THIS FILE CONTAINS

TRIGONOMETRY

(COLLECTION # 2)

Very Important Guessing Questions For IIT JEE 2011 With Detail Solution

Junior Students Can Keep It Safe For Future IIT-JEEs

- → Compound Angle
- → Trigonometric Equation & Inequations
- → Solution of Triangle

Index

For Collection # 1 Question (Next File)

- → Single Correct Answer Type Question
- → Comprehension Type Questions
- → Assertion Reason Type Question
- → More Correct Answers Type Questions
- → Subjective (Up to 4 Digits)
- → Detiail Solution By Genuine Method (But In) Classroom I Will Give <u>Short Tricks</u>)

For Collection # 2

→ Same As Above

(codeV3T1PAQ4)

(codeV3T2PAQ2)

(codeV3T2PAQ7)

TOPIC = TRIGONOMETRY

(B) 2

(B) 0.03

Q. 3 General values of x satisfying $2 \sin x + 1 > 0$ is

(A) $2n\pi - \frac{\pi}{6} < x < 2n\pi + \frac{7\pi}{6}$

(C) 3

The value of $x \in (0, 1)$ satisfying the equation $tan(sin^{-1}x) = 3$, is

(A) 1

(A) 0.3

Q. 2

SINGLE	CORRECT	TYPE
---------------	----------------	-------------

(D) 0.9

Number of solution to the equation $\cos^3 x - 3\cos x \sin^2 x = \cos 3x$ which is in the interval (0, 1), is

(D) more than

Q. 4	triangle ABC is isosceles with $AB = AC$ and $\angle CAB = 106^\circ$. Point M is the interior of the triangle so that $\angle MBA = 7^\circ$ and $\angle MAB = 23^\circ$. The number of degrees in $\angle AMC$ is equal to			
	(A) 87° (B) 67°		(codeV3T3PAQ6)	
Q. 5	The equation $\sin x + x \cos x$	x = 0 s has at least one root in	(codeV3T4PAQ1)	
	$(A)\left(-\frac{\pi}{2},0\right)(B)\left(0,\pi\right)$	(C) $\left(\pi, \frac{3\pi}{2}\right)$ (D) $\left(0, \frac{\pi}{2}\right)$		
Q. 6	Let $S = \sin \sqrt{2} - \sin \sqrt{3}$ and $C = \cos \sqrt{2} - \cos \sqrt{3}$ then which one of the following is correct?			
	(A) $S > 0$ and $C > 0$	(B) $2^{f(4)+g(4)} = 4 = 2^2$	(codeV3T9PAQ5)	
	(C) $S < 0$ and $C > 0$			
Q. 7	Let X be the set of all solution to the equation $\cos x \cdot \sin \left(x + \frac{1}{x}\right) = 0$. Number of real numbers			
	contained by X in the inte	erval $(0 < x < \pi)$, is	(codeV3T10PAQ1)	
	(A) 0 (B)		(D) more than 2	
Q. 8	_		e curve $y = f(x)$ from $x = 0$ to $x = a$	
	has the value $\frac{a^2}{2} + \frac{a}{2} \sin a +$	$+\frac{\pi}{2}\cos a$ then $f\left(\frac{\pi}{2}\right)$ has the value $\pi + \frac{1}{2}$ (C) $\pi - \frac{1}{2}$	e equal to (codeV3T10PAQ6)	
	(A) $\frac{1}{2}$ (B)) $\pi + \frac{1}{2}$ (C) $\pi - \frac{1}{2}$	(D) $\frac{\pi}{2} + 1$	
ASSERTION REASON TYPE				
Q. 1		a circle of radius R. The length	n of the sides of the triangle are 7, 8	
	and 9 units.			
	Statement-1: The radius R has an irrational value. (codeV3T6PAQ6)			
	because			
		he triangle has an irrational valu		
Q. 2		1	ABC and a point P on the minor arc C. (z is larger than both x and y.)	
	Statement-1: Each of the	he possibilities $(x+y)$ greater	than z, equal to z or less than z is	
	possible for some P.		(codeV3T9PAQ15)	
	because Statement 2 In a trian	ala ARC sum of the two sides	of a triangle is greater than the third	
	•	er than the difference of the two	of a triangle is greater than the third.	
THE "BOND" Phy. by Chitranjan Chem. by Pavan Gubrele Maths by Suhaag Kariya				

MORE THAN ONE MAY CORRECT TYPE

Q. 1 The sum $\sum_{n=0}^{\infty} \cos ec^{-1} \sqrt{4n^4 + 1}$ is

(codeV3T1PAQ20)

- (A) $\pi + \tan^{-1}(-1)$ (B) $2\cos^{-1}(0)$
- (C) $4 \tan^{-1} (1)$ (D) $\cot^{-1} \left(\frac{1}{2}\right) + \cot^{-1} \left(\frac{1}{3}\right)$
- If $\tan \alpha$ satisfies the relation $\tan^2 \alpha a \tan \alpha + 1 = 0$ where a > 0 and $0 < \alpha < \frac{\pi}{4}$, then identify (codeV3T6PAQ10) the correct statements

- (A) $\sin 2\alpha = \frac{2}{a}$ (B) $\sin \alpha + \cos \alpha = \sqrt{\frac{a+2}{a}}$ (C) $a \ge 2$ (D) $\sin \alpha \cos \alpha = \sqrt{\frac{a-2}{a}}$
- In a $\triangle ABC$ let **O.** 3

(codeV3T7PAQ20)

A, s, a, b, c denote the area of triangle ABC, semi perimeter, length of BC, AC and AB respectively. h_a , h_b , h_c - length of the heights of the triangle from the vertex A, B and C respectively. r_a , r_b , r_c – lengths of radius of inscribed circles that are tangent to BC, AC and AB respectively, and r – radius of an inscribed circle, then which of the following relations holds good?

- (A) $r = \frac{3}{\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c}}$ (B) $A^2 = r.r_a.r_b.r_c$ (C) $r = \frac{1}{\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c}}$
- (D) $A = \frac{c.r_a.r_b}{r_a + r_b}$
- Q. 4 Let x_1, x_2, x_3, x_4 be four non zero numbers satisfying the equation (codeV3T7PAQ23)

 $\tan^{-1}\frac{a}{x} + \tan^{-1}\frac{b}{x} + \tan^{-1}\frac{c}{x} + \tan^{-1}\frac{d}{x} = \frac{\pi}{2} \text{ Then which of the following relation(s) hold good?}$ $(A) \sum_{i=1}^{4} x_i = a + b + c + d \qquad (B) \sum_{i=1}^{4} \frac{1}{x_i} = 0 \qquad (C) \prod_{i=1}^{4} x_i = abcd$ $(D) (x_1 + x_2 + x_3)(x_2 + x_3 + x_4)(x_3 + x_4 + x_1)(x_4 + x_1 + x_2) = abcd$

]

SOLUTION

SINGLE CORRECT TYPE

 $\cos^3 - 3\cos x \sin^2 x = 4\cos^3 x - 3\cos x$ Sol $\cos^3 = 4\cos^3 x - 3\cos x \left(1 - \sin^2 x\right) \qquad \Rightarrow 4\cos^3 - 3\cos^3 x$

infinite solution Hence it is an identity (D)]

- $\tan\left(\sin^{-1}x\right) = 3$ **Q. 2** (C) Sol $\sin^{-1} x = \theta$ Let $\sin \theta = x \implies \tan \theta = 3$ Ans.]
- **Q. 3** (A) Sol Plot the graph of
- $y = \sin x; y = -1/2$ Q. 4 (D) Sol sin 150° $x = 2a \sin 7^{\circ}$... (1)

Using cosine rule in $\triangle AMC$, $\Rightarrow y^2 = x^2 + a^2 - 2ax \cos 83^\circ = 4a^2 \sin^2 7^\circ + a^2 - 4a^2 \sin 7^\circ$ $y = a \implies Hence \angle AMC = 83^{\circ}$ Ans.]

Q. 5 (B) Sol Let $f(x) = \sin x + x \cos x$ consider $g(x) = \int (\sin t + t \cos t) dt = t \sin t]_0^x = x \sin x$

 $g(x) = x \sin x$ which is differentiable now g(0) = 0 and $g(\pi) = 0$, using Rolles Theorem

hence \exists at least one $x \in (0, \pi)$ where g'(x) = 0

 $x \cos x + \sin x = 0$ for at least one $x \in (0, \pi)$ Ans. $\Rightarrow (B)$ i.e.

 $\sqrt{2} + \sqrt{3} > \pi$ (1.414+1.732 = 3.146 > π) **Q.** 6 (A)

(D) **Q.** 7 $\cos x = 0$ \Rightarrow $x + \frac{1}{y} = n\pi, n \in I$ $\sin\left(x + \frac{1}{x}\right) = 0$

If $x \in (0, 1)$ then $x + \frac{1}{x} \in (2, \infty)$ for x > 0

Differentiating with respect to 'a'

$$f(a) = a + \frac{a}{2}\cos a = \frac{\sin a}{2} - \frac{\pi}{2}\sin a$$
 \Rightarrow $f(\frac{\pi}{2}) = \frac{\pi}{2} + 0 + \frac{1}{2} - \frac{\pi}{2} = \frac{1}{2}$ **Ans.**]

ASSERTION REASON TYPE

- **Q. 1** (A) Sol $\Delta = 12\sqrt{5}$ using Heroes formula $R = \frac{21\sqrt{5}}{10}$
- Sol Using Tolemy's theorem for a cyclic quadrilateral **Q. 2** (D)

$$(z).(AB) = ax + by$$
 $\Rightarrow z.c = ax + by$

a = b = c \Rightarrow hence x + y = z is true always

S-1 is false and S-2 is true]

MORE THAN ONE MAY CORRECT TYPE

Q. 1 A, D Sol.
$$S = \frac{\pi}{2} + \sum_{n=1}^{\infty} \cos e^{-1} \sqrt{4n^4 + 1};$$
 $S_1 = \sum_{n=1}^{\infty} \tan^{-1} \frac{1}{2n^2} = \frac{\pi}{4}$ (verify Hence $S = \frac{3\pi}{4}$ \Rightarrow A,D]

Q. 2 A, B Sol.
$$\frac{1}{a} = \frac{\tan \alpha}{1 + \tan^2 \alpha}$$

$$\Rightarrow \sin 2\alpha = \frac{2}{\alpha}, (\sin \alpha + \cos \alpha)^2 = 1 + \sin 2\alpha = 1 + \frac{1}{a}$$

$$\Rightarrow \sin \alpha + \cos \alpha = \sqrt{\frac{a+2}{a}} \Rightarrow D = a^2 - 4 \ge 0 \Rightarrow a \ge 2$$

$$(\sin \alpha - \cos \alpha)^2 = 1 - \frac{2}{a} = \frac{a-2}{a} \Rightarrow \sin \alpha < \cos \alpha \Rightarrow \sin \alpha - \cos \alpha = -\sqrt{\frac{a-2}{a}}$$

- **Q. 3** [B, C, D] Verify each alternative.
- Q. 4 [B, C, D] [Sol. Let $\tan^{-1}\frac{a}{x} = \alpha$ \Rightarrow $\tan \alpha = \frac{a}{x}$ etc. $\alpha + \beta + \gamma + \delta = \frac{\pi}{2} \qquad \Rightarrow \qquad \tan(\alpha + \beta + \gamma + \delta) = \tan\frac{\pi}{2}$ $\frac{S_1 S_3}{1 S_2 + S_4} = \infty \qquad \Rightarrow \qquad 1 S_2 + S_4 = 0 \Rightarrow \qquad S_4 S_2 + 1 = 0$ How, $S_4 = \tan \alpha . \tan \beta . \tan \gamma . \tan \delta = \frac{abcd}{x^4} \Rightarrow \qquad S_2 = \sum \tan \alpha . \tan \beta = \frac{\sum ab}{x^2}$

$$\alpha + \beta + \gamma + \delta = \frac{\pi}{2}$$
 \Rightarrow $\tan(\alpha + \beta + \gamma + \delta) = \tan\frac{\pi}{2}$

$$\frac{S_1 - S_3}{1 - S_2 + S_4} = \infty \qquad \Rightarrow \qquad 1 - S_2 + S_4 = 0 \Rightarrow \qquad S_4 - S_2 + 1 = 0$$

How,
$$S_4 = \tan \alpha . \tan \beta . \tan \gamma . \tan \delta = \frac{\text{abcd}}{x^4}$$
 \Rightarrow $S_2 = \sum \tan \alpha . \tan \beta = \frac{\sum \text{abcd}}{x^2}$

$$\therefore \frac{abcd}{x^4} - \frac{\sum ab}{x^2} + 1 = 0 \implies x^4 - \sum abx^2 + abcd = 0 \underbrace{\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}}_{X_4}$$

$$\therefore x_1 + x_2 + x_3 + x_4 = 0 \qquad \dots (1)$$

$$\sum \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \qquad \dots (2)$$

$$\underbrace{x_{1}x_{2}x_{3}}_{\text{non zero}} \left[\frac{1}{x_{1}} + \frac{1}{x_{2}} + \frac{1}{x_{3}} + \frac{1}{x_{4}} \right] = 0$$

$$x_{1}x_{2}x_{3}x_{4} = \text{abcd} \qquad \Rightarrow \qquad (C)$$