

SECTION (A) : EQUATION OF SOUND WAVE, WAVELENGTH, FREQUENCY, PRESSURE AND DISPLACEMENT AMPLITUDE

- A 1. A person can hear sound waves in the frequency range 20 Hz to 20 kHz. Find the minimum and the maximum wavelengths of sound that is audible to the person. The speed of sound is 340 m/s.
- Find the minimum and maximum wavelengths of sound in water that is in the audible range A 2. (20 - 20000 Hz) for an average human ear. Speed of sound in water = 1500 m/s.
- A sound wave of frequency 100 Hz is travelling in air. The speed of sound in air is 350 m/s. (a) By how much A 3. is the phase changed at a given point in 2.5 ms? (b) What is the phase difference at a given instant between two points separated by a distance of 10.0 cm along the direction of propagation?
- The equation of a travelling sound wave is $y = 6.0 \sin (600 t 1.8 x)$ where y is measured in 10^{-5} m, t in %A 4. second and x in metre. (a) Find the ratio of the displacement amplitude of the particles to the wavelength of \mathcal{G} the wave. (b) Find the ratio of the velocity amplitude of the particles to the wave speed. 98930

SECTION (B) : SPEED OF SOUND

- B 1. A man stands before a large wall at a distance of 100.0 m and claps his hands at regular intervals. In such way that echo of a clap merges with the next clap. If he has to clap 5 times during every 3 seconds, find the velocity of sound in air.
- Calculate the speed of sound in oxygen from the following data. The mass of 22.4 litre of oxygen at STP (T B 2. = 273 K and p= 1.0×10^5 N/m²) is 32 g, the molar heat capacity of oxygen at constant volume is C_v = 2.5 R and that at constant pressure is $C_{p} = 3.5 R$. :0 903

SECTION (C) : INTENSITY OF SOUND, DECIBEL SCALE

- C 1. Two sound waves one in air and the other in fresh water are equal in intensity.
 - - (a) Find the ratio of pressure amplitudes of the wave in water to that of the wave in air.
 (b) If the pressure amplitudes of the waves are equal then what will be the ratio of the intensities of the waves.

Bhopal

Sir),

Ŀ.

Ċ

Kariya (S.

с.

2 4m

2m

1n

 $[V_{sound} = 340 \text{ m/s in air } \& \text{ density of air} = 1.22 \text{ kg/m}^3, V_{water}$ [1488 m/s]

SECTION (D) : INTERFERENCE

Two point sound sources A and B each of power 25π W and frequency 850 Hz D 1. are 1 m apart.

(a) Determine the phase difference between the waves emitting from A and B received by detector D as in figure.

(b) Also determine the intensity of the resultant sound wave as recorded by detector D . Velocity of sound = 340 m/s.

- D 2. Two identical loudspeakers are located at points A & B, 2 m apart. The loudspeakers are driven by the same amplifier. A small detector is moved out from point B along a line perpendicular to the line connecting A & B. Taking speed of sound in air as 332 m/s. Find the frequency below which there will be no position along the line BC at which destructive interference occurs.
- Suhag I D 3. A source of sound S and a detector D are placed at some distance from one another. A big cardboard i placed near the detector and perpendicular to the line SD as shown in figure. lasses, Maths It is gradually moved away and it is found that the intensity changes from a maximum to a minimum as the board is moved through a distance of 20 cm. Find the frequency of the sound emitted. Velocity of š ň sound in air is 336 m/s.

SECTION (E) : REFLECTION OF SOUND EQUATION OF STATIONARY WAVES

- \overline{O} The stationary wave $y = 2a \sin kx \cos \omega t$ in a closed organ pipe is the result of the superposition of E 1. eko [REE - 94, 2] $y = a \sin(\omega t - kx) \&$
- A metallic rod of length 1 m is rigidly clamped at its end points. Longitudinal stationary waves are setup E 2. in the rod in such a way that there are six antinodes of displacement wave observed along the rod. The amplitude of the antinode is 2×10^{-6} m. Write the equations of the stationary wave and the component waves at the point 0.1 m from the one end of the rod. [Young's modulus = 7.5×10^{10} N/m², density = 2500 kg/m³]

SECTION (F) : ORGAN PIPES AND RESONANCE

F 1. In a standing wave pattern in a vibrating air column, nodes are formed at a distance of 4.0 cm. If the speed of Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

sound in air is 328 m/s, what is the frequency of the source?

- F 2. The first overtone frequency of a closed organ pipe P, is equal to the fundamental frequency of an open organ pipe P₂. If the length of the pipe P₁ is 30 cm, what will be the length of P₂?
- F 3. Two successive resonance frequencies in an open organ pipe are 1944 and 2592 Hz. Find the length of the tube. The speed of sound in air is 324 m/s.
- F 4. A tube 1.0 m long is closed at one end. A wire of length 0.3 m and mass 1 × 10⁻² kg is stretched between two fixed ends and is placed near the open end . When the wire is plucked at its mid point the air column C resonates in its 1st overtone. Find the tension in the wire if it vibrates in its fundamental mode. o pag $[V_{sound} = 330 \text{ m/s}]$
- F 5. A closed organ pipe of length $\ell = 100$ cm is cut into two unequal pieces. The fundamental frequency of A closed organ pipe of long... the new closed organ pipe piece is found to be same as the frequency of mist overtone of the open pipe $\overline{0}$ organ pipe piece. Determine the length of the two pieces and the fundamental tone of the open pipe $\overline{0}$

SECTION (G) : BEATS

- N (G): BEATS A source of sound with adjustable frequency produces 4 beats per second with a tuning fork when its of frequency is either 474 Hz. or 482 Hz. What is the frequency of the tuning fork? G 1.
- 0 G 2. Two identical piano wires have a fundamental frequency of 600 vib/sec, when kept under the same tension . What fractional increase in the tension of one wire will lead to the occurrence of six beats per of second when both wires vibrate simultaneously.

SECTION (H) : DOPPLER EFFECT

S, O & W represent source of sound (of frequency f), observer & wall respectively. V_o , V_s, V_p, V are S Η1. velocity of observer, source, wall & sound (in still air) respectively. V_w is the velocity of wind. They are moving as shown. Find : moving as shown. Find : 0

Phone

Bhopal

Ś

: Suhag

- The wavelength of the waves coming towards the observer from source. (i)
- (ii) The wavelength of the waves incident on the wall.
- (iii) The wavelength of the waves coming towards observer from the wall. (iv)
 - Frequency of the waves (as detected by O) coming from wall after reflection.
- Sir), Η2. An observer rides with a sound source of frequency f and moving with velocity v towards a large vertica ¥. wall. Considering the velocity of sound waves as c, find : ċ
 - the number of waves striking the surface of wall per second (i)
 - (ii) the wavelength of the reflected wave
 - (iii) the frequency of reflected wave
 - (iv) beat frequency heard by the observer.
- Kariya (Η3. S is source R is receiver. R and S are at rest. Frequency of sound from S is f. Find the beat frequency registered by R. Velocity of sound is v. ► 11 È (const.)

SECTION (I) : MISCELLANEOUS

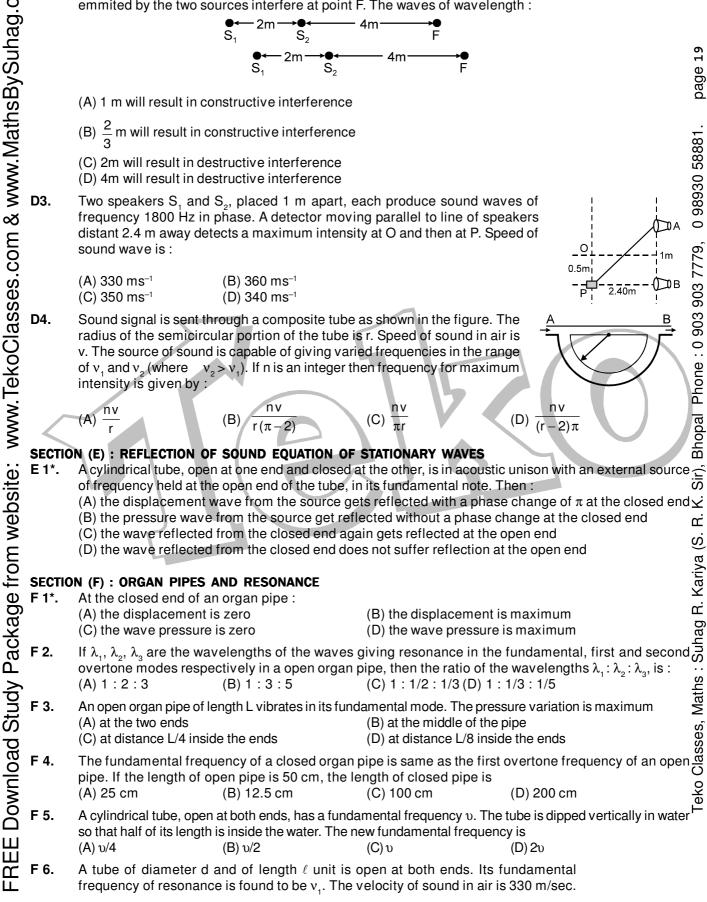
The first overtone of an open organ pipe beats with the first overtone of a closed organ pipe with a beat frequency of 2.2 Hz. The fundamental frequency of the closed organ pipe is 110 Hz. Find the lengths of I1. the pipes. Velocity of sound = 330 m/s. Classes,

Teko SECTION (A) : EQUATION OF SOUND WAVE, WAVELENGTH, FREQUENCY, PRESSURE AND DISPLACEMEN AMPLITUDE

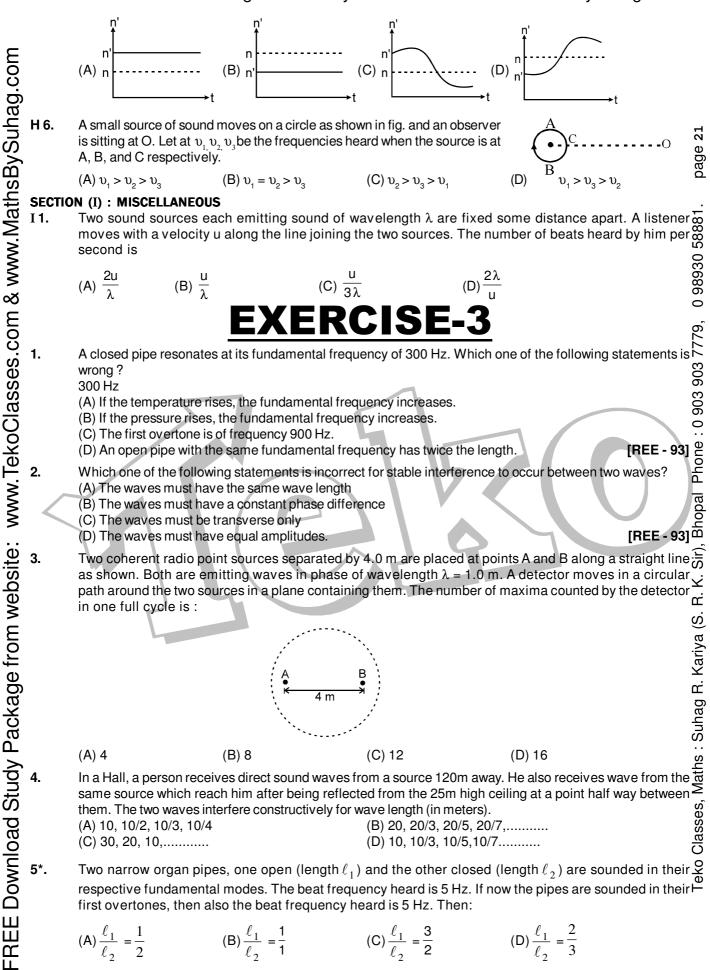
- A 1. When sound wave is refracted from air to water, which of the following will remain unchanged? (A) wave number (B) wavelength (C) wave velocity (D) frequency
- A 2. When we clap our hands, the sound produced is best described by

(A)
$$p = p_0 \sin(kx - \omega t)$$

(B) $p = p_0 \sin kx \cos \omega t$


(C) $p = p_0 \cos kx \sin \omega t$

(D) $p = \sum p_{on} \sin (k_n x - \omega_n t)$


Here p denotes the change in pressure from the equilibrium value.

A 3. A light pointer fixed to one prong of a tuning fork touches a vertical plate. The fork is set vibrating and the plate is allowed to fall freely. Eight complete oscillations are counted when the plate falls through Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com 10 cm, then the frequency of the fork is : (A) 65 Hz (B) 56 Hz (C) 46 Hz (D) 64 Hz A 4. A piece of cork is floating on water in a small tank. The cork oscillates up and down vertically when small ripples pass over the surface of water. The velocity of the ripples being 0.21 ms⁻¹, wave length 15 mm and amplitude 5 mm, the maximum velocity of the piece of cork is page 58881 (D) 4.4 ms⁻¹ (A) 0.44 ms⁻¹ (B) 0.24 ms⁻¹ (C) 2.4 ms⁻¹ SECTION (B) : SPEED OF SOUND 98930 The elevation of a cloud is 60° above the horizon. A thunder is heard 8 s after the observation of lighting B 1. The speed of sound is 330 ms⁻¹. The vertical height of cloud from ground is 0 Cloud :0 903 903 7779, 60° Horizon (C) 2286 m (A) 2826 m (B) 2682 m (D) 2068 m Phone B 2. A tuning fork sends sound waves in air. If the temperature of the air increases, which of the following parameters will change? (A) displacement amplitude (B) Frequency (C) Wavelength (D) time period R (D) time period (D) time peri B 3. temperature of the surrounding air increases but pressure remains constant, the sound produced will have $\overline{m m}$ (A) large wavelength (C) larger velocity (D) larger time period (B) larger frequency Sir The ratio of speed of sound in neon to that in water vapours at any temperature (when molecular weigh B 4. Ŀ. of neon is 2.02×10^{-2} kg mol⁻¹ and for water vapours is 1.8×10^{-2} kg mol⁻¹) Ċ (A) 1.06 (B) 1.60 (C) 6.10 (D) 15.2 R. Kariya (S. SECTION (C) : INTENSITY OF SOUND, DECIBEL SCALE C 1*. The energy per unit area associated with a progressive sound wave will be doubled if : (A) the amplitude of the wave is doubled (B) the amplitude of the wave is increased by 50% (C) the amplitude of the wave is increased by 41% (D) the frequency of the wave is increased by 41% (D) the frequency of the wave is increased by 41% Two sound waves move in the same direction in the same medium. The pressure amplitudes of the waves are C 2. equal but the wavelength of the first wave is double the second. Let the average power transmitted across a Maths cross-section by the first wave be P, and that by the second wave be P_a. Then $(A) P_{1} = P_{2}$ (B) $P_1 = 4P_2$ (C) $P_2 = 2P_1$ (D) $P_{2} = 4P_{1}$ Classes, C 3. A sound level I is greater by 3.0103 dB from another sound of intensity 10 nW cm⁻². The absolute value of intensity of sound level I in Wm⁻² is : (A) 2.5×10^{-4} (C) 2.0×10^{-2} (D) 2.5 × 10⁻² (B) 2×10^{-4} Teko C 4. A person is talking in a small room and the sound intensity level is 60 dB everywhere within the room If there are eight people talking simultaneously in the room, what is the sound intensity level? (A) 60 dB (C) 74 dB (B) 69 dB (D) 81 dB ш **SECTION (D) : INTERFERENCE** Ш D 1. When two waves with same frequency and constant phase difference interfere, ШШ (A) there is a gain of energy

- (B) there is a loss of energy
- (C) the energy is redistributed and the distribution changes with time
- (D) the energy is redistributed and the distribution remains constant in time
- D2*. S, and S₂ are two sources of sound emitting sine waves. The two sources are in phase. The sound emmited by the two sources interfere at point F. The waves of wavelength :

	Get S	Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com One end of tube is now closed. The lowest frequency of resonance of tube is v_2 .						
шс		Taking into consideration the end correction, $\frac{v_2}{v_1}$ is						
ag.co		(A) $\frac{(\ell + 0.6 \mathrm{d})}{(\ell + 0.3 \mathrm{d})}$	(B) $\frac{1}{2} \frac{(\ell + 0.3 d)}{(\ell + 0.6 d)}$	(C) $\frac{1}{2} \frac{(\ell + 0.6 \text{ d})}{(\ell + 0.3 \text{ d})}$	(D) $\frac{1}{2} \frac{(d+0.3\ell)}{(d+0.6\ell)}$			
h	SECTION (G) : BEATS							
sByS	G 1.	beat frequency reduction the string is	es if the tension in the stri	ng is slightly increased. 7	d 6 beats per second are heard. The o The original frequency of vibration of g			
ť		(A) 506 Hz	(B) 512 Hz	(C) 518 Hz	(D) 524 Hz .			
www.TekoClasses.com & www.MathsBySuhag.com	G 2.	sounded at the same twice as large. The ur	time as A produces beats hknown frequency could b	When the same note i be:	Hz respectively. An unknown note of sounded with B, beat frequency is of the sounded with B, beat frequency is of the sound of the soun			
Š	G 3.	When heats are prov	duced by two progressiv	ve waves of nearly the	(D) 258 Hz 800 (D) 25			
Š	G U .	following is correct?		te waves of heatry the				
.com		(A) The particles vibrative frequencies.			I to the difference in the component $\hat{\rho}$			
es			juencies of the two wave		nserver is			
SS			f beats depends upon th					
<u>a</u>	~ 4		f beats changes as the t					
skoO	G 4.		s neard per second if the sities sounded together (B) 1		sound of frequencies $(n - 1)$, n and \bigcirc (D) 3			
Ĕ.	G 5.		and an open pipe of sam	e length produce 4 bea	ts when they are set into vibrations			
www	\langle	simultaneously. If the	length of each of them w e mode of vibration in bot (B) 4	vere twice their initial len	gths, the number of beats produced red (D) 8			
 ()	SECTION (H) : DOPPLER EFFECT							
osit∈	H 1.	A listener is at rest with respect to the source of sound. A wind starts blowing along the line joining the source and the observer. Which of the following quantities do not change?						
le l		(A) Frequency	(B) Velocity of sound	(C) Wavelength	(D) Time period			
× E	H 2.	The change in freque (A) the speed of the s	ncy due to Doppler effect ource	does not depend on (B) the speed of the o	observer a			
2		(C) the frequency of the source (D) separation between the source and the observer						
Download Study Package from webs	H 3.	frequency 1.2 kHz. T heard by the engine	ving towards a wall with v he frequency of note af driver when speed of so	ter reflection from the v ound in air is 350 ms ⁻¹ i	vall as s:			
Б		(A) 1 kHz (B) 1	.8 kHz (C)	1.6 kHz (D)	1.2 kHz			
Study	H 4.	Two trains move tow the tone of the whist train is :	vards each other with the le of one when heard or	e same speed. Speed on the other changes by	1.2 kHz of sound is 340 ms ⁻¹ . If the pitch of e 9/8 times, then the speed of each to ک			
load					eko Classes O No Ulasses (D) 100 ms ⁻¹			
Ň		(A) 2 ms⁻¹	(B) 40 ms ^{−1}	, (C) 20 ms⁻¹	(D) 100 ms ⁻¹			
Ó	H 5.	. ,		()	n, one along X-axis and the other			
FREE		along Y-axis with spe	ed of source equal to twi	ce the speed of observe	er. The graph between the apparent frequency of the source)			

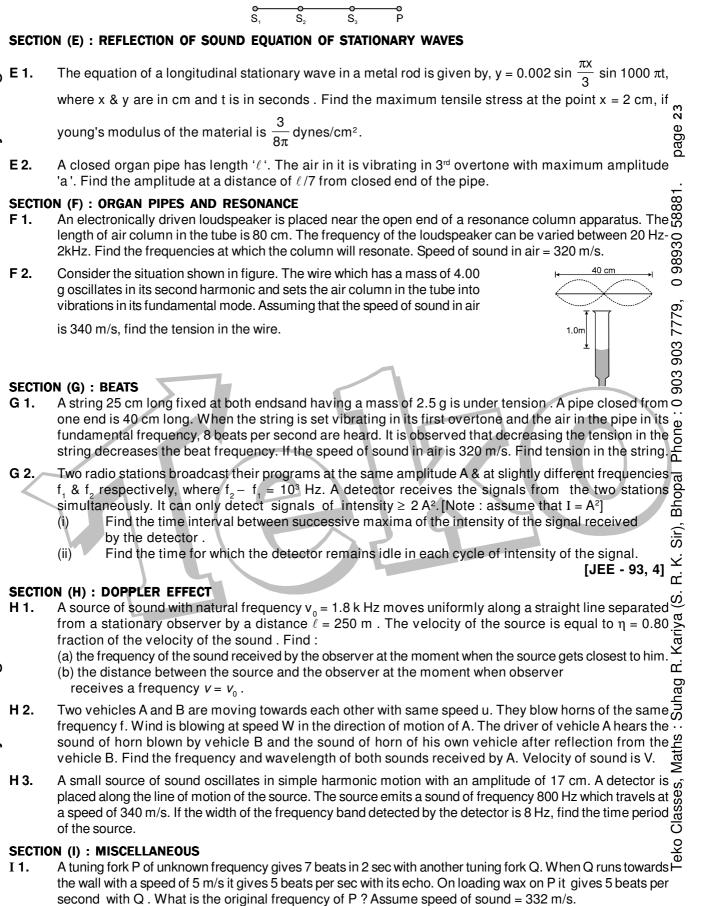
In a resonance tube experiment, a closed organ pipe of length 120 cm resonates when tuned with a tuning fork of frequency 340 Hz. If water is poured in the pipe then (given v_{air} = 340 m/sec.) :

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

6*.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com (A) minimum length of water column to have the resonance is 45 cm. (B) the distance between two succesive nodes is 50 cm. (C) the maximum length of water column to create the resonance is 95 cm. (D) none of these. 7. Two second sources produce progressive waves given by $y_1 = 12 \cos 100\pi t$ and $y_2 = 4 \cos 102\pi t$ near the ear of an observer. When sounded together, the observer will hear (A) 2 beats per two sound source with an intensity ratio of maximum to minimum nearly 4:1 22 (B) 1 beat per second with an intensity ratio of maximum to minimum nearly $\sqrt{2}$: 1 page (C) 2 beats per second with an intensity ratio of maximum to minimum nearly 9:1 (D) 1 beat per second with an intensity ratio of maximum to minimum nearly 4:1 8. There is a set of four tuning forks, one with the lowest frequency vibrating at 550 Hz. By using any two tuning forks at a time, the following beat frequencies are heard: 1, 2, 3, 5, 7, 8. The possible frequencies -58881 of the other three forks are: (A) 552, 553, 560 (B) 557, 558, 560 (C) 552, 553, 558 (D) 551, 553, 558 98930 A train moving towards a tunnel in a huge mountain with a speed of 12 m/s sounds its whistle. If the driver 9. hears 6 beats per second & speed of sound in air is 332 m/s, the frequency of the whistle is 0 (A) 80 Hz (B) 120 Hz (C) 160 Hz (D) 240 Hz 7779, 10.* A girl stops singing a pure note. She is surprised to hear an echo of higher frequency, i.e., a higher musical pitch. Then : (A) there could be some warm air between the girl and the reflecting surface there could be some warm air between the girl and the reflecting surface there could be two identical fixed reflecting surfaces, one half a wavelength of the solution of the (B) 903 sound wave away from the other (C) the girl could be moving towards a fixed reflector 0 (D) the reflector could be moving towards the girl When a train approaches a stationary observer, the apparent frequency of the whistle is n' and when $\frac{9}{2}$ the same train recedes away from the observer, the apparent frequency is n". Then the apparent frequency $\frac{9}{2}$ n when the observer moves with the train is : [REE' 97, 5] 11. [REE' 97, 51 n when the observer moves with the train is : Bhopal 2n′ n′ n´ + n´ (C) n = (D) n = (A) n n'-n'' Sir), ERCISE-4 Ľ. SECTION (A) : EQUATION OF SOUND WAVE, WAVELENGTH, FREQUENCY, PRESSURE AND DISPLACEMENT AMPLITUDE Calculate the bulk modulus of air from the following data about a sound wave of wavelength 35 cm travelling A 1. in air. The pressure at a point varies between $(1.0 \times 10^5 \pm 14)$ Pa and the particles of the air vibrate in simple harmonic motion of amplitude 5.5×10^{-6} m. SECTION (B) : SPEED OF SOUND ċ B1. The absolute temperature of air in a region linearly increases from T_1 to T_2 in a space of width d. Find the time Suhag taken by a sound wave to go through the region in terms of T_1 , T_2 and the speed v_0 of sound at $T_0 K$.

SECTION (C) : INTENSITY OF SOUND, DECIBEL SCALE

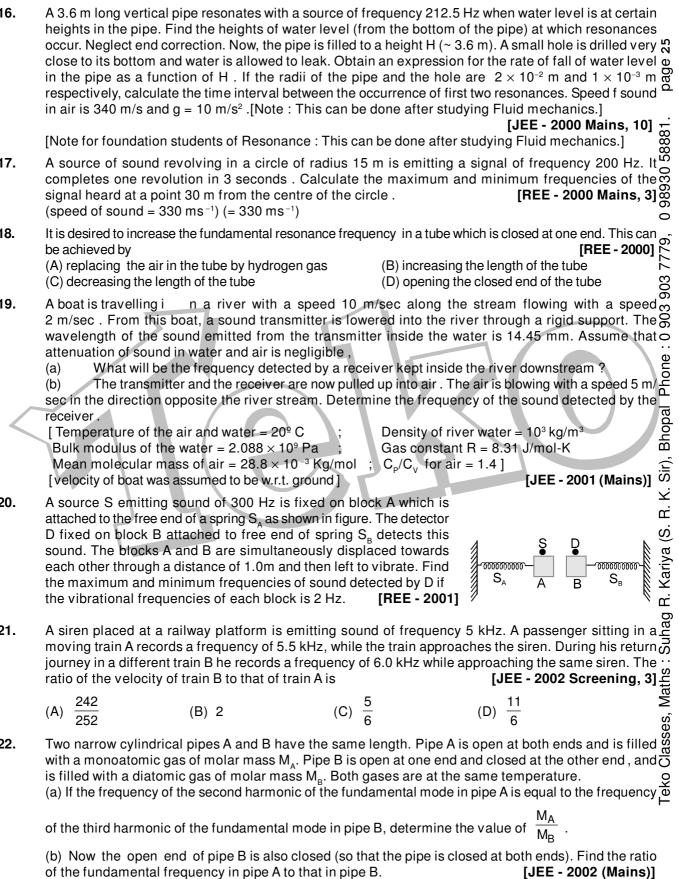

- A source of sound operates at 2.0 kHz, 20 W emitting sound uniformly in all directions. The speed of sound C 1. in air is 340 m/s and the density of air is 1.2 kg/m³. (a) What is the intensity at a distance of 6.0 m from the fisource? (b) What will be the pressure amplitude at this point? (c) What will be the displacement amplitude $\frac{1}{2}$ at this point? Classes,
 - (b) What will be the pressure amplitude at this point?
 - (c) What will be the displacement amplitude at this point?

SECTION (D) : INTERFERENCE

- Two sources of sound, S_1 and S_2 , emitting waves of equal wavelength 20.0 cm, are placed with a separation $\frac{Q}{2}$ D 1. of 20.0 cm between them. A detector can be moved on a line parallel to S_1S_2 and at a distance of 20.0 cm $\overset{\circ}{\vdash}$ from it. Initially, the detector is equidistant from the two sources. Assuming that the waves emitted by the sources are in phase, find the minimum distance through which the detector should be shifted to detect a minimum of sound.
- D 2. Three sources of sound S_1 , S_2 and S_3 of equal intensity are placed in a straight line with $S_1S_2 = S_2S_3$ (figure). At a point P, far away from the sources, the wave coming from S_2 is 120° ahead in phase of that from S₁. Also, the wave coming from S₃ is 120° ahead of that from S₂. What would be the resultant

EE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com ШШ

intensity of sound at P?


ſ

EXERCISE-2

F		LALINGIGE-Z				
g.cor	1.	the extension in the s	tring is increased to 1.5	tw is x. The speed of sound $5x$, the speed of sound	will be	-
www.TekoClasses.com & www.MathsBySuhag.com		(A) 1.22 v	(B) 0.61 v	(C) 1.50 v	(D) 0.75 v	[JEE - 96, 2]
	2.		to be higher by 100 Hz	vith the result that the fr than the fundamental t (C) 240 Hz		
	3.	angular velocity of 20	rad s ⁻¹ in the horizonta	Hz is tied to a string of al plane. Calculate the r ne whistle. (v _{sound} = 330 r	ange of frequenci	
	4.	long & open at both fundamental mode. B	ends, when sounded w ty decreasing the strain	an extension of 0.02 m i <i>i</i> ith this stressed metal in the wire, the number ity of metallic wire is 10	lic wire, produces r of beats are four	s 8 beats in its m
es.col	5.	A pipe of length 1m is c will resonate for sound (A) 75 Hz		elocity of sound in air is 3	00 ms⁻¹. The air co (D) 375 Hz	umn in the pipe 6 [REE - 96] 2 ෆු
oClasse	6.	by the observer in Hz	is	ionary observer at a spe (C) 517		equency heard $\overset{o}{\overset{o}{\overset{o}{\overset{o}{\overset{o}{\overset{o}{\overset{o}{\overset{o}$
	_	(A) 409	(B) 429		(D) 500	
v.Teko	7.		he fundamental frequer	s with the first overtone on the second s Second second s		
	8.	A band playing music the band with a speed by the motorist .	at a frequency f is moved by v_m . If v is the speed of s	ving towards a wall at a sound, obtain an expres	speed v _b . A moto sion for the beat fr	rist is following ල equency heard o [JEE - 97, 5] කි
FREE Download Study Package from website:	9.	Two sound waves r P = P ₀₂ sin [k (x + Δx) -	eaching a point at ti $\omega t + \delta_0$] respectively. T	me t are represented he phase difference bet	by $P = P_{01}$ sinween these waves	(kx – ωt) and ⊆ s is [REE - 97,1] ⊻
	10.	The air column in a pi of frequency 440 Hz. P_0 denote the mean p variation.	pe closed at one end is The speed of sound in pressure at any point in	a made to vibrate in its s air is 330 ms⁻¹. End co n the pipe & △P₀ the n	second overtone b rrections may be naximum amplitu	ov a tuning fork
		(ii) What is the ar(iii) What are the	nplitude of pressure va maximum & minimum ı	riation at the middle of t pressures at the open e pressures at the closed	he column ? and of the pipe.	× Chag Northa
idy Pa	11.		rates with 1.0 m or 1.05 n I be the frequency of the (B) 200	n long wire of a sonomete tuning fork ? (C) 205	er, 5 beats per secor (D) 210	[REE - 98] හු
StL	12.	The ratio of speed of	sound in nitrogen gas t	o that in helium gas at 3	300 K is	[JEE - 99] ∑
5		(A) √ <u>2/7</u>	(B) √ <u>1/7</u>	(C) \(\{\)3 /5	(D) $\sqrt{6/5}$	sses, Matl
)a(13.		pen pipe have their first ov	vertones identical in frequ	·	<u> </u>
wnlo		(A) 1 : 2	(B) 2 : 3	(C) 3 : 4	(D) 4 : 5	[REE - 99] O
EE Do	14.			lecular masses m ₁ and rature. The ratio of the s		tre enclosed in
FR		(A) $\sqrt{\frac{m_1}{m_2}}$	(B) $\sqrt{\frac{m_2}{m_1}}$	(C) $\frac{m_1}{m_2}$	(D) $\frac{m_2}{m_1}$	[JEE - 2000]

15. A train moves towards a stationary observer with speed 34m/s. The train sounds a whistle and its frequency registered by the observer is f_1 . If the train's speed is reduced to 17m/s, the frequency registered is f_2 . If the speed of sound is 340m/s then the ratio f_1/f_2 is (A) 18/19 (B) 1/2 (C) 2 (D) 19/18

[JEE - 2000 Screening, 1]

	Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com 23. A police van moving with velocity 22 m/s and emitting sound of frequency 176 Hz, follows a motorcycle					
lag.com		-	ards a stationary car and motorcyclist does not he (B) 22 m/s		•	/ car is emitting [JEE - 2003]
	24.		ical tube when sounded ain gives resonance whe			
Suh		(A) 0.025 m	(B) 0.020 m	(C) 0.015 m	(D) 0.010 m	[JEE - 2003] ⁰
www.TekoClasses.com & www.MathsBySuhag.com	25.	480 Hz. The diamete	periment, air column in a p r of the pipe is 5 cm and . Calculate the speed of so	it is open at one end.	The smallest reso	nating length is a
	26.	detected by a stationa	equency 600 Hz is kept a ry detector present above vater = 1500 m/s ; veloci (B) 600 Hz	e the river in air.		It the frequency $\overset{\circ}{0}_{0}^{\circ}$
	27.	A closed pipe of lengt gases have same com then the length of sec	h L contains gas of densit pressibility factor and both ond pipe is :	y ρ_1 , another open pipe c 1 pipes resonates with sar	contains gas at den me frequency in th	isity ρ_2 . Both the ^O eir first overtone [JEE Sc. 2004]
		(A) $\frac{4L}{3}\sqrt{\frac{\rho_2}{\rho_1}}$	(B) $\frac{4L}{3}\sqrt{\frac{\rho_1}{\rho_2}}$	(C) $\frac{4L}{3}$	(D) ^L / ₂	33 903 1
v.TekoCla	28.	frequency is increase option :	sonance in 2nd harmonic ed to f_2 such that the resc (B) n = 3, $f_2 = \frac{5}{4}f_1$	onance again occurs in r	hth harmonic. Cho	oose the correct [2005 S] 씯
ite:	29.	2.2 KHz and 1.8 KHz (speed of sound = 30 Ans . v_{T} = 30 m/s	oaches a junction. An ob of the approaching and t 00 m/s)	server standing at junct he receding train respec	ctively. Find the sp	beed of the train 2 2005 2 marks] ((بَانَ نَانَ
from webs	Paragr					×.
from we			os (0.5 πx – 100 πt) os (0.46 πx – 92 πt)	d by the equations.	[200	06 5×3 marks] ⊡ (V. B (V. B (V. B (V. B) (V. B) (V
kage from w	30.	$y_1(x, t) = A \cos y_2(x, t) = A \cos y_2(x, t)$ (All parameters are in	os (0.5 πx – 100 πt) os (0.46 πx – 92 πt)		-	
Package from w	30. 31.	$y_1(x, t) = A \cos y_2(x, t) = A \cos y_2(x, t)$ (All parameters are in How many times does	os (0.5 πx – 100 πt) os (0.46 πx – 92 πt) MKS) : MKS o an observer hear maxim (B) 10	um intensity in one seco	nd ?	
FREE Download Study Package from webs		$y_1(x, t) = A \cos y_2(x, t) = A \cos y_2(x, t) = A \cos x_2(x, t) = $	os (0.5 πx – 100 πt) os (0.46 πx – 92 πt) MKS) : MKS s an observer hear maxim (B) 10 the sound ?	um intensity in one seco (C) 6 (C) 192 m/s	nd ? (D) 8 (D) 96 m/s	Teko Classes, Maths : Suhag R. Kariya (S. R

ANSWER

	SWER
EXERCISE - 1 SECTION (A) : A1. 17 mm, 17 m A2. 7.5 cm, 75 m A3. (a) $\pi/2$ (b) $2\pi/35$ A4. (a) 1.7×10^{-5} m, (b) 1.08×10^{-4} SECTION (B) : B1. 333 m/s B2. 310 m/s SECTION (C) : C1. (a) $\frac{P_{0_w}}{P_{0_a}} = 60$ (b) $\frac{P_w}{P_a} = 2.8 \times 10^{-4}$ SECTION (D) : D1. (a) π (b) $I = (\sqrt{I_A} - \sqrt{I_B})^2 = (25/312)^2$ D2. 83 Hz D3. 420 Hz SECTION (E) : E1. a [sin (kx + ω t) + 2 sin(kx - ω t)] E2. Y = 2 × 10^{-6} sin $\frac{6\pi}{10} \cos (6\sqrt{30}\pi \times 10^3 t) + 0$ at x = 0.1, Y = 1.9 × 10^{-6} cos ($6\sqrt{30}\pi \times 10^3 t$) + 0 SECTION (F) : F1. 4.1 kHz F2. 20 cm F3. 25 cm F4. 735 N F5. 20, 80 cm, 200 Hz	EXERCISE - 2
SECTION (A) :	SECTION (A) :
ପ୍A 1. 17 mm, 17 m - କୁ A 2. 7.5 cm, 75 m	A1. D A2. D A3. B A4. A
\bigcirc A 3. (a) $\pi/2$ (b) $2\pi/35$	SECTION (B) :
A 4. (a) 1.7 × 10 ⁻⁵ m, (b) 1.08 × 10 ⁻⁴	B1. C B2. C B3. A
SECTION (B) :	B4. A
<u>G</u> B 1. 333 m/s B 2. 310 m/s	SECTION (C) : C 1*. CD C 2. A C 3. B
	C4. B
$\frac{P_{0w}}{P_{0w}} = 60$ (b) $\frac{P_{w}}{P_{w}} = 2.8 \times 10^{-4}$	SECTION (D) :
2 C 1. (a) $\frac{P_{0_w}}{P_{0_a}} = 60$ (b) $\frac{P_w}{P_a} = 2.8 \times 10^{-4}$	D1. D D2*. ABD D3. B D4. B
SECTION (D) :	D4. B SECTION (E) :
\swarrow D1. (a) π (b) $I = (\sqrt{I_A} - \sqrt{I_B})^2 = (25/312)^2$	E 1*. ABC
E_{D2} 83 Hz	SECTION (F) :
O D 3. 420 Hz	F1*. AD F2. C F3. B F4. B F5. C F6. C
တဲ့ SECTION (E) :	SECTION (G) :
\bigcirc E1. a[sin (kx + ω t) + 2 sin(kx - ω t)]	G1. A G2. BD G3. B
S	G4. B G5. A
$\frac{\partial}{\partial t}$ E 2. Y = 2 × 10 ⁻⁶ sin $\frac{6\pi}{10}$ cos (6 $\sqrt{30\pi}$ × 10 ³ t) + 0	θ SECTION (H) : H1. AD H2. D H3. C
Q at x = 0.1 ,	H4. C H5. B H6. D
Y = $1.9 \times 10^{-6} \cos(6\sqrt{30\pi} \times 10^{3} t) + \theta$	SECTION (I) : MISCELLANEOUS
F SECTION (F) : ≥ F 1. 4.1 kHz F 2. 20 cm	II. A
F 3. 25 cm F 4. 735 N	EXERCISE - 3
≥ F 5. 20, 80 cm, 200 Hz	1. B 2. C 3. D 4. A 5 [*] . BC 6 [*] . ABC
SECTION (G) : ① G 1. 478 Hz G 2. 2 %	7. D 8. D 9. A
	10.* CD 11. C
$\begin{array}{c} \textbf{G} \textbf{H1.} (i) (V - V_{W} + V_{S})/f \\ (ii) (V + V_{W} - V_{S})/f \\ (iii) (V - V_{W} - V_{D})/f_{r} \\ \text{where } f_{r} = (V + V_{W} + V_{D}/V + V_{W} - V_{S}) f \\ (iv) (V - V_{W} - V_{O}/V - V_{W} - V_{D}) f_{r} \end{array}$	EXERCISE - 4
Ψ (ii) $(V + V_W - V_S)/f$ (iii) $(V - V_W - V_S)/f$	SECTION (A) :
	A 1. $1.4 \times 10^5 \text{ N/m}^2$
\vec{Q} (iv) $(V - V_w - V_o/V - V_w - V_D) f_r^w$	SECTION (B) :
H 2. (i) $n = \frac{fc}{c-y}$	$2d \sqrt{T_0}$
	B 1. $\frac{2d}{v_0} \cdot \frac{\sqrt{T_0}}{\sqrt{T_1} + \sqrt{T_2}}$
$\underbrace{\overset{\mathbf{v}}{\mathbf{v}}}_{\mathbf{v}} \qquad (\text{ii}) \lambda' = \lambda - \left(\frac{\mathbf{v}}{\mathbf{f}}\right) = \left(\frac{\mathbf{c}}{\mathbf{f}}\right) - \left(\frac{\mathbf{v}}{\mathbf{f}}\right) = \left(\frac{\mathbf{c} - \mathbf{v}}{\mathbf{f}}\right)$	SECTION (C) :
	C 1. (a) 44 mW/m ²
(iii) n'' = n'	(b) 6.0 Pa
(iv) $f_{beat} = \left[\frac{(c+v)n'}{c}\right] - f$	(c) 1.2 × 10 ⁻⁶ m SECTION (D) :
	D 1. 12.6 cm D 2. zero
b H 3. $f_{b} = \frac{2uf}{v+u}$	SECTION (E) :
\mathbf{O} crotion (b)	E 1. $\frac{1}{8}$ × 10 ⁻³ dynes/cm² E 2. a
<u>-</u> Section (I) :	0
SECTION (G) : G 1. 478 Hz G 2. 2 % SECTION (H) : H 1. (i) $(V - V_w + V_s)/f$ (ii) $(V + V_w - V_s)/f$ (iii) $(V - V_w - V_o)/f_r$ where $f_r = (V + V_w + V_b/V + V_w - V_s) f$ (iv) $(V - V_w - V_0/V - V_w - V_b) f_r$ H 2. (i) $n = \frac{fc}{c - v}$ (ii) $\lambda' = \lambda - (\frac{v}{f}) = (\frac{c}{f}) - (\frac{v}{f}) = (\frac{c - v}{f})$ (iii) $n'' = n'$ (iv) $f_{beat} = [\frac{(c + v)n'}{c}] - f$ H 3. $f_b = \frac{2uf}{v + u}$ SECTION (I) : I 1. $L_c = 0.75 \text{ m}$, $L_o = \frac{150}{151} \text{ m}$, 1.006 m	SECTION (F) : F 1. 100 (2n + 1) Hz where n = 0, 1, 2, 3,
Ō	F 2. 11.6 N
Щ	SECTION (G) :
	G 1. 27.0400 N G 2. (i) 10 ⁻³ sec (ii) 5 × 10 ⁻⁴ s
Ш.	

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com SECTION (H) · (iii) P Р Р

SE	SECTION (H) :			(iii) $P_{max} = P_{min} = P_{0}$	
ы Бо Н	1.	(a) $v = \frac{v_0}{(1-\eta^2)} = 5 \text{ k Hz}$	11. 14. 16.	(iii) $P_{max} = P_{min} = P_{0}$ (iv) $P_{max} = P_{0} + \Delta P_{0}, P_{min} = P_{0} - \Delta P_{0}$ C 12. C 13. C B 15. D h = 3.2, 2.4, 1.6, 0.8, 0	
ag.c		(b) $r = \sqrt{1 + \eta^2} = 0.32 \text{ km}$	10.	; = 5 × 10 ⁻³ $\sqrt{5H}$; Δt = 80 (4 - 2 $\sqrt{3}$)	
Suha	2.	Direct from B : $f' = \frac{(v-w) + u}{(v-w) - u}$	17.	200 $\pm \frac{200\pi}{33}$ i.e. 221.0 Hz, 182.6 Hz.	
By		From reflection : $f'' = \left[\frac{(v-w)+u}{(v-w)-u}\right]\left[\frac{v+w+u}{v+w-u}\right]$	18.	ACD	
aths .=	3.	0.63 s	19.	(a) f' = 98.20 K Hz (b) f'' = 100.47 K Hz	
≥ SE ≥ 11	ECTIO	N (I) : 160 Hz	20.	$v_{min} = \left(\frac{340 - 12.56}{340 + 12.56}\right) \times 300 = 278.6 \text{ Hz}$	
Ŵ		EXERCISE - 5	21.	B	
∝ັ 1. ⊂ 3.		A 2. A	22.	(a) $\frac{M_A}{M_B} = \frac{400}{189}$ (b) $\frac{f_A}{f_B} = \frac{3}{4}$	
UO2 5.		$f_{max} = 484 \text{ Hz}$, $f_{min} = 403.3 \text{ Hz}$ Y = 1.76 x 10 ¹¹ N/m ² ABD 6. D	23. 26.	B24.A25.336 m/sB27.B28.D	
. ses		$L_{c} = 0.75 \text{ m}$; $L_{o} = 0.99 \text{ m or } 1.006 \text{ m}$	29. 31.	v _T = 30 m/s 30. A A 32. C	
ass) 8		$\frac{2v_{b}(v+v_{m})f}{v^{2}-v_{b}^{2}}$ 9. $k \Delta x + \delta_{0}$	/	1	
FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com).	(i) $L = \frac{15}{16}$ m (ii) $\frac{\Delta P_0}{\sqrt{2}}$	4		
w.T€	~				
\mathbf{x}	<				
site:			5		
web					
- mo					
e fr					
kag					
^{-ac}					
dy F					
Stu					
bad					
vnlo					
Do					
Ш					
ЦЦ					

page 28 Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881.