विध्न विचारत भीरु जन, नहीं आरम्भे काम, विपति देख छोड़े तुरंत मध्यम मन कर श्याम। पुरुष सिंह संकल्प कर, सहते विपति अनेक, 'बना' न छोड़े थ्येय को, रुुबर राखे टेक।।

रच्चितः मानव धर्ग पणेता सद्वुणुए ड्री हणछोड़दाटEजी महाटाज

SOLUTION OF IIT JEE-09

\section*{BY SUH AAG sir} 8. HIS STUDENTS OF CLASS MOVING $11^{\text {th }}$ TO $12^{\text {th }}$ | Abhishek Bhardwaj | School MVM |
| :--- | :--- |
| Abhishek Singh | School MVM |
| Avantika Garde | School KV-1 |
| Sangya Thakur | School KV-1 |
| Rahul Mishra | School Model T. T. Nagar |

Solution also Available of IIT JEE 2009 Paper-1 \& 2 on website: www.iitjeeiitjee.com, www.tekoclasses.com or come at our institute

ENJOY MATHEMATICS

Single Correct Choice Type

Question sequence as per

Paper CODE-7

This section contains 4 multiple choice questions. Each question has 4 choices $(A),(B),(C)$ and (D) for its answer, out of which ONLY ONE is correct.
20. If the sum of first n terms of an A. P. is cn^{2}, then the sum of squares of these \boldsymbol{n} terms is
(A) $\frac{n\left(4 n^{2}-1\right) c^{2}}{6}$
(B) $\frac{n\left(4 n^{2}+1\right) c^{2}}{3}$
(C) $\frac{n\left(4 n^{2}-1\right) c^{2}}{3}$
(D) $\frac{n\left(4 n^{2}+1\right) c^{2}}{6}$
21. The locus of the orthocentre of the triangle formed by the lines $(1+p) x-p y+p(1+p)=0,(1+q) x-q y+q(1+$ $\mathrm{q})=0$, and $\mathrm{y}=0$, where $p \neq q$, is
(A) a hyperbola
(B) a parabola
(C) an ellipse
(D) a straight line
22. The normal at a point P on the ellipse $\mathrm{x}^{2}+4 \mathrm{y}^{2}=16$ meets the x -axis at Q . If M is the mid point of the line segment PQ , then the locus of M intersects the latus rectums of the given ellipse at the points
(A) $\left(\pm \frac{3 \sqrt{5}}{2}, \pm \frac{1}{7}\right)$
(B) $\left(\pm \frac{3 \sqrt{5}}{2}, \pm \frac{\sqrt{19}}{4}\right)$
(C) $\left(\pm 2 \sqrt{3}, \pm \frac{1}{7}\right)$
(D) $\left(\pm 2 \sqrt{3}, \pm \frac{4 \sqrt{3}}{7}\right)$
23. A line with positive direction cosines passes through the point $\mathrm{P}(2,-1,2)$ and makes equal angles with the coordinate axes. The line meets the plane, $2 x+y+z=9$, at point Q. The length of the line segment $P Q$ equals
(A) 1
(B) $\sqrt{2}$
(C) $\sqrt{3}$
(D) 2

SECTION-II
 Multiple Correct Choice Type

This section contains 5 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONE OR MORE is/are correct.
24. For $0<\theta<\pi / 2$, the solution (s) of $\sum_{m=1}^{6} \operatorname{cosec}\left(\theta+\frac{(m-1) \pi}{4}\right) \operatorname{cosec}\left(\theta+\frac{m \pi}{4}\right)=4 \sqrt{2}$ is (are)
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{12}$
(D) $\frac{5 \pi}{12}$
25. An ellipse intersects the hyperbola $2 x^{2}-2 y^{2}=1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then
(A) Equation of ellipse is $x^{2}+2 y^{2}=2$
(B) The foci of ellipse are $(\pm 1,0)$
(C) Equation of ellipse is $x^{2}+2 y^{2}=4$
(D) The foci of ellipse are $(\pm \sqrt{2}, 0)$
26. The tangent PT and the normal PN to the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ at a point P on it meet its axis at points T and N , respectively. The locus of the centroid of the triangle PTN is a parabola whose
(A) vertex is $\left(\frac{2 a}{3}, 0\right)$
(B) directrix is $x=0$
(C) latus rectum is $\frac{2 a}{3}$
(D) focus is $(a, 0)$
27. If $I_{n}=\int_{-\pi}^{\pi} \frac{\sin n x}{\left(1+\pi^{x}\right)} d x, \mathrm{n}=0,1,2, \ldots$. , then
(A) $I_{n}=I_{n+2}$
(B) $\sum_{m=1}^{10} I_{2 m+1}=10 \pi$
(C) $\sum_{m=1}^{10} I_{2 m}=0$
(D) $I_{n}=I_{n+1}$
${ }^{\circledR}$ ENJOY MATHEMATICS
28. For the function $f(x)=x \cos \frac{1}{x}, x \geq 1$,
(A) for at least one \boldsymbol{x} in the interval $[1, \infty), f(x+2)-f(x)<2$
(B) $\lim _{x \rightarrow \infty} f^{\prime}(x)=1$
(C) for all x in the interval $[1, \infty), f(x+2)-f(x)<2$
(D) $\mathrm{f}^{\prime}(\mathrm{x})$ is strictly decreasing in the interval $[1, \infty)$

SECTION-III

Matrix -Match Type

This section contains 2 questions. Each question contains statements given in two columns, which have to be matched. The statements is Column I are labelled A, B, C and D, while the statements in Column II are labelled p, q, r, s and t. Any given statement in Column I can have correct matching with ONE OR MORE statement(s) in Column II. The appropriate bubbles corresponding to the answers to these questions have to be darkened as illustrated in the folloiwng example:
If the correct matches are $\mathrm{A}-\mathrm{p}, \mathrm{s}$ and t ; B - q and r; C - p and q; and D - s and t ; then the correct darkening of bubbles will look like the following.

29. Match the statements/expressions given in Column I with the values given in Column II

Column I

(A) The number of solutions of the equation $x e^{\sin x}-\cos x=0$ in the interval $\left(0, \frac{\pi}{2}\right)$
(B) Value(s) of \boldsymbol{k} for which the planes $\mathrm{kx}+4 \mathrm{y}+\mathrm{z}=0,4 \mathrm{x}+\mathrm{ky}+2 \mathrm{z}=0$ and $2 \mathrm{x}+2 \mathrm{y}+\mathrm{z}=0$ intersect in a straight line
(r) 3
(s) 4
(C) Value(s) of \boldsymbol{k} for which $|\mathrm{x}-1|+|\mathrm{x}-2|+|\mathrm{x}+1|+|\mathrm{x}+2|=4 \mathrm{k}$
(t) 5 has integer solution(s)
(D) If $y^{\prime}=y+1$ and $y(0)=1$, then value(s) of $y(\ln 2)$
30. Match the statements/expressions given in Column I with the values given in Column II

Column I

(A) Root(s) of the equation $2 \sin ^{2} \theta+\sin ^{2} 2 \theta=2$
(B) Points of discontinuity of the function $f(x)=\left[\frac{6 x}{\pi}\right] \cos \left[\frac{3 x}{\pi}\right]$,

Where $[y]$ denotes the largest integer less than or equal to y
(r) $\pi / 3$
(C) Volume of the parallelopiped with its edges represented by the vectors
(s) $\pi / 2$
$\hat{i}+\hat{j}, \hat{i}+2 \hat{j}$ and $\hat{i}+\hat{j}+\pi \hat{k}$
(t) π
(D) Angle between vecotrs \vec{a} and \vec{b} where \vec{a}, \vec{b} and \vec{c} are unit vectors satisfying $\vec{a}+\vec{b}+\sqrt{3} \vec{c}=\overrightarrow{0}$

ENJOY MATHEMATICS

SECTION-IV

Integer Answer Type

This section contains 8 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9 . The appropriate bubbles below the respective question numbers in the ORS have to be darkened. For example, if the correct answers to question numbers $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and $\mathrm{W}($ say) are $6,0,9$ and 2 , respectively, then the correct darkening of bubbles will look like the following:

31. Let $f: R \rightarrow R$ be a continuous function which satisfies $f(x) \int f(t) d t$. Then the value of $f(\ln 5)$ is
32. If the function $f(x)=x^{3}+e^{\frac{x}{2}}$ and $g(x)=f^{-1}(x)$, then the value of $g^{\prime}(1)$ is
33. The maximum value of the function $f(x)=2 x^{3}-15 x^{2}+36 x-48$ on the set $A=\left\{x \mid x^{2}+20<9 x\right\}$ is
34. Let ABC and ABC^{\prime} be two non-congruent triangles with sides $\mathrm{AB}=4, A C=A C^{\prime}=2 \sqrt{2}$ and angle $\mathrm{B}=30^{\circ}$. The absolute value of the difference between the areas of these triangles is
35. Let $\mathrm{p}(\mathrm{x})$ be a polynomial of dgree 4 having extremum at $\mathrm{x}=1,2$ and $\lim _{x \rightarrow \infty}\left(1+\frac{p(x)}{x^{2}}\right)=2$. Then the value of $\mathrm{p}(2)$ is
36. Let $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be points with integer coordinates satisfying the system of homogeneous equations:

$$
\begin{aligned}
& 3 x-y-z=0 \\
& -3 x+z=0 \\
& -3 x+2 y+z=0
\end{aligned}
$$

Then the number of such points for which $x^{2}+y^{2}+z^{2}<100$ is
37. The centres of two circles C_{1} and C_{2} each of unit radius are at a distance of 6 units from each other. Let P be the mid point of the line segment joining the centres of C_{1} and C_{2} and C be a circle touching circles C_{1} and C_{2} externally. If a common tangent to C_{1} and C passing through P is also a common tangent to C_{2} and C , then the radius of the circle C is
38. The smallest value of \boldsymbol{k}, for which both the roots of the equation $\boldsymbol{x}^{2}-8 \boldsymbol{k} \boldsymbol{x}+16\left(\boldsymbol{k}^{2}-\boldsymbol{k}+1\right)=0$ are real, distinct and have values at least 4 , is

ENJOY MATHEMATICS
WITH SUHAAG SIR
243, III- Floor, Between Central Bank
\& Hotel Arch Manor, M.P. NAGAR,
Zone-I, Main Road, Bhopal
盆:(0755) 3200000,6537777 ,

Solution of IITJEE2009\& Views of students available at website: www.iitjeeiitjee.com, www.tekoclasses.com

SOLUTION-IIT JEE-2009 (PAPER-2)

20. (C) If $S_{n A P}=C n^{2}\left\{S_{1}=C\right\}=\mathrm{T} 1$,
$\mathrm{S}_{2}=4 \mathrm{C}=\mathrm{T}_{1}+\mathrm{T}_{2}$

$$
\mathrm{T}_{2}=4 \mathrm{C}-\mathrm{T} 1=4 \mathrm{C}-\mathrm{C}=3 \mathrm{C} .
$$

AP is $\Rightarrow \mathrm{C}, 3 \mathrm{C}, 5 \mathrm{C}, 7 \mathrm{C}$ \qquad
Sum of $C^{2}, 9 C^{2}, 25 C^{2}, 49 C^{2}$
$S_{1}^{\prime}=T_{1}^{\prime}=C^{2}$ Put $\mathrm{n}=1$
$S_{2}^{\prime}=T_{1}^{\prime}+T_{2}^{\prime}=C^{2}+9 C^{2}=10 C^{2}$
Put $\mathrm{n}=2$
Check the option Only C is correct.
21. (D) [This is our class room notes que.]

Findcutting point ' p ' of line $\mathrm{L}_{1} \& \mathrm{~L}_{2}$. Now find eq. of $P N \& A R$ cutting point of $P N \& A R$ is ortho center of \triangle PAB Let (h, k)
check it will be

Co-ordinates of ‘ P ' $(4 \cos \theta, 2 \sin \theta)$
Slope at P of curve $=-\frac{\cot \theta}{2}$
Slope of \perp at $\mathrm{P}=2 \tan \theta$.
eq. of $\mathrm{PQ} \Rightarrow \mathrm{y}-2 \sin \theta=\mathrm{w} \tan \theta(\mathrm{x}-4 \tan \theta)$
Co-ordinates of $\mathrm{Q}(3 \cos \theta, 0)$
$\mathrm{M}=$ Mid point of $\mathrm{PQ}=\left(\frac{7 \cos \theta}{2}, \sin \theta\right)$
Locus of M is $\frac{4 x^{2}}{49}+y^{2}=1$ cutting point of curve
\& latus ract. is $\left(\pm 2 \sqrt{3}, \pm \frac{1}{7}\right)$
23.
(C) DR's of line $(+1,+1,+1)$, it passes through (2, -1, 2)

Eq. $\frac{x-2}{1}=\frac{y+1}{1}=\frac{z-2}{1}=k$, Point on line which cuts the plane $2 \mathrm{x}+\mathrm{y}+\mathrm{z}=0(\mathrm{k}+2, \mathrm{k}-1, \mathrm{k}+2)$ satisfy plane eq. $\mathrm{k}=1$ So point on plane is $(3,0,3)$ Distance between points
$=\sqrt{(3-2)^{2}+(0+1)^{2}+(3-2)^{2}}$
$=\sqrt{1+1+1}=\sqrt{3}$
(C, D) It is formula based question.
$f(\theta)=\frac{1}{\sin \theta_{1}-\sin \theta_{2}}$ Have difference is $\left(\theta_{2}-\theta_{1}\right)=\frac{\pi}{4}$. So multiply \& divide by $\sin \pi / 4$.
$=\frac{1}{\sin \frac{\pi}{4}} \sum_{m=1}^{6} \frac{\sin \frac{\pi}{4}}{\sin \theta_{1} \sin \theta_{2}}$
$=\sqrt{2} \sum_{m=1}^{6}\left(\cot \theta_{2}-\cot \theta_{1}\right)$
Simplyfy it Ans will be $\frac{\pi}{12} \& \frac{5 \pi}{12}$.
25. (A, B) Hyperbola is rectangular

$e_{H}=\sqrt{2}$ So $e_{E}=\frac{1}{\sqrt{2}}$ according to fig. option A
\& B correct.
26. (A, D)

$$
\text { G: } \begin{aligned}
& h=\frac{a t^{2}-a t^{2}+2 a+a t^{2}}{3} \\
k & =\frac{2 a t+0+0}{3}
\end{aligned}
$$

For locus $\mathrm{h} \rightarrow \mathrm{x}, \mathrm{k} \rightarrow \mathrm{y}$ Put value at K (elivinate)

$$
\begin{aligned}
& (3 x-2 a)=a\left(\frac{3 y}{2 a}\right)^{2} \\
& y^{2}=4\left(\frac{a}{3}\right)\left(x-\frac{2 a}{3}\right)
\end{aligned}
$$

Directrix $x=a / 3$
L. R. $4 \mathrm{a} / 3$

F(a, 0)
$V\left(\frac{2 a}{3}, 0\right)$
27. (A, B, C)
$I_{n}=\int_{-\pi}^{0} \frac{\sin n x d x}{\left(1+\pi^{x}\right) \sin x}+\int_{0}^{\pi} \frac{\sin n x}{\left(1+\pi^{x}\right) \sin x}$

$$
\mathrm{x} \rightarrow(-\mathrm{x})
$$

$I_{n}=\int_{0}^{\pi} \frac{\pi^{x} \sin n x}{\left(1+\pi^{x}\right) \sin x}+\int_{0}^{\pi} \frac{\sin n x}{\left(1+\pi^{x}\right) \sin x}$
$I_{n}=\int_{0}^{\pi} \frac{\sin n x}{\sin x}$ Now simplyfy and check option ans are $\mathrm{A}, \mathrm{B}, \mathrm{C}$
28. (B, C, D)
$f(x)=x \cdot \cos \frac{1}{x} \Rightarrow f^{\prime}(x)=\cos \frac{1}{x}+\frac{1}{x} \sin \left(\frac{1}{x}\right)$

Option B is correct.
$f^{\prime \prime}(x)=+\frac{1}{x^{2}} \sin \frac{1}{x}+\left(-\frac{1}{x^{2}}\right) \sin \frac{1}{x}-\frac{1}{x^{2}} \cos \frac{1}{x}$
becous $x \geq 1 ; d$ " (x) is -ve so
$\mathrm{f}^{\prime}(\mathrm{x})$ is strictly decreasing. Check for option C also correct discorrec here. Ans. (B, C, D)
29.

(A) $\quad f(x)=x . e^{\sin x}, \quad f^{\prime}(x)=x \cdot e^{\sin x} \cdot \cos x-\sin x$.
$f^{\prime}(x) \rightarrow+$ ve in 0 to $\pi / 2$, so $f(x)$ is strictly incresing. $f(0)=-\mathrm{ve}, \mathrm{f}(\pi / 2)$ is +ve so only one possible root.
(B) $\left|\begin{array}{lll}4 & k & 2 \\ 2 & 2 & 1\end{array}\right|=0 \Rightarrow K=2 \& K=4$.
(C) Just put the values of $x=1,2,3, \ldots$ you will get $k \geq \frac{3}{2}$ then it will convest $\mathrm{x}=\mathrm{k}$. So ans are

2, 3, 4, $5[\mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}]$
(D) Function should be
$y=2 e^{x}-1$

$$
\begin{aligned}
& \mathrm{y}^{\prime}=2 \mathrm{e}^{\mathrm{x}}=\mathrm{y}+1 \quad \text { so } y\left(\log _{e}^{2}\right) \\
& =2 e^{\log _{e}^{2}}-1=2.2-1=3
\end{aligned}
$$

30.

ENJOY MATHEMATICS
WITH SUHAAG SIR
UIT-JEE, AIEEE (WITH 12 $2^{\text {TH }}, 11^{\text {TH }} \&$ \& DROPPER $)$
Solution of IITJEE2009\& Views of students available at website: www.iitjeeiitjee.com, www.tekoclasses.com
(A) Put only $\pi / 4 \& \pi / 2$ applicable.
(B) $[\mathrm{k}] \rightarrow$ non continuous when k is integer $\left(\frac{6 x}{\pi}\right)$ or $\left(\frac{3 x}{\pi}\right)$ become interer on $\mathrm{p}, \mathrm{r}, \mathrm{s}, \mathrm{t}$.
(C) $\left|\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & \pi\end{array}\right|=\pi$
(D) $\vec{a}+\vec{b}+\sqrt{3} \vec{c}=0$
$(\vec{a}+\vec{b})^{2}=(-\sqrt{3} \vec{c})^{2}$
$|a|^{2}+|b|^{2}+2 \cdot|a||b| \cdot \cos \theta=3 \cdot|c|^{2}$
$1+1+2.1 .1 \cos \theta=3$

$$
\cos \theta=1 / 2, \quad \theta=\pi / 3
$$

31. Ans. [0]. $f(x)=\int_{0}^{x} f(t) d t$;
$\mathrm{f}(\mathrm{x})=\mathrm{c} . \mathrm{e}^{\mathrm{x}}$.
But due to condition $=0$ so $\mathrm{f}(\mathrm{x})=0$ constant functons
32. Ans. (2)

$$
\begin{aligned}
& f(x)=x^{3}+e^{x / 2} \\
& \mathrm{~g}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{x}) \\
& \mathrm{f}(\mathrm{~g}(\mathrm{x}))=\mathrm{x} \\
& \mathrm{f}^{\prime}(\mathrm{g}(\mathrm{x})) \cdot \mathrm{g}^{\prime}(\mathrm{x})=1 \\
& g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}
\end{aligned}
$$

$g^{\prime}(1)$ become ' 2 '
33. Ans (7)

$$
\begin{aligned}
& x^{2}+20 \leq 9 x \\
& \Rightarrow \quad \\
& x^{2}-9 x+20 \leq 0 \\
& x^{2}-4 x-5 x+20 \leq 0 \\
& (x-5)(x-4) \leq 0 \\
& x \in[4,5]
\end{aligned}
$$

Now $f(x)=2 x^{3}-15 x^{2}+36 x-48$
$f^{\prime}(x)=6 x^{2}-30 x+36$
$0=x^{2}-5 x+6$
$0=(x-2)(x-3)$

$\mathrm{f}(5)$ will be maxima $=7$
(4) Using sine rule saperatly

$$
\begin{aligned}
& \sin \mathrm{C}=\sin \mathrm{C}^{\prime}=\frac{1}{\sqrt{2}} \\
& \mathrm{C}==\frac{\pi}{4} \text { or } \mathrm{C}^{\prime}=\frac{3 \pi}{4} .
\end{aligned}
$$

Area $_{1}=2(\sqrt{3}+1) \&$ Area $_{2}=2(\sqrt{3}-1)$
difference $=4$.
35.
(0) $\lim _{x \rightarrow 0} \frac{P(x)}{x^{2}}=1$

So $\quad \begin{aligned} & P(0)=0 \\ & P^{\prime}(0)=0\end{aligned} \quad$ L-Hospital Rule

$$
P^{\prime \prime}(\theta)=2
$$

If $\quad P(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$
Then Use above condition

$$
\mathrm{e}=0, \mathrm{~d}=0, \mathrm{c}=1
$$

$\mathrm{P}(\mathrm{x})=a \mathrm{x}^{4}+\mathrm{bx} \mathrm{x}^{3}+\mathrm{x}^{2}$
$P^{\prime}(x) \quad 4 a x^{3}+3 b x^{2}+2 x$.
Use $P^{\prime}(1)=0, P^{\prime}(2)=0$
$a=1 / 4 \& b=-1$
so $\quad P(2)=0$
(7) Here $\Delta=\left|\begin{array}{ccc}3 & -1 & -1 \\ -3 & 0 & 1 \\ -3 & 2 & 1\end{array}\right|$ is zero.

By use of eq. 2 assume $\mathrm{x}=\mathrm{k}, \mathrm{y}=0, \mathrm{z}=3 \mathrm{k}$.
$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}<100$
$\Rightarrow \mathrm{k}^{2}+0^{2}+9 \mathrm{k}^{2}<100$

$$
-\sqrt{10} \leq k \leq \sqrt{10}
$$

Integer only. $-3<\mathrm{k}<3$
$-3,-2,-1,0,1,2,3$

ENJOY MATHEMATICS
37. $\{8\}$

$\mathrm{PM}=\sqrt{3^{2}-1^{2}}=2 \sqrt{2}$
$\Delta \mathrm{PMC} h^{2}=(2 \sqrt{2})^{2}+R^{2}$
$\Delta \mathrm{PC}_{1} \mathrm{C}(\mathrm{R}+1)^{2}=3^{2}+\mathrm{h}^{2}$
Solve eq. get $\mathrm{R}=8$
38. [2] Class room question.
$\mathrm{x}^{2}-8 \mathrm{kx}+16\left(\mathrm{k}^{2}-\mathrm{k}+1\right)=0$
Roots are real
D >0
$(-8 \mathrm{k})^{2}-4.1 .16\left(\mathrm{k}^{2}-\mathrm{k}+1\right)>0$

You will get
$\mathrm{K}>1$.
Now Condition $\mathrm{f}(4)>0$
When roots geterorequal to $44^{2}-8 . K .4+16\left(\mathrm{k}^{2}-\mathrm{k}+1\right)>0$
$\mathrm{K} \in[1,2] \quad$ Common value $\mathrm{k}=2$.

