

E	SECTI	ON (A) : SURFACE TENSION, SURFACE ENERGY AND CAPILLARY RISE								
С. С	A 1.	End of glass tube becomes round on heating- Explain why?								
haç	A 2.	Why hot soup tastes better than cold soup?								
Su	A 3.	Antiseptics should be of low surface tension. Why?	e 13							
JSBy	Α4.	A glass capillary tube is dipped vertically in water in a state of weightlessness. How will the rise of water be different to the one observed under normal conditions?	pag							
lath	A 5.	Can a rough sea be calmed by pouring oil on its surface?	81.							
≥. ×	A 6.	Why is it difficult to make mercury enter a fine thermometer tube?	588							
Š	A 7.	Which is easier to spray into fine drops? Water or mercury. Explain.	930							
Ś	A 8.	What is the utility of ploughing the fields?	я О							
шo	A 9.	A new earthen pot keeps water cooler than the older one. Why?	79, (
S.C	A 10.	A thin needle of steel floats on water ; but on dissolving soap in water the needle sinks. Why ?	3 77							
Classe	A 11.	A capillary tube is of length 10 cm. It is held vertically with 1 cm length inside water and the rest outside. The water level in the capillary stands at a height of 8 cm. If the capillary is broken at the middle, what would be the position of the water level in it ?	0 903 90							
<u>x</u> 0	A 12.	If the length of a capillary tube is less than that required, will water come out of the capillary? Explain.	ne :							
w.Te	 A 13. Two tooth picks floating on a water surface are parallel and close to each other. A hot needle is to between them to the water surface. Explain why they fly apart? A 14. Water rises in a capillary tube to a height 2.0 cm. In an another capillary whose radius is one-third of i much the water will rise ? If the first capillary is inclined at an angle of 60° with the vertical then what the position of water in the tube ? 									
9: WW										
ebsit	A 15.	A mercury drop of radius 1.0 cm is sprayed into 10^6 droplets of equal size. Calculate the energy expanded. (Surface tension of mercury = 32×10^{-2} N/m).								
from w	A 16.	Water rises up in a glass capillary upto a height of 9.0 cm, while mercury falls down by 3.4 cm in the same capillary. Assume angles of contact for water glass and mercury glass 0° and 135° respectively. Determine the ratio of surface tensions of mercury and water (cos $135^{\circ} = -0.71$).	ariya (S.							
age.	A 17.	A square frame of side L is dipped in a liquid soap. When it is taken out of the liquid, a soap film is formed on it. If the surface tension of soap is T, then the force acting on the frame is	gн. К							
ack	A 18.	An impurity which is highly soluble in a liquid the surface tension of the liquid.	Suha							
Ľ Š	A 19.	A liquid does not wet the surface of a liquid if the angle of contact is	. SI							
Study	A 20.	Water rises to a height of a 5 cm in a glass capillary tube. If the area of cross-section of the tube is reduced to (1/16)th of the former value, the water rises to a height of 40 cm. (State True/False).	es, Matr							
vnload	A 21.	A long capillary tube of radius r = 1 mm open at both ends is filled with water and placed vertically. What will be the height of the column of water left in the capillary ? The thickness of the capillary walls is a negligible.	ko Classes							
FREE Dov	A 22.	A capillary tube is lowered into a vessel with a liquid whose vapour pressure may be neglected. The density of the liquid is ρ . The vessel and the tube are in a vacuum under the bell of an air pump (fig.). Find the pressure inside the liquid in the capillary tube at a height h above the level of the liquid in the vessel.	Ē							

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

- The work done in blowing a bubble of volume V is W, then the work done in blowing a soap bubble of B 10. volume 2V will be
- If T is the surface tension of soap solution, the amount of work done in blowing a soap bubble from diameter D to a diameter 2D is $8\pi D^2T$. (State true/false)
- Pressure inside the two soap bubbles are 1.01 and 1.02 atmospheres. Ratio between their volume is 2:1. (State true/false)
- MathsBySuhag.com. B 12. B 13. B 14. A cylinder with a movable piston contains air under a pressure p₁ and a soap bubble of radius r. The surface should be compressed by slowly pulling the piston into the cylinder for the soap bubble to reduce its size by half.
 - Assuming the surface tension of rain water to be 72 dyne/cm, find the difference of pressure inside and be ام : مد مناه ماند of dia ator 0 02 M/hoty . اطلالمان 10.11

& www.l		be decreased by evapor	ration to a diameter of 0.0 EXERC	CISE-2	ice amount to, if the drop were to	0 98930 58
d Study Package from website: www.TekoClasses.com	SECTI A 1.	ON (A) : SURFACE At critical temperature (A) is zero (C) is same as that at a	TENSION, SURFACE , the surface tension of any other temperature	E ENERGY AND CAP a liquid : (B) is infinity (D) cannot be determin	PILLARY RISE	903 7779,
	A 2.	A liquid will not wet the (A) 0 ⁰	e surface of a solid if the (B) 45 ⁰	e angle of contact is : (C) 60 ⁰	(D) > 90 ⁰	0 903
	A 3.	A thread is tied slightly And the frame is dipped is completely covered with a pin, the thread : (A) becomes convert (B) becomes conce (C) remains in the (D) either (A) or (B)	V loose to a wire frame a d into a soap solution an with the film. When the ex towards A ave towards A initial position	as shown in the figure. d taken out. The frame portion A is punctured A w.r.t. B	Frame	Sir), Bhopal Phone :
	A 4.	The force required to d 75 dyne/cm). (A) 30 dyne	rag a circular flat plate ((B) 60 dyne	of radius 5 cm on the sur (C) 750 dyne	rface of water is (ST of water is (D) 750π dyne	(S. R. K.
	A 5.	A liquid rises in a capil (A) an acute one	lary tube when the angl (B) an obtuse one	e of contact is : (C) π/2 radian	(D) π radian	Kariya
	A 6.	In a surface tension ex repeated in an artificial upto a height of : (A) 0.1 m	periment with a capillary satellite, which is revolv (B) 0.2 m	y tube water rises upto 0 ing around the earth ; wa (C) 0.98 m	.1 m. If the same experiment is ater will rise in the capillary tube (D)full length of tube	Suhag R. I
	Α7.	Neglecting gravity, the with PE of a molecule (A) greater (D) depending on the li	potential energy of a mo inside liquid is : (B) less quid sometimes more, s	blecule of liquid on the su (C) equal sometimes less	urface of liquid when compared	es, Maths :
wnloac	A 8.	The lower end of a cap (A) rises into the tube (C) may rise or fall insi	illary tube touches a liq de	uid whose angle of conta (B) falls in the tube (D) neither rises nor fa	act is 90 ⁰ ,the liquid Ils inside the tube	eko Class
FREE Dov	A 9.	There is a horizontal fipierced inside the loop loop be T, then the tens (A) $\pi R^2/T$	Im of soap solution. Or and the thread becomes sion in the thread will be (B) $\pi R^2 T$	th it a thread is placed in a circular loop of radius e: (C) $2\pi RT$	the form of a loop. The film is R. If the surface tension of the (D) 2 RT	Ţ

A 10. A thin metal disc of radius r floats on water surface and bends the surface down words along the perimeter making an angle θ with vertical edge of the disc. If the disc displaces a weight of water W and

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuha									
		surface tension of wate (A) 2π rT + W	er is T, then the weight c (B) 2π rT $\cos\theta - W$	of metal disc is : (C) 2π rT cosθ + W	(D) $W - 2\pi rT \cos\theta$				
MathsBySuhag.com	A 11.	1. A 10 cm long wire is placed horizontally on the surface of water and is gently pulled up with 2×10^{-2} N to keep the wire in equilibrium. The surface tension, in Nm ⁻¹ , of water is (A) 0.1(B) 0.2(C) 0.001(D) 0.002							
	A 12.	The surface tension of	a liquid is 5 newton per r	metre. If a film is held on	n a ring of area 0.02 metres ² , its	16			
		(A) 5×10^{-2} J	(B) 2.5 × 10 ^{−2} J	(C) 2 × 10 ⁻¹ J	(D) 3 × 10 ⁻¹ J	bage			
	A 13.	In a vessel equal mass radius 1 mm is dipped surface tension of the	es of alcohol (sp. gravit vertically in it. If the m mixture is :	y 0.8) and water are mix ixture rises to a height	ed together. A capillary tube of 5 cm in the capillary tube, the	381.			
∠.∑		(A) 217.9 dyne/cm	(B) 234.18 dyne/cm	(C) 107.9 dyne/cm	(D) 10.79 dyne/cm	285			
m & ww	A 14.	A glass capillary tube pressure to be applied in the vessel in N/m^2 is (A) 10^3	of inner diameter 0.28 on the water in the capil s (surface tension of wat (B) 99 × 10 ³	mm is lowered vertica lary tube so that water lover $= 0.07$ N/m and atmos (C) 100 × 10 ³	Ily into water in a vessel. The gevel in the tube is same as that gospheric pressure = 10^5 N/m^2) : $(D) 101 \times 10^3$	ne 02686 0 (at 2) : (
00.00	A 15.	The work done in incre	easing the size of a rect	angular soap film with	dimensions 8 cm × 3.75 cm to	111			
ses		$10 \text{ cm} \times 6 \text{ cm} \text{ is } 2 \times 10^{-1}$ (A) 1.65×10^{-2}	⁻⁴ J. The surface tension (B) 3.3×10^{-2}	n of the film in N/m is : (C) 6.6×10^{-2}	(D) 8.25 × 10 ^{−2}	3 903			
oClas	A 16.	A capillary tube is filled to an angle of 45° is :	when the capillary tube is tilted	: 0 AU:					
Tek		(A) 50 cm	(B) 50√2	(C) zero	(D) none of these	hone			
www.	A 17.	When a cylindrical tube dipped with an inclinat (A) 100 ⁰	e is dipped vertically into ion of 40 ⁰ , then the angl (B) 140 ⁰	o a liquid, the angle of co le of contact is : (C) 180 ⁰	ontact is 140°. When the tube is $\frac{1}{2}$	Bhopal PI			
ebsite:	A 18.	The radii of the two col is filled in it the level di (g = acceleration due to	umns is U-tube are r ₁ ar ifference of liquid in two o gravity) :	nd r ₂ . When a liquid of de arms is h. The surface	ensity ρ (angle of contact is 0 ⁰) tension of liquid is :	. K. Sir),			
am we		(A) $\frac{\rho g h r_1 r_2}{2(r_2 - r_1)}$	(B) $\frac{\rho gh(r_2 - r_1)}{2r_1r_2}$	(C) $\frac{2(r_2 - r_1)}{\rho g h r_1 r_2}$	(D) $\frac{\rho g h}{2(r_2 - r_1)}$	уа (5. н			
kage fro	A 19.	The property of surface (A) increase the volume (C) increase the surface	e tension is to : e e area	area (D) decrease the volume					
act	A 20.	Radius of a capillary is	3 2 × 10 ^{−3} m. A liquid of v	weight 6.28 × 10 ⁻⁴ N ma	ay remain in the tube if surface ⁻	Suna			
₹ E		(A) 5×10^{-3} N/m	(B) 5 × 10 ⁻² N/m	(C) 5 N/m	(D) 50 N/m	ths :			
load Stud	A 21.	A thin metal ring of inte of a balance so that it of 7.48 g is required to put (A) 80×10^{-3} N/m	rnal radius 8 cm and exte comes in contact with wa III the ring out of water. (B) 75 × 10 ⁻³ N/m	ernal radius 9 cm is supp ater in a glass vessel. It The surface tension of w (C) 65 × 10 ⁻³ N/m	error of the supported horizontally from the pane of vessel. It is found that an extra weight of ension of water is -3 N/m (D) 70 × 10 ⁻³ N/m				
Down	A 22.	A capillary tube of radi capillary tube is M. if th be	us R is immeresed in wa le radius of the tube is do	ater and water rises in it oubled, mass of water th	er and water rises in it to a height H. Mass of water in . Ibled, mass of water that will rise in capillary tube will _I				
Ш		(A) 2M	(B) M	(C) <u>M</u> 2	(D) 4M				
БR	A 23.	Water rises in a capilla (A) on the surface of su (C) at the poles	ary tube to a height h. it un	will rise to a height mor (B) in a lift moving dow (D) in a lift moving up v	re than h vn with an acceleration with an acceleration.				

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

A 24. A small hollow rectangular vessel having a small circular hole in its base of radius R mm immersed in a tank of water. Water will start coming into the vessel when it is immersed to a depth of (T is surface tension of water)

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

	GetS	Solution	of These Pa	ackages &	Learn by V	Video Tutoria	als on ww	w.MathsBy	/Suhag.com						
		water co	olumn remaini	ng in the tube	e will be :				T A						
moc		(A) 2h if (C) 4h if	$ \ge h$ and $ + h$ $ \ge h$ and $ - h$	n if l <u><</u> h n if l <u><</u> h		(B) h if $l \ge h$ and (D) h/2 if $l \ge h$ and	dl+hifl <u><</u> h ndl+hifl <u><</u> h	ו ו							
3ySuhag.	A 31.	A thin w placed h slowly. U the ring (A) 5.65	rire is bent in the provident of the pr	the form of a n the surface ecessary to b on is – (B) 4.652 ×	a ring of dia e of soap sc preak the ve 10 ⁻³ N.	meter 3.0 cm. olution and the rtical film form (C) 6.652 × 10	The ring is n raised up ed betweer 0 ⁻³ N. (D) §	9.652 × 10 ⁻³	ℓ.	age 18					
.MathsE	A 32.	Water ri same ca The ratio (A) 1.2 :	ses up in a gla pillary. Assum o of surface te 1	ass capillary le angles of c nsions of me (B) 7.2 : 1	upto a heigh contact for w ercury and w	nt of 9.0 cm, wh ater glass and rater (cos 135º (C) 6.2 : 1	nile mercur mercury gl = – 0.71) w (y falls down ass 0º and 13 vill be : D) 4.2 : 1	by 3.1 cm in th 35º respectivel	ы а. м. м. м. м. м. м. м. м. м. м. м. м. м.					
m & www	A 33.	The inte limb is r pump. T (The sur (A) 3.53	rnal radius of ₂ = 2 mm. The he difference face tension & mm of Hg	one limb of a tube is filled in air pressu density of n (B) 2.53 m	capillary U- with some m re when the nercury are o n of Hg	tube is r ₁ = 1 m nercury, and on mercury levels 480 dyn/cm & 1 (C) 4.53 mm o	nm and the le of the lim s in both lir 13.6 gm/cm of Hg (internal radio bs is connec nbs at the sa respectively D) 5.53 mm c	us of the secon ted to a vacuur me height are y) of Hg						
Classes.co	A 34.	A capilla water, of The leng (The pre (A) 540	ary tube sealed pen end first. gth of such a t essure of the a cm	d at the top h ube be for th ir is $P_0 = 1$ a (B) 440 cm	as an intern e water in it m. The surf	al radius of r = to rise in these ace tension of (C) 556 cm	0.05 cm. th e condition water is = (ne tube is pla s to a height 70 dyn/cm): D) 560 cm	ced vertically i h = 1 cm is -	in 103 903 777					
wv.Teko(A 35.	A glass it is helo tension (A) 97.4	plate of length I vertically wit of water is 72 × 10 ⁻³ N	n 0.1 m, brea h its longer s × 10 ⁻³ N/m, t (B) 36.1 × ⁻	dth 15 × 10⁻ ide horizont he apparent 10⁻³ N	³ m and thickness al and its lowe weight of the p (C) 72.2 \times 10 ⁻¹	ess 2 × 10 ⁻ r half imme olate will be ³ N (³ m weighs 8 ersed in wate e D) 79.4 × 10 ⁻	8 × 10 ⁻³ kg in ai er. If the surfac ³ N	al Phone :					
website: ww	A 36.	When tw drop of li force to (A) (B) (C) (D)	vo glass plates quid, say wate pull them apa the pressure in the thin layer of there is interna electrostatic c	s are placed r, is placed be rt. The reaso nside the film of water prod al frinction be harges of op	one over the etween them n for this is the is less than uces a large etween the m cosite nature	e other, there is and squeezed i that the outside at resistive force nicrolayers of th e are produced	s no difficul into a thin la tmospheric on accour ne film I between th	ty in separat ayer, it require pressure at of viscocity he plates.	ing them but if es a considerab	ав S. R. K. Sir), Bhopa					
ackage from	A 37.	A glass the surfation one limb : (Densitic contact (A) 6.1 > (C) 4.1 >	U-tube is inver- ace of water in to is level with t ty of water is 1 angle $\theta = 0^{\circ}$) $< 10^{-2}$ m $< 10^{-2}$ m	ted with ope a beaker. The water outs 0 ³ kg/m ³ and	n ends of the ne air pressi side. The he surface ten:	e straight limbs ure in the uppe ight of water in sion of water is (B) 3.1 × 10 ⁻² (D) 8.1 × 10 ⁻² r	n, of diamte r part is inc the other li s 7.5 × 10 ⁻² m m	rs 0.5 mm an reased until mb will be N/m. Take	ad 1.0 mm belo the meniscus i $Q\left(\begin{array}{c} \hline F \\ h \\ \hline H \\ \hline S \end{array} \right)$	≡i ≲ Suhag R. Kariya (\$					
ad Study P	A 38.	Two paravertical. angle of (A) $\frac{T co}{x c}$	allel glass plat If the distanc contact is θ the second	es are dipper e between th nen rise of lic (B) $\frac{2T\cos \theta}{x dg}$	d partly in the ne plates is f juid between)	e liquid of dens (x', Surface ter n the plates due (C) $\frac{2T}{x dg \cos \theta}$	sity 'd'. keep nsion for lic e to capilla (bing therm quid is T & ry will be : D) $\frac{T\cos\theta}{x dg}$		sses, Maths : {					
SEE Downloa	A 39*.	When a surface the tube (A) f(B) f(C) f(D) f(C) f(C) f(C) f(C) f(C) f(C) f(C) f(C	capillary tube inside the tube outside the li the liquid will the liquid will the free liquid the liquid will	e is dipped in e is hemisph quid is less t poze out of th come out of t surface insic ill the tube b	a liquid, the erical in sha han h : ne tube slow he tube like le the tube w ut not come	e liquid rises to pe. The tube is ly in a small four vill not be heims out of its uppe	o a height l s now pushe ntain spherical er end	n in the tube ed down so tl	. The free liqui hat the height o	Teko Cla					
Ц Ц	A 40*.	If for a li (A) the r	quid in a vess neniscus will k	el, force of a be convex up	cohesion is wards	twice of adhes (B) the angle of	sion : of contact v	will be obtuse	Э						

	Get S	Solution of These Packages & Learn by V	Video Tutorials on w	ww.MathsBySuhag.com					
	A 41*.	When a capillary tube is immersed into a liquid,	(D) the liquid will wet tr the liquid neither rises no	ne solid or falls in the capillary ?					
ww.MathsBySuhag.com		(A) The angle of contact must be 90°(C) The surface tension of liquid must be zero	(B) The angle of contact(D) The surface tension	ct may be 90 ⁰ n of liquid may be zero					
	A 42*.	Angle of contact between a liquid and a solid is (A) the material of liquid (C) the mass of the solid	s a property of : (B) the material of solic (D) the shape of the so	d lid	•				
	A 43*.	The rise of liquid in a capillary tube depends of (A) the material of tube and nature of liquid (C) the outer radius	n : (B) the length of tube (D) the inner radius of t	the tube	page 19				
	SECTI	ON (B) : EXCESS PRESSURE IN DROP	S AND BUBBLE						
	B 1.	A soap bubble of diameter 8 mm is formed in air. The surface tension of liquid is 30 dyne/cm. The							
		excess pressure inside the soap bubble is : (A) 150 dyne/cm ² (B) 300 dyne/cm ²	(C) $3 \times 10^{-3} \text{ dyne/cm}^2$	(D) 12 dyne/cm ²	30 58				
n & w	B 2.	Two spherical soap bubbles coalesce. If V is the S is the change in the total surface area and T i atmospheric pressure) :	e consequent change in v is the surface tension of	volume of the contained air and the soap solution, then (if P ₀ is	0 989				
Som		(A) $3P_0V + 4ST = 0$ (B) $4P_0V + 3ST = 0$	(C) $P_0V + 4TS = 0$	(D) $4P_0V + ST = 0$	779,				
Ses.0	В 3.	 When charge is given to a soap bubble, it shows : (A) a decrease in size (B) no change in size (C) an increase in size (D) sometimes an increase and sometimes a decreases in size 							
oClas	Β4.	 Two water droplets combine to form a large drop. In this process energy is : (A) liberated (B) absorbed (C) peither liberated nor absorbed (D) sometimes liberated and sometimes a 							
r.Teka	B 5.	A soap bubble of radius r_1 is placed on another soapy film separating the two bubbles is :	nother soap bubble of radius $r_2(r_1 < r_2)$ / The radius R o						
Š		(A) $r_1 + r_2$ (B) $\sqrt{r_1^2 + r_2^2}$	(C) $(r_1^3 + r_2^3)$	(D) $\frac{r_2r_1}{r_2 - r_4}$	pal				
\$ 	В6.	A spherical liquid drop of radius R is divided int done in the process will be :	o 8 equal droplets. If the	e surface tension is T, then work), Bhol				
site		(A) 2πR ² T (B) 3πR ² T	(C) 4πR ² T	(D) 2πRT ²	ŝ				
vebs	Β7.	A water drop is divided into 8 equal droplets. The of the big drop will be :	ne pressure difference be	etween the inner and outer side	Щ. К				
S E		(A) same as for smaller droplet(C) 1/4 of that for smaller droplet	(B) 1/2 of that for small (D) twice that for small	ler droplet er droplet	/a (S.				
ge frc	B 8. An air bubble of radius r in water is at a depth h below the water surface at some ir atmospheric pressure, d and T are density and surface tension of water respectively, inside the bubble will be :								
cka		(A) P + h dg - $\frac{4T}{r}$ (B) P + h dg + $\frac{2T}{r}$	(C) P + h dg - $\frac{2T}{r}$	(D) P + h dg + $\frac{4T}{r}$	hag				
y Pac	B 9.	The work done to get n smaller equal size sphe proportional to :	rical drops from a bigge	r size spherical drop of water is	ns : Su				
Study		(A) $\left(\frac{1}{n^{2/3}}\right) - 1$ (B) $\left(\frac{1}{n^{1/3}}\right) - 1$	(C) $n^{1/3} - 1$	(D) n ^{4/3} – 1	s, Math				
Download S	B 10.	Two unequal soap bubbles are formed one on a happens when the tap is opened to put the two (A) No air passes in any direction as the press (B) Larger bubble shrinks and smaller bubble i (C) Smaller bubble gradually collapses and the (D) None of the above	each side of a tube close bubbles in communicat sure are the same on two increases in size till they e bigger one increases in	ed in the middle by a tap. What tion ? o sides of the tap y become equal in size n size	Teko Classes				
REE	B 11.	A soap bubble in vacuum has a radius of 3 cm a If the two bubbles coalesce under isothermal of (A) 2.3 cm (B) 4.5 cm	nd another soap bubble i conditions then the radiu (C) 5 cm	in vacuum has a radius of 4 cm. Is of the new bubble is : (D) 7 cm					
Щ	B 12.	The shape of a liquid drop becomes spherical (A) surface tension (B) density	due to its : (C) viscosity	(D) temperature					

	Get S	Solution of These Pa	ckages & Learn by `	Video Tutorials on w	ww.MathsBySuhag.com					
	B 13.	The energy required to (A) 4 : 3	blow a bubble of radius 4 (B) 3:4	cm and 3 cm in the sam (C) 16 : 9	ne liquid is in the ratio of: (D) 64 : 27					
com	B 14.	A number of small drop the drop will	os of mercury adiabatica	ally coalesce to form a s	single drop. The temperature of					
<u>.</u>		(A) increase	(B) remain same	(C) decrease	(D) depend on size.					
sBySuha	B 15.	The high domes of and difference on the two fa uniform (but small) thick as hemispherical, the r (A) 1500 kg wt.	beauty). It arises from pressure ere is a dome of radius 5 m and cture is about 500 N/m. Treated t to (D) 12000 kg wt.	i and o and o ated ອ ຍິຍິດ						
laths	B 16.	A spherical soap bubb bubble is formed which	le of radius 1.0 cm is fo maintains the same pre	ormed inside another o essure difference as ins	f radius 2 cm. If a single soap ide the smaller and outside the	81.				
<u>∼</u>		larger bubble, the radiu (A) 0.005 m	us of this bubble is (B) 0.05 m	(C) 0.0067 m	(D) 0.067 m	588				
n & ww	B 17.	An oil bath (density of c of 0.2 m. If the surface t cm of mercury, the pre- (A) 1.03×105 N/m ²	bil = 0.85 × 10 ³ kg/m ³) has tension of oil is 26 × 10 ⁻³ ssure inside the cavity v (B) 1.07 × 10 ⁵ N/m ²	as a spherical cavity of ³ N/m and the pressure o will be (C) 1.17 × 10 ⁵ N/m ²	diameter 26 × 10 ⁻⁶ m at a depth of air over the surface of oil is 76 (D) $3.07 \times 10^5 \text{ N/m}^2$	0 98930				
ses.cor	B 18.	A drop of water is place water film is 0.01 cm th tension drawing the pla (A) 1.4 N	ed between two parallel ick. If the area in contac ates together is ($\sigma = 70$ s	glass plates which are at with either plate is 10 s $\times 10^{-3}$ N/m)	then pressed together until the sq. cm, the force due to surface	903 7779				
as	P 10	A ovlinder with a mova	blo niston contains air u	(0) 2.0 N	a soon bubble of radius 'r'. The	03				
w.TekoCl	D 13.	pressure p_2 to which the soap bubble to reduce maintained constant) (A) $\left[8p_1 + \frac{24\sigma}{r} \right]$	(B) $\left[4p_1 + \frac{24\sigma}{r} \right]$	e: (The surface tension (C) $\left[2p_1 + \frac{24\sigma}{r} \right]$	the piston into the cylinder for is σ , and the temperature T is (D) $\left[2p_1 + \frac{12\sigma}{r}\right]$	Phone : 0 9				
Ś	\ge B 20. A vessel whose bottom has round holes with a diameter of d = 0.1 mm is filled with water. The matrix									
site: w	В 20.	A vessel whose bottom height of the water level bottom of the vessel). $ $ (A) h = 24.0 cm	nas round noies with a d el h at which the water c [S.T of water = 70 dyn/c (B) h = 25.0 cm	lameter of d = 0.1 mm is does not flow out, will be m] (C) h = 26.0 cm	e : (The water does not wet the (D) h = 28.0 cm	Sir), Bho				
Q Q	B 21.	One end of a glass capillary tube with a radius $r = 0.05$ cm is immersed into water to a depth of $h = 2$ cm.								
Ň		Pressure required to blo	ow an air bubble out of th	he lower end of the tube	will be :	с. Ш				
ШO		(A) 2840 dyn/cm ²	(B) 5840 dyn/cm ²	(C) 7840 dyn/cm ²	(D) 4840 dyn/cm ²	iya (;				
efr	B 22.	A soap - bubble with a	radius 'r' is placed on a	another	A	Kar				
ag		films at the points of co	ontact will be -			с Б				
ack		(A) 120 ⁰ (C) 45 ⁰		(B) 30 ⁰ (D) 90 ⁰	В	uha				
Ц Ц	B 02	A large number of liquic	drana agab of radius a	(B) oo	a appariant dram of radius b. The	S				
Study	Б 23.	energy released in the p drop will be :	process is converted into	b kinetic energy of the big	g drop formed. The speed of big	s, Maths				
oad		(A) $\sqrt{\frac{6T}{\rho}} \left[\frac{1}{a} - \frac{1}{b} \right]$	(B) $\sqrt{\frac{4T}{\rho}} \left[\frac{1}{a} - \frac{1}{b} \right]$	(C) $\sqrt{\frac{8T}{\rho}} \left[\frac{1}{a} - \frac{1}{b} \right]$	(D) $\sqrt{\frac{5T}{\rho}} \left[\frac{1}{a} - \frac{1}{b} \right]$	Classe				
REE Downl	B 24.	The adjoining diagram fitted with stop cocks S (A) B will start collapsir (B) C will start collapsir (C) C and A will both sta (D) Volumes of A, B an	shows three soap bubb S, S_1 , S_2 and S_3 . With stong with volumes of A and any with volumes of A and art collapsing with the vo d C will become equal a	oles A, B and C prepare op cock S closed and st d C increasing d B increasing olume of B increasing t equilibrium	d by blowing the capillary tube op cocks S_1 , S_2 and S_3 opened: $S_1 + S_3 + S_2$ A B	Teko (
Ш.	B 25.	When a large bubble ri pressure is equal to the	ses from the bottom of a at of column of water he	a lake to the surface. Its eight H, then the depth c	radius doubles. If atmospheric of lake is :					

	Get	Solution of These Pa	ackages & Learn by	Video Tutorials on w	www.MathsBySuhag.com	
.com & www.MathsBySuhag.com	B 26*.	coalesce and make a bigger drop d surface areas of both the drop surface areas of both the drop	o: os os			
	B 27*.	When a drop splits up (A) area increases (C) energy is absorbed	into number of drops : I	(B) volume increases (D) energy is liberated	Ł	Je 21
			EXER	CISE-3		paç
	1.	The limbs of a manome out the correct pressure in the narrower tube sta	ter consists of uniform ca difference if the level of tl nds 0.2 m above that in t	apillary tubes of radii 1.4 ne liquid (density 10 ³ kg/r he broader tube.	4×10^{-3} m and 7.2 × 10 ⁻⁴ m. Fin n ³ , surface tension 72 × 10 ⁻³ N/m [REE - 85]	ני <u>ס</u> 58881.
	2.	A water film is made be from each other. If the (Surface tension of wate	tween two straight parall distance between the win er = 7.2 × 10 ⁻² N/m).	el wires of length 10 cm es is increased by 1 mr	each, and at a distance of 0.5 cr n, how much work will be done [REE - 86]	n ? 0 98930
	3. A soap bubble of radius a has been formed at normal temperature and pressure under isotherm. Compute the work one. The surface tension of soap solution is T. [F					
lasses	4. Two separate air bubbles (radii 0.002 m and 0.004 m) formed of the same liquid (surface tens come together to form a double bubble. Find the radius and the sense of curvature of two intern common to both the bubbles.					n) e 803 803
website: www.TekoCl	5.	A glass capillary sealed immersed vertically into immersed so that the liqu level inside the capillary A conical glass capillary	at the upper end is of lead a liquid of surface tension uid level inside and outside if the seal is now broken y tube A of length 0.1 m h	high 0.11 m and internal on 5.06 \times 10 ⁻² N/m. To v the capillary becomes th Atmospheric pressure 1 has diameters 10 ⁻³ m an	diameter 2×10^{-5} m. The tube i what length the capillary has to b be same. What will happen to liqui is 1.012×10^5 N/m ² . [REE - 93] d 5×10^{-4} m at the ends. When	nopal Phone: 0
		The state of the second s	and at 0°C with larger dial cal glass capillary tube B he rise of liquid is the tube tension changes with ter kg/m ³ and the angle of co (g = 9.8 N/kg.)	meter in contact with it, t , when immersed in the s e B is only 5.5×10^{-2} m w nperature, considering th ontact is zero. Effect of te	he liquid rises to 8 × 10 ⁻² m in th same liquid at 0°C, the liquid rise then the liquid is at 50°C. Find th the change to be linear. The densit emperature on the density of liqui [REE - 94]	S. R. K. Sir), Br
ge from	7.	There is a soap bubble or ² . The air in the cylinder now the pressure of air in	of radius 2.4×10^{-4} m in a is now compressed isoth in the cylinder. The surface	n air cylinder which is ori nermally until the radius ce tension of the soap fil	ginally at the pressure of 10 ⁵ Nm of the bubble is halved. Calculat m is 0.08N m ⁻¹ . [REE - 96]	a Rariya
Study Packag	8.	Bubbles are made by d formed on the ring. Assu after striking the surface The bubble grows spher perpendicularly. The sur the radius of the bubble parameters (neglect the	ipping a circular ring of raume that the blown air is in of the bubble being form ically. Let the radius R of face tension of the solution when it separates from mass of the bubble).[JEE	adius b in a soap solutio n the form of a cylinder of ed. the bubble (>> b), so tha n is T and air density is p. n the ring in terms of the 2003, 4/60]	n and then blowing air on the filr radius b. It has speed v and stop tt the air strikes the bubble surfac Obtain Ring of e given v	s, Maths : Suhag F
REE Download	9.	A long thin straight unif surface of a liquid. The its centre, parallel to its liquid is depressed by a in figure. If the wire has of the liquid? Ignore end	orm wire of negligible ra width of the container is 2 s length (as shown i n fig vertical distance $y(y << c$ mass λ per unit length, wh l effects.	dius is supported on the 2α and the wire is kept at ure). The surface of the α at the centre as shown nat is the surface tension [JEE 2004, 2/60]	Blown Air Bubble	Teko Classes
ш					∟ 2a —	→

ANSWER

g.com	EXER Secti	RCISE - 1 ON (A) :	B 5.	Due t small will be	o surf est su	ace te rface a	nsion, irea. Te	liquid: emper	s tends ature c	s to have of big drip	
uhaç	A 1. A 2.	Due to lesser surface area. At high temp. surface tension gets reduced and	B 6.	36. Due to surface tension of oil is surface tension of water.						than the	
Ñ	it spreads over larger area of tongue.			8S/D			B 8.	24π F	² S		
ഫ	A 3.	lo spread over larger area.	В9.	$8 \pi r^2 T$	-		B 10.	2 ^{2/3} W	1		
hs	A 4.	It will rise to total length of tube.	B 11	B 11 Ealeo			B 12	False			
ww.Mat	A 5.	Yes, pouring of oil reduced surface tension of water. Wind carries the surface film of oil in the forward direction and leaves behind a cleaner water of higher surface tension. Greater backward pull is exerted by clener water.	B 13.	$p_{2=}8p_{1} + \frac{24\sigma}{r}$							
<pre></pre>	A 6.	Because of large force of cohension.	B 14.	1.44 >	< 10⁴ d	yn/cm²	and 1	.44 × 1	0 ⁷ dyn	/cm²	
ŝ	Α7.	Water, due to lesser surface tension.	EXEF	RCISE	- 2						
com	A 8.	To preserve the moisture in soil, capillaries must be broken.	SECTI A 1.	ON (A A): A2.	D	A 3.	В	A 4.	D	
ŝ	A 9.	Due to more capillaries.	A 5.	А	A 6.	D	A 7.	А	A 8.	D	
ŝŝ	A 10.	Surface tension gets reduced.	A 9.	D	A 10.	С	A 11.	А	A 12.	С	
<u> </u>	A 11.	Water level will be at top of the broken tube.	A 13.	С	A 14.	D	A 15.	В	A 16.	В	
Š	A 12.	No, miniscus gets adjusted.	A 17.	в	A 18.	А	A 19.	D	A 20.	В	
ž	A 13.	Surface tension of water surface in between tooth	A 21.	D	A 22.	А	A 23.	в	A 24.	A	
Ĕ.		net force outward on toothpick by outer layer.	A 25.	D	A 26.	D	A 27.	С			
≷	A 14.	6.0 cm, 4.0 cm A 15. 3.98 × 10 ⁻² J	A 28.	(i)	S	(ii)	В	(iii)	С		
≶	A 16.	7.2 : 1 A 17. 8 TL	A 29.	В	A 30.	А	A 31.	А	A 32.	в	
	A 18.	increases A 19. Obtuse	A 33.	А	A 34.	С	A 35.	D	A 36.	А	
ite	A 20.	False A 21. 2.8cm	A 37.	в	A 38.	В	A 39*	.CD	A 40*	.ABC	
bs bs	A 22.	– r g h A 23. 70 dyn/cm	A 41*	.BD	A 42*	.AB	A 43*	.ABD			
Š	A 24.	F = 480 dyn, w = 960 erg	SECTION (B) :								
ĥ			B 1.	В	B 2.	А	В3.	С	В4.	А	
ē	A 25.	$\frac{2\alpha}{1}, \frac{4\pi\alpha^2}{1}, \frac{2\pi\alpha^2}{1}$	B 5.	D	B 6.	С	B 7.	В	B 8.	В	
еf		[agr ag ag] ↑ ^F	В9.	С	B 10.	С	B 11.	С	B 12.	А	
ag	A 26.	The frame will be acted upon by a force $F = (\alpha - \alpha)^{1/2}$ and it will more in the	B 13.	С	B 14.	А	B 15.	В	B 16.	С	
Š		direction of force. α_1 and α_2 are	B 17.	В	B 18.	А	B 19.	А	B 20.	D	
ğ		surface tensions of water and soap	B 21.	D	B 22.	А	B 23.	А	B 24.	С	
Š			B 25.	C	B 26*		B 27*	AC		-	
Stud	A 27.	Surface tension forces F_{ab} , F_{cd} and weight. Equi- librium only when $F_{ab} > F_{cd}$ and this is due to dif- ference in concentration of soap solution in film.	EXEF	RCISE	: - 3	1710	2 21				
ad	A 28.	0.7991 g/cm ³ A 29. (a) 1.51 cm, (b) 1.75 cm	1.	1860 l	N/m²		2. 1.4	4 × 10	^{⊢5} J.		
Ö	SECTI	ON (B) :	3.	8πa ² T 4. 0.004 meter.				ter.			
M	B 1.	When pressure inside becomes larger.	5.	1 cm.			6. – 1	.4 × 10	^{⊸₄} N/(m	ı – ºC)	
Ô O	B 2.	Dissolving soap reducing surface tension and less work is required.	7.	8.08 >	< 10 ⁵ N	lm					
ШШ	В3.	Due to decrease in pressure on the inner-side of liquid film.	8.	$\frac{4T}{ov^2}$			9.	$y\sqrt{a^2} + 2y$	y ² ≈	<u>λga</u> 2y ·	
Ë	B 4.	Due to air brown, size i.e. radius of bubble increases, pressure decreases.		r ·				-,		-	