
 jfforoleno/leZ tak I nuef J hi.NNenthegkt

Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal 유‥: 0903903 7779, 98930 58881, WhatsApp 9009260559 www.TekoClasses.com www.MathsBySuhag.com
Q. 1 If force, acceleration and time are taken as fundamental quantities, then the dimensions of length will be:
(A) FT^{2}
(B) $\mathrm{F}^{-1} \mathrm{~A}^{2} \mathrm{~T}^{-1}$
(C) $\mathrm{FA}^{2} \mathrm{~T}$
(D) AT^{2}
Q. 2 In a certain system of units, 1 unit of time is $5 \mathrm{sec}, 1$ unit of mass is 20 kg and unit of length is 10 m . In this system, one unit of power will correspond to
(A) 16 watts
(B) $\frac{1}{16}$ watts
(C) 25 watts
(D) none of these \& 120° respectively, then for equilibrium, forces $\mathrm{P}, \mathrm{Q} \& \mathrm{R}$ are in the ratio
(A) $1: 2: 3$
(B) $1: 2: \sqrt{3}$
(C) $3: 2: 1$
(D) $\sqrt{3}: 2: 1$
Q. $4 \quad \begin{aligned} & \text { The resultant of two forces } F_{1} \text { and } \\ & \left(P^{2}+Q^{2}\right) \text { in terms of } F_{1} \text { and } F_{2} \text { is }\end{aligned}$
(A) $2\left(\mathrm{~F}_{1}{ }^{2}+\mathrm{F}_{2}{ }^{2}\right)$
(B) $\mathrm{F}_{1}{ }^{2}+\mathrm{F}_{2}{ }^{2}$
(C) $\left(\mathrm{F}_{1}+\mathrm{F}_{2}\right)^{2}$
(D) none of these
Q. 5 A man rows a boat with a speed of $18 \mathrm{~km} / \mathrm{hr}$ in northwest direction. The shoreline makes an angle of 15° south of west. Obtain the component of the velocity of the boat along the shoreline.
(A) $9 \mathrm{~km} / \mathrm{hr}$
(B) $18 \frac{\sqrt{3}}{2} \mathrm{~km} / \mathrm{hr}$
(C) $18 \cos 15^{\circ} \mathrm{km} / \mathrm{hr}$
(D) $18 \cos 75^{\circ} \mathrm{km} / \mathrm{hr}$
(A) $5(\hat{i}-2 \hat{j}+3 \hat{k})$
(B) $5(4 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$
(C) $0.6 \hat{\mathrm{i}}+0.8 \hat{\mathrm{j}}$
Q. 7 The dimensions $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ can correspond to
(A) moment of a force or torque
(B) surface tension
(C) pressure
(D) co-efficient of viscosity.
(D) $6 \hat{i}+8 \hat{j}$
(useful relation are $\vec{\tau}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{F}}, \mathrm{S}=\mathrm{F} / l, \mathrm{~F}=6 \pi \eta \mathrm{r} v$, where symbols have usual meaning)
Q. 8 The pressure of 10^{6} dyne $/ \mathrm{cm}^{2}$ is equivalent to
(A) $10^{5} \mathrm{~N} / \mathrm{m}^{2}$
(B) $10^{6} \mathrm{~N} / \mathrm{m}^{2}$
(C) $10^{7} \mathrm{~N} / \mathrm{m}^{2}$
(D) $10^{8} \mathrm{~N} / \mathrm{m}^{2}$
Q. 9 If area (A) velocity (v) and density (ρ) are base units, then the dimensional formula of force can be represented as.
(A) $A v \rho$
(B) $A v^{2} \rho$
(C) $A v \rho^{2}$
(D) $\mathrm{A}^{2} \mathrm{v} \rho$
Q. 10 If the resultant of two forces of magnitudes P and Q acting at a point at an angle of 60° is $\sqrt{7} \mathrm{Q}$, then P / Q is
(A) 1
(B) $3 / 2$
(C) 2
(D) 4

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

Q. 11 For a particle moving in a straight line, the position of the particle at time (t) is given by

$$
x=t^{3}-6 t^{2}+3 t+7
$$

what is the velocity of the particle when it's acceleration is zero ?
(A) $-9 \mathrm{~ms}^{-1}$
(B) $-12 \mathrm{~ms}^{-1}$
(C) $3 \mathrm{~ms}^{-1}$
(D) $42 \mathrm{~ms}^{-1}$
Q. 12 If the angle between the unit vectors \hat{a} and \hat{b} is 60°, then $|\hat{a}-\hat{b}|$ is
(A) 0
(B) 1
(C) 2
(D) 4
Q. 13 In a book, the answer for a particular question is expressed as

$$
\mathrm{b}=\frac{\mathrm{ma}}{\mathrm{k}}\left[\sqrt{1+\frac{2 \mathrm{k} l}{\mathrm{ma}}}\right]
$$

here m represents mass, a represents accelerations, l represents length. The unit of b should be
(A) m / s
(B) $\mathrm{m} / \mathrm{s}^{2}$
(C) meter
(D) $/ \mathrm{sec}$.
Q. 14 The resultant of two forces, one double the other in magnitude is perpendicular to the smaller of the two forces. The angle between the two forces is
(A) 150°
(B) 90°
(C) 60°
(D) 120°
Q. 15 Which of the following can be a set of fundamental quantities
(A) length, velocity, time
(B) momentum, mass, velocity
(C) force, mass, velocity
(D) momentum, time, frequency
Q. 16 If 1 unit of mass $=4 \mathrm{~kg} ; 1$ unit of length $=\frac{1}{4}$ mand 1 unit of time $=5 \mathrm{sec}$, then 1 Joule $=x$ units of energy in this system where $x=$
(A) 100 units
(B) 0.01 units
(C) 200 units
(D) 0.02 units
Q. 17 A man moves towards 3 mnorth then 4 mtowards east and finally 5 m towards south west. His approximate displacement from origin is
(A) $5 \sqrt{2} \mathrm{~m}$
(B) 0 m
(C) 12 m
(D) 5 m
(E) 1 m
Q. 18 Kinetic energy (K) depends upon momentum (p) and mass (m) of a body as $K \alpha p^{\mathrm{a}} \mathrm{m}^{\mathrm{b}}$
(A) $a=1 ; b=1$
(B) $a=2 ; b=-1$
(C) $a=2 ; b=1$
(D) $a=1 ; b=2$
Q. 19 Use the approximation $(1+\mathrm{x})^{\mathrm{n}} \approx 1+\mathrm{nx},|\mathrm{x}| \ll 1$, to find approximate value for
(a) $\sqrt{99}$
(b) $\frac{1}{1.01}$
(c) $124^{1 / 3}$
Q. 20 A particle is in a uni-directional potential field where the potential energy (U) of a particle depends on the x -cordinate given by $\mathrm{U}_{\mathrm{x}}=\mathrm{k}(1-\cos \mathrm{ax}) \& \mathrm{k}$ and 'a' are constants. Find the physical dimensions of 'a' \& k.
Q. 21 An enclosed ideal gas A has its pressure P as a function of its volume V as $P=P_{0}-\alpha V^{2}$, where P_{0} \& α are constants. Find the physical dimensions of α.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Q. 22 Use the small angle approximations to find approximate values for (a) $\sin 8^{\circ}$ and (b) $\tan 5^{\circ}$
Q. 23 When two forces of magnitude P and Q are perpendicular to each other, their resultant is of magnitude R. When they are at an angle of 180° to each other their resultant is of magnitude $\frac{\mathrm{R}}{\sqrt{2}}$. Find the ratio of P and Q .
Q. 24 A particle moves along the space curve $\vec{r}=\left(t^{2}+t\right) \hat{i}+(3 t-2) \hat{j}+\left(2 t^{3}-4 t^{2}\right) \hat{k} .(t$ in sec, r in $m)$ Find at $\widetilde{O}_{\Omega}^{\mathscr{Q}}$ time $t=2$ the (a) velocity, (b) acceleration, (c) speed or magnitude of velocity and (d) magnitude of acceleration .
Q. 25 The time period (T) of a spring mass system depends upon mass (m) \& spring constant (k) \& length of the spring $(l)\left[\mathrm{k}=\frac{\text { Force }}{\text { length }}\right]$. Find the relation among, $(\mathrm{T}),(\mathrm{m}),(l) \&(\mathrm{k})$ using dimensional method.
Q. 26 A body acted upon by 3 given forces is under equilibrium.
(a) If $\left|\overrightarrow{\mathrm{F}}_{1}\right|=10 \mathrm{Nt}$., $\left|\overrightarrow{\mathrm{F}}_{2}\right|=6 \mathrm{Nt}$.

Find the values of $\left|\overrightarrow{\mathrm{F}}_{3}\right| \&$ angle (θ).
(b) Express $\overrightarrow{\mathrm{F}}_{2}$ in unit vector form.
Q. 27 A particle is acted upon by the forces $\vec{F}_{1}=2 \hat{i}+a \hat{j}-3 \hat{k}, \vec{F}_{2}=5 \hat{i}+c \hat{j}-b \hat{k}, \vec{F}_{3}=b \hat{i}+5 \hat{j}-7 \hat{k}$, $\frac{\text { 음 }}{\square}$ $\overrightarrow{\mathrm{F}}_{4}=\mathrm{c} \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-\mathrm{a} \hat{\mathrm{k}}$, Find the values of the constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in order that the particle will be in equilibrium.
Q. 28 A satellite is orbiting around a planet. Its orbital velocity $\left(\mathrm{v}_{0}\right)$ is found to depend upon
(a) \quad Radius of orbit (R)
(b) Mass of planet (M)

(c) Universal gravitation constant (G)

Using dimensional analysis find an expression relating orbital velocity $\left(\mathrm{v}_{0}\right)$ to the above physical quantities.
Q. 29 If the four forces as shown are in equilibrium

Express $\overrightarrow{\mathrm{F}}_{1} \& \overrightarrow{\mathrm{~F}}_{2}$ in unit vector form.

Q. 30 The equation of state for a real gas at high temperature is given by $P=\frac{n R T}{V-b}-\frac{a}{T^{1 / 2} V(V+b)}$ where $\mathrm{n}, \mathrm{P}, \mathrm{V} \& \mathrm{~T}$ are number of moles, pressure, volume \& temperature respectively \& R is the universal gas constant. Find the dimensions of constant 'a' in the above equation.
Q. 31 The distance moved by a particle in time t from centre of a ring under the influence of its gravity is given $\stackrel{\circ}{\circ}$ by $x=$ a sin ωt where a \& ω are constants. If ω is found to depend on the radius of the ring (r), its mass (m) and universal gravitational constant (G), find using dimensional analysis an expression for ω in terms of r, m and G.
Q. 32 If the velocity of light c , Gravitational constant G \& Plank's constant h be chosen as fundamental units, find the dimension of mass, length \& time in the new system.
Q. 33 A plane body has perpendicular axes OX and OY marked on it and is acted on by following forces 5P in the direction OY 4 P in the direction OX
10 P in the direction OA where A is the point ($3 \mathrm{a}, 4 \mathrm{a}$)
15 P in the direction AB where B is the point $(-\mathrm{a}, \mathrm{a})$
Express each force in the unit vector form \& calculate the magnitude \& direction of sum of the vector of these forces.
Q. 34 Two vectors have magnitudes 3 unit and 4 unit respectively. What should be the angle between them if the magnitude of the resultant is (a) 1 unit, (b) 5 unit and (c) 7 unit.
Q. 35 A vector \vec{A} of length 10 units makes an angle of 60° with a vector \vec{B} of length 6 units. Find the magnitude of the vector difference $\vec{A}-\vec{B}$ \& the angle it makes with vector \vec{A}.
Q. 36 At time t the position vector of a particle of mass $m=3 \mathrm{~kg}$ is given by $\vec{r}=6 t \hat{i}-t^{3} \hat{j}+\cos t \hat{k}$. Find the resultant force $\overrightarrow{\mathrm{F}}(\mathrm{t})$, magnitude of its acceleration when $\mathrm{t}=\frac{\pi}{2}$ \& speed when $\mathrm{t}=\pi$.
Q. 37 Given that the position yector of a particle moving in x-y plane is given by $\vec{r}=\left(t^{2}-4\right) \hat{i}+(t-4) \hat{j}$. Find
(a) Equation of trajectory of the particle
(b) Time when it crosses x-axis and y-axis
Q. 38 The velocity time graph of a body moving in a straight line is shown. Find its
(a) instantaneous velocity at $\mathrm{t}=1.5 \mathrm{sec}$.
(b) average acceleration from $\mathrm{t}=1.5 \mathrm{sec}$. to $\mathrm{t}=2.5 \mathrm{sec}$.
(c) draw its acceleration time graph from $t=0$ to $t=2.5 \mathrm{sec}$

Q. 39 The curvilinear motion of a particle is defined by $v_{x}=50-16 t$ and $y=100-4 t^{2}$, where v_{x} is in metres per second, y is in metres and t is in seconds. It is also known that $\mathrm{x}=0$ when $\mathrm{t}=0$. Determine the velocity (\mathbf{v}) and acceleration(a) when the position $\mathrm{y}=0$ is reached.
(a) displacement between time $\mathrm{t}=0$ and $\mathrm{t}=2 \mathrm{sec}$.
(b) distance travelled between time $\mathrm{t}=0$ and $\mathrm{t}=2 \mathrm{sec}$.
Q. 41 The circular divisions of shown screw gauge are 50 . It moves 0.5 mm on main scale in one rotation. The diameter of the ball is

(A) 2.25 mm
(B) 2.20 mm
(C) 1.20 mm
(D) 1.25 mm
[JEE 2006]

