2}}{\mathrm{~K}}} \quad$ Amplitude $=\frac{\mathrm{m}_{1} g}{\mathrm{~K}}$

Q. 7 Block of mass m_{2} is in equilibrium and at rest. The mass m_{1} moving with velocity u
vertically downwards collides with m_{2} and sticks to it. Find the energy of oscillation.
Ans.
$\frac{1}{2}\left[\frac{m_{1}^{2} u^{2}}{m_{1}+m_{2}}+\frac{m_{1}^{2} g^{2}}{K^{2}}\right]$

page 10
8. COMBINATION OF SPRINGS

8.1 Series Combination :

Total displacement $x=x_{1}+x_{2}$
Tension in both springs $=k_{1} x_{1}=k_{2} x_{2}$

$\therefore \quad$ Equivalent constant in series combination $\mathrm{K}_{\text {eq }}$ is given by :

$$
1 / k_{\text {eq }}=1 / k_{1}+1 / k_{2} \quad \Rightarrow \quad T=2 \pi \sqrt{\frac{m}{k_{\text {eq }}}}
$$

Note: (a) In series combination, tension is same in all the springs \& extension will be different. (If k is same then deformation is also same)
(b) In series combination, extension of springs will be reciprocal of its spring constant.
(c) Spring constant of spring is reciprocal of its natural length
$\because k \propto 1 / \ell$
$\therefore \mathrm{k}_{1} \ell_{1}=\mathrm{k}_{2} \ell_{2}=\mathrm{k}_{3} \ell_{3}$,
(d) If a spring is cut in ' n ' pieces then spring constant of one piece will be nk.

8.2 Parallel combination :

Extension is same for both springs but force acting will be different.
Force acting on the system $=F$

$$
\begin{array}{lll}
\mathrm{F}=-\left(\mathrm{k}_{1} \mathrm{x}+\mathrm{k}_{2} \mathrm{x}\right) & \Rightarrow & \mathrm{F}=-\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) x \\
\mathrm{k}_{\mathrm{eq}}=\mathrm{k}_{1}+\mathrm{k}_{2} & \Rightarrow & \mathrm{~T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}_{\mathrm{eq}}}}
\end{array}
$$

$\begin{array}{lll}\therefore & F=-\left(k_{1} x+k_{2} x\right) & \Rightarrow \\ \therefore & k_{\text {eq }}=k_{1}+k_{2} & \Rightarrow \quad T=-\left(k_{1}+k_{2}\right) x \\ & & \end{array}$
$\begin{array}{lll}\therefore & F=-\left(k_{1} x+k_{2} x\right) & \Rightarrow \\ \therefore & k_{\text {eq }}=k_{1}+k_{2} & \Rightarrow \quad T=-\left(k_{1}+k_{2}\right) x \\ & & \end{array}$

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0903903 7779,

(b) Energy Method

$\therefore \quad \mathrm{kx}_{0}=\mathrm{mg}$
Now if we displace the block by x in the downward direction, net force on the block towards mean position is
$F=k\left(x+x_{0}\right)-m g \quad=k x \quad$ using (1)
Hence the net force is acting towards mean position and is also proportional to x.So, the particle will perform S.H.M. and its time period would be
Ex. 14 The string, the spring and the pulley shown in figure are light.
Find the time period of the mass m.
Sol, (a) Force Method
Let in equilibrium position of the block, extension in spring is x_{0}.

9. Method's to determine time period, angular frequency in S.H.M.
(b) Energy method
(a) Force/ torque method

$$
T=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}
$$

Let gravitational potential energy to be zero at the level of the block when spring is in its natural length.
Now at a distance x below that level, let speed of the block be v.
Since total mechanical energy is conserved in S.H.M.
$\therefore \quad-m g x+1 / 2 k x^{2}+1 / 2 m v^{2}=$ constant
$\therefore \quad \mathrm{F}=\mathrm{ma}=-\mathrm{kx}+\mathrm{mg}$
or $\quad F=-k(x-m g / K)$
This shows that for the motion, force constant is k and equilibrium position is $x=m g / K$.

$$
\text { So, the particle will perform S.H.M. and its time period would be } \quad T=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}
$$

Q. 8 Solve the above problem if the pulley has a moment of inertia I about its axis and the string does not slip over it.

Ans. $\quad 2 \pi \sqrt{\frac{\left(\mathrm{~m}+\mathrm{I} / \mathrm{r}^{2}\right)}{\mathrm{k}}}$

10. SIMPLE PENDULUM

If a heavy point-mass is suspended by a weightless, inextensible and perfectly flexible string from a rigid support, then this arrangement is called a simple pendulum
Time period of a simple pendulum $T=2 \pi \sqrt{\frac{\ell}{g}}$

(some times we can take $\mathrm{g}=\pi^{2}$ for making calculation simple)
Note: (a) If angular amplitude of simple pendulum is more, then time period

$$
\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}}\left(1+\frac{\theta_{0}^{2}}{16}\right) \quad \text { (For other exams) }
$$ where θ_{0} is in radians.

(b) General formula for time period of simple pendulum.
(Where R is radius of earth)
$\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}}\left(1+\frac{\theta_{0}^{2}}{16}\right) \quad$ (For other exams)
(c) On increasing length of simple pendulum, time period increases, but time period of simple pendulum of infinite length is 84.6 min which is maximum and is equal to $T=2 \pi \sqrt{\frac{R}{g}}$
e pendulum.
(d) Time period of seconds pendulum is 2 sec and $\ell=0.993 \mathrm{~m}$.
(e) Simple pendulum performs angular S.H.M. but due to small angular displacement, it is considered as linear S.H.M.
(f) If time period of clock based on simple pendulum increases then clock will be slow but if time period decrease then clock will be fast.
(g) If g remains constant $\& \Delta \ell$ is change in length, then $\frac{\Delta T}{T} \times 100=\frac{1}{2} \frac{\Delta \ell}{\ell} \times 100$
(h) If ℓ remain constant $\& \Delta \mathrm{~g}$ is change in acceleration then, $\frac{\Delta \mathrm{T}}{\mathrm{T}} \times 100=-\frac{1}{2} \frac{\Delta \mathrm{~g}}{\mathrm{~g}} \times 100$
(i) If $\Delta \ell$ is change in length \& $\Delta \mathrm{g}$ is change in acceleration due to gravity then,

$$
\frac{\Delta \mathrm{T}}{\mathrm{~T}} \times 100=\left[\frac{1}{2} \frac{\Delta \ell}{\ell}-\frac{1}{2} \frac{\Delta \mathrm{~g}}{\mathrm{~g}}\right] \times 100
$$

Ex. 15 A simple pendulum of length 40 cm oscillates with an angular amplitude of 0.04 rad. Find (a) the time period, (b) the linear amplitude of the bob, (c) the speed of the bob when the string makes 0.02 rad with the vertical and (d) the angular acceleration when the bob is in momentary rest. Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

Sol. (a) The angular frequency is the time period is
$\omega=\sqrt{\mathrm{g} / \ell}=\sqrt{\frac{10 \mathrm{~m} / \mathrm{s}^{2}}{0.4 \mathrm{~m}}}=5 \mathrm{~s}^{-1}$

$$
\frac{2 \pi}{\omega}=\frac{2 \pi}{5 \mathrm{~s}^{-1}}=1.26 \mathrm{~s}
$$

(b) Linear amplitude $=40 \mathrm{~cm} \times 0.04=1.6 \mathrm{~cm}$
(c) Angular speed at displacement 0.02 rad is
$\Omega=\left(5 \mathrm{~s}^{-1}\right) \sqrt{(0.04)^{2}-(0.02)^{2}} \mathrm{rad}=0.17 \mathrm{rad} / \mathrm{s}$.
where speed of the bob at this instant
$=(40 \mathrm{~cm}) \times 0.175^{-1}=6.8 \mathrm{~cm} / \mathrm{s}$.
(d) At momentary rest, the bob is in extreme position.

Thus, the angular acceleration
$\alpha=(0.04 \mathrm{rad})\left(25 \mathrm{~s}^{-2}\right)=1 \mathrm{rad} / \mathrm{s}^{2}$.
10.1 Time Period of Simple Pendulum in accelerating Reference Frame :

$$
\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}_{\text {eff. }}}} \text { where }
$$

$g_{\text {eff. }}=$ Effective acceleration due to gravity in reference system $=|\overrightarrow{\mathrm{g}}-\overrightarrow{\mathrm{a}}|$
$\vec{a}=$ acceleration of the point of suspension w.r.t. ground
Condition for applying this formula: $|\vec{g}-\vec{a}|=$ constant
Ex. 16 A simple pendulum is suspended from the ceiling of a car accelerating uniformly on a horizontal road. If the acceleration is a_{0} and the length of the pendulum is ℓ, find the time period of small oscillations about the mean position.
Sol. We shall work in the car frame. As it is accelerated with respect to the road, we shall have to apply a psuedo force ma_{0} on the bob of mass m .
For mean position, the acceleration of the bob with respect to the car should be zero. If θ be the angle made by the string with the vertical, the tension, weight and the psuedo force will add to zero in this position.
Hence, resultant of $m g$ and $m a_{0}$ (say $F=m \sqrt{g^{2}+a_{0}^{2}}$) has to be along the string.

Now, suppose the string is further deflected by an angle θ as shown in figure.

Now, restoring torque can be given by
$(\mathrm{F} \sin \theta) \ell=-\mathrm{m} \ell^{2} \alpha$
Substituting F and using $\sin \theta=\theta$, for small θ.

$$
\begin{aligned}
& \quad\left(m \sqrt{g^{2}+a_{0}^{2}}\right) \ell \theta=-m \ell^{2} \alpha \\
& \text { or, } \quad \\
& \alpha=-\frac{\sqrt{g^{2}+a_{0}^{2}}}{\ell} \theta
\end{aligned}
$$

$$
\text { so; } \quad \omega^{2}=\frac{\sqrt{g^{2}+\mathrm{a}_{0}^{2}}}{\ell}
$$

This is an equation of simple harmonic motion with time period

$$
\mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \frac{\sqrt{\ell}}{\left(\mathrm{~g}^{2}+\mathrm{a}_{0}^{2}\right)^{1 / 4}}
$$

Q. 9 A block is placed on a smooth inclined plane and it is free to move.

A simple pendulum is attached in the block. Find its time period.
Ans. $\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g} \cos \theta}}$

10.2 If forces other then $\mathbf{m} \overrightarrow{\mathbf{g}}$ acts then:

$$
\mathrm{T}=2 \pi \sqrt{\frac{\ell}{g_{\text {eff. }}}} \text { where } \quad g_{\text {eff. }}=\left|\overrightarrow{\mathrm{g}}+\frac{\overrightarrow{\mathrm{F}}}{\mathrm{~m}}\right|
$$

$\vec{F}=$ constant force acting on ' m '.
Ex. 17 A simple pendulum of length ' ℓ ' and having bob of mass ' m ' is doing angular SHM inside water. A constant buoyant force equal to half the weight of the bob is acting on the ball. Find the time period of oscillations?

Sol. Here $g_{\text {eff. }}=g-\frac{m g / 2}{m}=g / 2$.

$$
\text { Hence } \quad \mathrm{T}=2 \pi \sqrt{\frac{2 \ell}{\mathrm{~g}}}
$$

11. COMPOUND PENDULUM / PHYSICAL PENDULUM

When a rigid body is suspended from an axis and made to oscillate about that then it is called compound pendulum.
C = Initial position of center of mass
$\mathrm{C}^{\prime}=$ Position of center of mass after time t
S = Point of suspension
$\ell=$ Distance between point of suspension and center of mass (it remains constant during motion)
For small angular displacement " θ " from mean position
The restoring torque is given by
or, $\quad \mathrm{I} \alpha=-\mathrm{mgl} \theta \quad$ where, $\mathrm{I}=$ Moment of inertia about point of suspension.
or, $\alpha=-\frac{\mathrm{mgl}}{\mathrm{I}} \theta$
Time period, $\quad \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mg} \ell}} \quad \mathrm{I}=\mathrm{I}_{\mathrm{CM}}+\mathrm{m} \ell^{2}$
where $\mathrm{I}_{\mathrm{CM}}=$ moment of inertia relative to the axis which passes from the center of mass \& parallel to the axis of oscillation.

$$
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{I}_{\mathrm{CM}}+\mathrm{m} \ell^{2}}{\mathrm{mg} \ell}} \quad \text { where } \quad \mathrm{I}_{\mathrm{CM}}=\mathrm{mk}^{2}
$$

$\mathrm{k}=$ gyration radius (about axis passing from centre of mass)

$$
\begin{aligned}
& \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{mk}^{2}+\mathrm{m} \ell^{2}}{\mathrm{mg} \ell}} \quad \mathrm{~T}=2 \pi \sqrt{\frac{\mathrm{k}^{2}+\ell^{2}}{\ell \mathrm{~g}}}=2 \pi \sqrt{\frac{\mathrm{~L}_{\mathrm{eq}}}{\mathrm{~g}}} \\
& \mathrm{~L}_{\mathrm{eq}}=\frac{\mathrm{k}^{2}}{\ell}+\ell=\text { equivalent length of simple pendulum ; }
\end{aligned}
$$

T is minimum when $\ell=k$.
$T_{\text {min }}=2 \pi \sqrt{\frac{2 K}{g}}$
Graph of T vs ℓ

Ex. 18 A uniform rod of length 1.00 m is suspended through an end and is set into oscillation with small amplitude under gravity. Find the time period of oscillation. ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
Sol. For small amplitude the angular motion is nearly simple harmonic and the time period is given by

$$
\left.\begin{array}{rl}
r & =2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mg}(\ell / 2)}}
\end{array} \quad=2 \pi \sqrt{\frac{\left(\mathrm{~m} \ell^{2} / 3\right)}{\mathrm{mg}(\ell / 2)}}\right) \quad=\frac{2 \pi}{\sqrt{15}} \mathrm{~s} .
$$

12. TORSIONAL PENDULUM

In torsional pendulum, an extended object is suspended at the centre by a light torsion wire. A torsion wire is essentially inextensible, but is free to twist about its axis. When the lower end of the wire is rotated by a slight amount, the wire applies a restoring torque causing the body to oscillate rotationally when released.
The restoring torque produced is given by

Sol. The situation is shown in figure. The moment of inertia of the disc about the wire is

$$
\mathrm{I}=\frac{\mathrm{mr}^{2}}{2}=\frac{(0.200 \mathrm{~kg})\left(5.0 \times 10^{-2} \mathrm{~m}\right)^{2}}{2}=2.5 \times 10^{-4} \mathrm{~kg}-\mathrm{m}^{2}
$$

The time period is given by

13. SUPERPOSITION OF TWO SHM'S.
13.1 In same direction and of same frequency.
$x_{1}=A_{1} \sin \omega t$
$x_{2}=A_{2} \sin (\omega t+\theta)$, then resultant displacement
$x=x_{1}+x_{2}=A_{1} \sin \omega t+A_{2} \sin (\omega t+\theta)=A \sin (\omega t+\phi)$
where $\quad A=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \theta} \quad \& \quad \phi=\tan ^{-1}\left[\frac{A_{2} \sin \theta}{A_{1}+A_{2} \cos \theta}\right]$
If $\theta=0$, both SHM's are in phase and $A=A_{1}+A_{2}$
If $\quad \theta=\pi$, both SHM's are out of phase and $A=\left|A_{1}-A_{2}\right|$
The resultant amplitude due to superposition of two or more than two SHM's of this case can also be found by phasor diagram also.
13.2 In same direction but are of different frequencies.

$$
\begin{aligned}
& x_{1}=A_{1} \sin \omega_{1} t \\
& x_{2}=A_{2} \sin \omega_{2} t
\end{aligned}
$$

then resultant displacement $x=x_{1}+x_{2}=A_{1} \sin \omega_{1} t+A_{2} \sin \omega_{2} t$ This resultant motion is not SHM.
13.3 In two perpendicular directions.

$$
\begin{aligned}
& x=A \sin \omega t \\
& y=B \sin (\omega t+\theta)
\end{aligned}
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Case (i): If $\theta=0$ or π then $y= \pm(B / A) x$. So path will be straight line $\&$ resultant displacement will be $r=\left(x^{2}+y^{2}\right)^{1 / 2}=\left(A^{2}+B^{2}\right)^{1 / 2} \sin \omega t$

Case (ii): If $\left.\begin{array}{rl}\theta=\frac{\pi}{2} & \text { then. } \quad x \\ y & =A \sin \omega t \\ y & =B \sin (\omega t+\pi / 2)\end{array}\right)=B \cos \omega t$
13.4 Superposition of SHM's along the same direction (using phasor diagram)

If two or more SHM's are along the same line, their resultant can be obtained by vector addition by making phasor diagram.

1. Amplitude of SHM is taken as length(magnitude) of vector.
2. Phase difference between the vectors is taken as the angle between these vectors. The magnitude of resultant of vector's give resultant amplitude of SHM and angle of resultant vector gives phase constant of resultant SHM.

For example;

$$
\begin{aligned}
& x_{1}=A_{1} \sin \omega t \\
& x_{2}=A_{2} \sin (\omega t+\theta)
\end{aligned}
$$

If equation of resultant $S H M$ is taken as $x=A \sin (\omega t+\phi)$

$$
\mathrm{A}=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \theta}
$$

$$
\tan \phi=\frac{A_{2} \sin \theta}{A_{1}+A_{2} \cos \theta}
$$

Ex. 20 Find the amplitude of the simple harmonic motion obtained by combining the motions

$$
x_{1}=(2.0 \mathrm{~cm}) \sin \omega t
$$

and $\quad x_{2}=(2.0 \mathrm{~cm}) \sin (\omega t+\pi / 3)$.
Sol. The two equations given represent simple harmonic motions along X-axis with amplitudes $A_{1}=2.0 \mathrm{~cm}$ and
$A_{2}=2.0 \mathrm{~cm}$. The phase differnce between the two simple harmonic motions is $\pi / 3$. The resultant simple
harmonic motion will have an amplitude A given by

$$
\begin{aligned}
A & =\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \delta}=\sqrt{(2.0 \mathrm{~cm})^{2}+(2.0 \mathrm{~cm})^{2}+2(2.0 \mathrm{~cm})^{2} \cos \frac{\pi}{3}} \\
& =3.5 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=3 \sin \omega t \\
& x_{2}=4 \cos \omega t
\end{aligned}
$$

Find (i) amplitude of resultant SHM. (ii) equation of the resultant SHM.
Sol. First write all SHM's in terms of sine functions with positive amplitude. Keep " $\omega \mathrm{t}$ " with positive sign.
$\therefore \quad x_{1}=3 \sin \omega t$
$x_{2}=4 \sin (\omega t+\pi / 2)$
$A=\sqrt{3^{2}+4^{2}+2 \times 3 \times 4 \cos \frac{\pi}{2}}=\sqrt{9+16} \quad=\sqrt{25} \quad=5$
$\tan \phi=\frac{4 \sin \frac{\pi}{2}}{3+4 \cos \frac{\pi}{2}}=\frac{4}{3} \quad \phi=53^{\circ}$

$$
\begin{aligned}
& x_{1}=5 \sin \left(\omega t+30^{\circ}\right) \\
& x_{2}=10 \cos (\omega t)
\end{aligned}
$$

Find amplitude of resultant SHM.
Sol. $\quad x_{1}=5 \sin \left(\omega t+30^{\circ}\right)$

$$
x_{2}=10 \sin \left(\omega t+\frac{\pi}{2}\right)
$$

Phasor diagram

$$
\begin{aligned}
& A=\sqrt{5^{2}+10^{2}+2 \times 5 \times 10 \cos 60^{\circ}} \\
& =\sqrt{25+100+50}=\sqrt{175} \quad=5 \sqrt{7}
\end{aligned}
$$

Q. $10 x_{1}=5 \sin \omega t$
$x_{2}=5 \sin \left(\omega t+53^{\circ}\right)$
$x_{3}=-10 \cos \omega t$
Find amplitude of resultant SHM

Ans. 10

Ex. 23 A particle is subjected to two simple harmonic motions

$$
\begin{array}{ll}
& x_{1}=A_{1} \sin \omega t \\
\text { and } & x_{2}=A_{2} \sin (\omega t+\pi / 3) .
\end{array}
$$

Find (a) the displacement at $t=0$, (b) the maximum speed of the particle and (c) the maximum acceleration of the particle.
Sol. (a) At $t=0, x_{1}=A_{1} \sin \omega t=0$

$$
x=x_{1}+x_{2}=A_{2} \frac{\sqrt{3}}{2}
$$

(b) The resultant of the two motions is a simple harmonic motion of the same angular frequency ω. The amplitude of the resultant motion is
and $\quad x_{2}=A_{2} \sin (\omega t+\pi / 3)$

$$
=A_{2} \sin (\pi / 3)=\frac{A_{2} \sqrt{3}}{2} .
$$

Thus, the resultant displacement at $t=0$ is

$$
A=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos (\pi / 3)} \quad=\sqrt{A_{1}^{2}+A_{2}^{2}+A_{1} A_{2}} .
$$

The maximum speed is

$$
u_{\max }=A \omega=\omega \sqrt{A_{1}^{2}+A_{2}^{2}+A_{1} A_{2}}
$$

(c) The maximum acceleration is

$$
a_{\max }=A \omega^{2}=\omega^{2} \sqrt{A_{1}^{2}+A_{2}^{2}+A_{1} A_{2}} .
$$

Ex. 24 A particle is subjected to two simple harmonic motions in the same direction having equal amplitudes and equal frequency. If the resultant amplitude is equal to the amplitude of the individual motions, find the phase difference between the individual motions.
Sol. Let the amplitudes of the individual motions be A each. The resultant amplitude is also A. If the phase difference between the two motions is δ,

$$
\begin{array}{ll}
A=\sqrt{A^{2}+A^{2}+2 A \cdot A \cdot \cos \delta} & \text { or, } \\
\text { or, } \quad \cos \frac{\delta}{2}=\frac{1}{2} & \text { or, } \quad \delta \sqrt{2(1+\cos \delta)}=2 A \cos \frac{\delta}{2} \\
& =2 \pi / 3 .
\end{array}
$$

