Match List - I (Electromagnetic wave type) 29. with List - II (Its association/application) and select the correct option from the choices given below the lists:

List - I		List - II	
(a)	Infrared waves	(i)	To treat muscular strain
(b)	Radio waves	(ii)	For broadcasting
(c)	X - rays	(iii)	To detect fracture of bones
(d)	Ultraviolet rays	(iv)	Absorbed by the ozone layer of the atmosphere
1)	(a) (b) ((d)
1)	(iv) (iii) (ii)	(i)

- (2)(i) (ii) (iv) (iii) (3)(iii) (ii) (i) (iv)
- (4) (ii) (iii) (iv)
- A student measured the length of a rod did he use to measure it?
 - (1)A meter scale.
 - A vernier calliper where the 10 divisions in vernier scale matches with 9 division in main scale and main scale has 10 divisions in 1 cm.
 - A screw gauge having 100 divisions (3) in the circular scale and pitch as 1 mm.
 - A screw gauge having 50 divisions (4)in the circular scale and pitch as 1 mm.

सूची - I (विद्युत चुम्बकीय तरंग प्रकार) को 29. सूची - II (इनसे सम्बद्धित/अनुप्रयोगित) से सुमेलित कीजिये और सूचियों के नीचे दिये गये विकल्पों में से सही विकल्प चुनिये:

सूची - I			सूची - II	
(a)	अवरक्त तरंगे	(i)	माँसपेशियों की विकृति के इलाज के लिये	
(b)	रेडियो तरंगे	(ii)	प्रसारण के लिये	
(c)	एक्स-किरणें	(iii)	हिंडुयों के अस्थिभंग की पहचान के लिये	
(d)	पराबैंगनी किरणें	(iv)	वातावरण की ओज़ोन परत द्वारा अवशोषण	

- (a) (b) (c) (d)
- (1)(iv) (iii) (ii) (i)
- (2)(i) (ii) (iv) (iii)
- (3)(iii) (ii) (i) (iv)
- (4)(i) (ii) (iii) (iv)
- एक विद्यार्थी ने एक छड़ की लुम्बाई मापकर 30. WWWTEKOCLASSES देजिएका MATHELBIN SUHA GIKARIYA BHORAL PHONE (0755) 32:00.000 का प्रयोग किया?
 - (1)एक मीटर स्केल।
 - एक वर्नियर कैलिपर्स जहाँ वर्नियर स्केल के 10 भाग मुख्य स्केल के 9 भागों से मिलते हैं और मुख्य स्केल के 1 cm में 10 भाग हैं।
 - एक स्क्रू गेज़ जिसके वर्नियर स्केल में (3)100 भाग हैं और पिच 1 mm है।
 - एक स्क्रू गेज़ जिसके वर्नियर स्केल में 50 भाग हैं और पिच 1 mm है।

PART B - CHEMISTRY

The correct set of four quantum numbers 31. for the valence electrons of rubidium atom

- (2) 5, 1, 0, $+\frac{1}{2}$ gs ge 5d sf
- (3) 5, 1, 1, $+\frac{1}{2}6s$ 6 p 6 d 6 f
- (4) 5, 0, 1, $+\frac{1}{2}$ 5 5 1
- If Z is a compressibility factor, van der Waals equation at low pressure

- can be written as $l + am^2$ (v-Nb) = NLT(1) $Z=1+\frac{RT}{Pb}$ $(am^2)(v-Nb)=1$ $(b-h)^2$ $(b-h)^2$ (c) $Z=1-\frac{a}{VRT}$ (c) (c)
- (3) $Z=1-\frac{Pb}{RT} \Rightarrow \sqrt[8]{V^2} \left(V-b\right) = NRT$ (3) $Z=1-\frac{Pb}{RT}$
- (4) $Z=1+\frac{Pb}{RT}$ = $\frac{Q}{\sqrt{12}} = \frac{Ab}{\sqrt{12}} = \frac{Pb}{RT}$ (4) $Z=1+\frac{Pb}{RT}$

भाग B - रसायन विज्ञान

रूबिडियम परमाणु (Z=37) के लिये वेलैन्सी इलैक्ट्रॉनों ां के उचित चार क्वान्टम नम्बरों का सेट होता है :

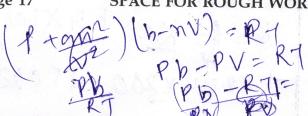
10+6+2

- (1) 5, 0, 0, $+\frac{1}{2}$
- (2) 5, 1, 0, $+\frac{1}{2}$
 - (3) 5, 1, 1, $+\frac{1}{2}$
 - (4) 5, 0, 1, $+\frac{1}{2}$

Br V-nb)= R7

यदि Z संपीड़न गुणक हो तो कम दाब पर वांडरवाल्स 32. समीकरण को लिखा जा सकता है:

lattice. If 'a' is its edge length then which of the following expressions is correct?


- $r_{Cs^{+}} + r_{Cl^{-}} = 3a \quad \alpha ab = VRT$
- (2) $r_{Cs^+} + r_{Cl^-} = \frac{3a}{2}$
- (3) $r_{Cs^+} + r_{Cl^-} = \frac{\sqrt{3}}{2}a$
- (4) $r_{Cs^+} + r_{Cl^-} = \sqrt{3}a$

33WWWs FEKOCLASSES COM MATHS BY SUHAG KARIYA BHOPAL PHONE (0755) 32 00 000 होता है। यदि किनारे की लम्बाई 'a' हो तो निम्न सूत्रों में से कौन-सा ठीक होगा?

(1) $r_{Cs^{+}} + r_{Cl^{-}} = 3a$ (2) $r_{Cs^{+}} + r_{Cl^{-}} = \frac{3a}{2} \left(\sqrt{2} \right) \left(\sqrt{-14b} \right) = 3a$

- (3) $r_{Cs^+} + r_{Cl^-} = \frac{\sqrt{3}}{2} a \Rightarrow \frac{1}{\sqrt{2}} \frac{1}{2} a \Rightarrow r_{Cl^-} = \frac{1}{2} a \Rightarrow \frac{1}{2} = \frac{1}{2} = \frac{1}{2} a \Rightarrow \frac{1}{2} = \frac{1$
- (4) $r_{Cs^{+}} + r_{Cl^{-}} = \sqrt{3}a$ Q = k7 + Qb

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह E/Page 17

$$\frac{aV-abb}{PV}=RT$$

For the estimation of nitrogen, 1.4 g of an organic compound was digested by Kjeldahl method and the evolved ammonia was absorbed in 60 mL of $\frac{M}{10}$ sulphuric acid. The unreacted acid required 20 mL of 10 sodium hydroxide for complete neutralization. The percentage of nitrogen in the compound is:

35. Resistance of 0.2 M solution of an $4 \times 10 \times 10^{\circ}$ electrolyte is 50 Ω . The specific conductance of the solution is $1.4 \, \mathrm{S} \, \mathrm{m}^{-1}$. The resistance of 0.5 M solution of the same electrolyte is 280Ω . The molar conductivity of 0.5 M solution of the efectrolyte in S m² mol⁻¹ is:

(1) 5×10^{-4}

 5×10^{-3}

(3) 5×10^3 $(4) 5 \times 10^2$

For complete combustion of ethanol,

• $C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l),$ the amount of heat produced as measured in bomb calorimeter, is 1364.47 kJ mol⁻¹ at 25°C. Assuming ideality the Enthalpy of combustion, $\Delta_c H$, for the reaction will

WWW.TEKOCLASSES.COM MARHS BY SUHAG KARIYA BHOPAL PHONE (0755) 32 00 0000 $(R = 8.314 \text{ kJ mol}^{-1})$

(1) -1366.95 kJ mol⁻¹

(2) $-1361.95 \text{ kJ mol}^{-1}$

 $-1460.50 \text{ kJ mol}^{-1}$

 $-1350.50 \text{ kJ mol}^{-1}$

नाइट्रोजन के आकलन के लिए 1.4 ग्रा. कार्बनिक यौगिक जेल्डॉल विधि के अनुसार अपचित किया गया तथा मुक्त हुए अमोनिया को 60 मिली $\frac{M}{10}$ सल्फ्यूरिक अम्ल में अवशोषित किया गया। अधिशेष अम्ल के पूर्ण उदासीनीकरण के लिए 20 मिली $\frac{M}{10}$ सोडियम हाइड्रॉक्साइड की आवश्यकता हुई। यौगिक में नाइट्रोजन की प्रतिशतता है:

(2) 10% DH = N+NRAT

(3) 3% Q = AH + AU

एक वैद्युत अपघट्य में 0.2 M विलयन का प्रतिरोध 35. $50~\Omega$ है। इस विलयन का विशिष्ट चालकत्व $1.4~{
m S}~{
m m}^{-1}$ है। इसी विद्युत अपघट्य के $0.5~{
m M}$ विलयन का प्रतिरोध $280~\Omega$ है। विद्युत अपघट्य के 0.5 M विलयन की मोलर चालकता S m² मोल⁻¹ में होगी: 07 -> 10

> 5×10^{-4} (1)

 5×10^{-3}

 5×10^3 R=K(3)

 5×10^2

एथेनॉल के पूर्ण ज्वलन के लिये, 36. $C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l),$ बम के लोरीमीटर में मापित ऊर्जा 25°C पर 1364.47 kJ mol⁻¹ है। आदर्शता मानते हुए ज्वलन की एन्थैल्पी, ∆ H, होगी:

ZOORXI $(R = 8.314 \text{ kJ mol}^{-1})$

> $-1366.95 \text{ kJ mol}^{-1}$ (1)

> $-1361.95 \text{ kJ mol}^{-1}$

 $-1460.50 \text{ kJ mol}^{-1}$

 $-1350.50 \text{ kJ mol}^{-1}$ (4)

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह E/Page 18

1.4= 1000xx, 50 R= pl Kc 1.4×100 -1 ×8.214×308 25042

The equivalent conductance of NaCl at 37. concentration C and at infinite dilution are λ_{C} and λ_{∞} , respectively. The correct relationship between λ_{C} and λ_{∞} is given as:

(where the constant B is positive)

- 38. Consider separate solutions of 0.500 M $C_2H_5OH(aq)$, 0.100 M $Mg_3(PO_4)_2(aq)$, 0.250 M KBr(aq) and 0.125 M Na₃PO₄(aq) at 25°C. Which statement is true about these solutions, assuming all salts to be strong electrolytes?
 - (1) They all have the same osmotic pressure.
 - $0.100 \text{ M} \text{ Mg}_3(PO_4)_2(aq)$ has the highest osmotic pressure.
 - 0.125 M Na₃PO₄(aq) has the highest osmotic pressure.
 - $0.500 \text{ M} \text{ C}_2\text{H}_5\text{OH(aq)}$ has the

WWW. TEROCLASSES. COMPS MATH\$ BY (SUHAG KARIYA BHOPAL PHONE (0755) 32 00 000

For the reaction $SO_{2(g)} + \frac{1}{2}O_{2(g)} \rightleftharpoons SO_{3(g)}$ 39. if $K_P = K_C(RT)^x$ where the symbols have usual meaning then the value of x is: (assuming ideality)

Kp=Kc (27) Dn 2

E/Page 19

सान्द्रण C पर और अनन्त तनुता पर NaCl विलयन की इक्विवेलैन्ट चालकता को λ_{C} और λ_{∞} मानते हुए उनका आपसी सम्बन्ध लिखा जा सकता है:

 $K_{\alpha} = C\alpha^2$ (B एक स्थिर अंक है)

- (1) $\lambda_C = \lambda_\infty + (B)C$
- (2) $\lambda_C = \lambda_\infty (B)C$
- (3) $\lambda_C = \lambda_\infty (B) \sqrt{C}$
- (4) $\lambda_C = \lambda_\infty + (B) \sqrt{C}$
- 0.500 M C₂H₅OH(जलीय), 38. $0.100 \text{ M Mg}_3(PO_4)_2($ जलीय), 0.250 MKBr(जलीय) और 0.125 M Na₃PO₄(जलीय) विलयनों को 25°C पर ध्यान दीजिये। सभी नमकों को प्रबल इलैक्ट्रोलाइट मानते हुए निम्न कथनों में से कौन-सा कथन यथार्थ है?
 - इन सब के लिये आसमाटिक दाब के मान समान होगा।
 - $0.100 \text{ M Mg}_3(PO_4)_2$ (जलीय) का आसमाटिक दाब उच्चतम होगा।
 - $0.125~{
 m M}~{
 m Na_3PO_4}~({
 m जलीय})$ का (3)आसमाटिक दाब उच्चतम होगा।
 - 0.500 M C₂H₅OH(जलीय) (4)

- अभिक्रिया, $SO_{2(g)} + \frac{1}{2}O_{2(g)} \rightleftharpoons SO_{3(g)}$ के लिए 39. $\mathrm{K_{P}}\!=\!\mathrm{K_{C}}(\mathrm{RT})^{x}$ होगा जबकी सब सूचक अक्षर सामान्य अर्थ रखते हैं तो आदर्शररूपता मानते हुए x का मान होगा:
 - (1)

 - (4)

40. For the non - stoichiometre reaction $2A + B \rightarrow C + D$, the following kinetic data were obtained in three separate experiments, all at 298 K.

Initial	Initial	Initial rate of	
Concentration	Concentration	formation of C	
(A)	(B)	(mol L-S-)	
0.1 M	0.1 M	1.2×10^{-3}	
0.1 M	0.2 M	1.2×10^{-3}	
0.2 M	0.1 M	2.4×10^{-3}	

The rate law for the formation of C is:

(1)
$$\frac{dc}{dt} = k[A][B] \quad \frac{dc}{dt} = k[A][B]$$

(2)
$$\frac{dc}{dt} = k[A]^2 [B]$$

(2)
$$\frac{dc}{dt} = k[A]^2 [B]$$
 (2) $\frac{dc}{dt} = k[A]^2 [B]$ (3) $\frac{dc}{dt} = k[A] [B]^2$ (3) $\frac{dc}{dt} = k[A] [B]^2$

$$\frac{dc}{dt} = k[A]$$

- 41. Among the following oxoacids, the correct decreasing order of acid strength is:
 - HOCl > HClO₂ > HClO₃ > HClO₄
 - HClO₄ > HOCl > HClO₂ > HClO₃
 - (3) $HCIO_4 > HCIO_3 > HCIO_2 > HOCI$
 - (4) $HClO_2 > HClO_4 > HClO_3 > HOCl$

रसायनिकता रिक्त अभिक्रिया $2A + B \rightarrow C + D$ में 40. तीन पृथक प्रयोगों में 298 K पर निम्न गतिक आंकडे प्राप्त किये गये:

प्रारम्भिक सांद्रण (A)	प्रारम्भिक सांद्रण (B)	C बनने की प्रारम्भिक दर (मोल $L^{-}S^{-}$)
0.1 M	0.1 M	1.2×10^{-3}
0.1 M	0.2 M	1.2×10^{-3}
0.2 M	0.1 M	2.4×10^{-3}

अभिक्रिया के लिये C बनने का दर नियम होगा:

$$(1) \quad \frac{\mathrm{d}c}{\mathrm{d}t} = \mathbf{k}[\mathbf{A}] \ [\mathbf{B}]$$

(2)
$$\frac{\mathrm{dc}}{\mathrm{dt}} = k[A]^2 [B]$$

(3)
$$\frac{dc}{dt} = k[A] [B]^2$$

$$(4) \qquad \frac{dc}{dt} = k[A]$$

- निम्न आक्सो अम्लों के लिये अम्ल शक्ति का यथार्थ 41. घटता क्रम होगा:
 - HOC1 > HCIO₂ > HCIO₃ > HCIO₄
 - HClO₄ > HOCl > HClO₂ > HClO₃
 - HClO₄ > HClO₃ > HClO₂ > HOCl
 - HClO₂ > HClO₄ > HClO₃ > HOCl

WWW.TEKOCLASSES.COM MATHS BY SUHAG KARIYA BHOPAL PHONE (0755) 32 00 000

The metal that cannot be obtained by electrolysis of an aqueous solution of its

salts is:

HClb: +1

✓ (3) Cu CUO +1 Cr (4)

- 42. धातु जो अपने लवणों के जलीय विलयनों के इलैक्ट्रालेसिस (विद्युत अपघटन) से प्राप्त नहीं हो सकती होती है:
 - (1)Ag
 - (2)Ca
 - (3)Cu
 - (4)Cr

E/Page 20

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

Li k Ba Sr Ca Na mg Al Min For Co Re Col Co Ni In Pb H Cu Hg

- The octahedral complex of a metal ion 43. M^{3+} with four monodentate ligands L_1 , L_2 , L_3 and L_4 absorb wavelengths in the region of red, green, yellow and blue, respectively. The increasing order of ligand strength of the four ligands is:
 - (1) $L_4 < L_3 < L_2 < L_1$ Sony L
 - (2) $L_1 < L_3 < L_2 < L_4$
 - (3) L3 < L2 < L4 < L Ly 7 L2 > L3
 - $(4) L_1 < L_2 < L_4 < L_3$
- JAGYORL Which one of the following properties is not shown by NO?

It is diamagnetic in gaseous state

- (2)It is a neutral oxide
- It combines with oxygen to form (3)nitrogen dioxide
- It's bond order is 2.5 WWW.TEKOCLASSES.COM MATHS BY SUHAG KARIYA BHOPAL PHONE (0755) 32 00 000
- In which of the following reactions H_2O_2 **45**. acts as a reducing agent?
 - $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O^-$
 - $H_2O_2 2e^- \rightarrow O_2 + 2H^+$
 - $H_2O_2^- + 2e^- \rightarrow 2OH^-$
 - $H_2O_2 + 2OH^- 2e^- \rightarrow O_2^0 + 2H_2O$
 - (a), (b) (1)
 - (c), (d) (2)
 - (a), (c) (3)
 - (4) (b), (d)

- ${f M}^{3+}$ धातु आयन का चार एक पकड़ी लिगैंडों, $L_{1},\ L_{2},\ L_{3}$ और L_{4} के साथ अष्ट फलकीय संकर लाल, हरे, पीले और नीले स्थलों से तरंगदैर्घ्यों का क्रमानुसार अवशोषण करता है। चार लिगैंडों की शक्ति का बढ़ता क्रम है :
 - (1) $L_4 < L_3 < L_2 < L_1$
 - $(2) L_1 < L_3 < L_2 < L_4$
 - (3) $L_3 < L_2 < L_4 < L_1$
 - (4) $L_1 < L_2 < L_4 < L_3$
 - NO कौन-सा निम्न गुण प्रदर्शित नहीं करता है?
 - गैसीय अवस्था में प्रतिचुम्बकीय है। (1)
 - यह एक उदासीन ऑक्साइड है। (2)
 - यह ऑक्सीजन से योग कर नाइट्रोजन डाईऑक्साइड (3)बनाता है।
 - इसकी बन्ध कोटि 2.5 है। (4)

 - निम्न किन अभिक्रियाओं में H2O2 एक अपचायक 45. का काम करता है?
 - $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$
 - (b) $H_2O_2 2e^- \rightarrow O_2 + 2H^+$
 - $H_2O_2 + 2e^- \rightarrow 2OH^-$ (c)
 - (d) $H_2O_2 + 2OH^- 2e^- \rightarrow O_2 + 2H_2O$
 - (1)(a), (b)
 - (2)(c), (d)
 - (3)(a), (c)
 - (b), (d) (4)

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह E/Page 21

of 5 0 152 0252 0 252 00 20 20 1 12px 12px 12px 12px

- The correct statement for the molecule, 46. CsI_3 , is:
 - it is a covalent molecule.

- it contains Cs^+ and I_3^- ions.
- it contains Cs^{3+} and I^{-} ions.

 $^{\prime}$ it contains Cs $^{+}$, I $^{-}$ and lattice I $_{2}$ molecule.

55

The ratio of masses of oxygen and nitrogen in a particular gaseous mixture is 1:4. The ratio of number of their molecule is:

(1) 1:4
$$\frac{m_{0_2}}{m_{N_2}} = \frac{1}{4}$$

(2) 7:32 $\frac{1}{m_{N_2}} = \frac{1}{4}$
(3) 1:8 $\frac{1}{32}$ \frac

 $Mn^{2+} + 2e^{-} \rightarrow Mn$; $E^{0} = -1.18 \text{ V}$ $2(Mn^{3+} + e^{-} \rightarrow Mn^{2+})$; $E^{\circ} = +1.51 \text{ V}$ The E^o for $3Mn^2 + \rightarrow Mn + 2Mn^3 +$ will be:

 $2 \rightarrow 0$ -2.69 V; the reaction will not occur

- $3 \times 2 9$ (2) -2.69 V; the reaction will occur
 - $-0.33~\mathrm{V}$; the reaction will not occur (4) $\sim -0.33~V$; the reaction will occur \swarrow

- CsI3 अणु के लिये यथार्थ कथन होगा: 46.
 - (1) यह एक सहसंयोजकी अणु है।
 - इसमें Cs + और I3 आयन होते हैं। (2)
 - इसमें Cs^{3+} और I^{-} आयन होते हैं।
 - (4) इसमें Cs+, I- और I2 जालक होते हैं।
- एक विशेष गैसीय मिश्रण में ऑक्सीजन और नाइट्रोजन 47. के द्रव्यमानों का अनुपात 1 : 4 है। इस मिश्रण में इनकी अणु संख्याओं का अनुपात होगा :
 - 1:4
 - 7:32
 - 1:8
 - (4) 3:16

48. WWW.IEKOCLASSES.COM: MATHS BY SUHAG KARIYA BHOPAL PHONE (0755) 32 00 000

 $Mn^{2+} + 2e^{-} \rightarrow Mn \; ; \; E^{o} = -1.18 \; V$

 $2(Mn^{3+} + e^{-} \rightarrow Mn^{2+})$; $E^{o} = +1.51 \text{ V}$

 $3Mn^{2+} \rightarrow Mn + 2Mn^{3+}$ के लिये E° होगा :

- (1) −2.69 V; अभिक्रिया नहीं होगी।
- (2) -2.69 V ; अभिक्रिया होगी।
- (3) 0.33 V ; अभिक्रिया नहीं होगी।
- -0.33 V; अभिक्रिया होगी।

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह E/Page 22

 $\frac{3Mn^2+}{-n\times F\times 6} + \frac{1}{4}\times \frac{1}{5}\times 6 = \frac{1}{2}\times 1.16 + \frac{1}{42}\times 1.5$

49. Which series of reactions correctly represents chemical relations related to iron and its compound?

(1)
$$Fe \xrightarrow{\text{dil } H_2SO_4} FeSO_4 \xrightarrow{H_2SO_4, O_2} Fe_2(SO_4)_3 \xrightarrow{\text{heat}} Fe$$

- (2) Fe $\xrightarrow{O_2, \text{ heat}}$ FeO $\xrightarrow{\text{dil } H_2SO_4}$ $FeSO_4 \xrightarrow{heat} Fe$
- (3) Fe $\xrightarrow{\text{Cl}_2, \text{ heat}}$ FeCl₃ $\xrightarrow{\text{heat, air}}$ $FeCl_2 \xrightarrow{Zn} Fe$
- (4) Fe $\xrightarrow{O_2$, heat \rightarrow Fe₃O₄ $\xrightarrow{CO, 600^{\circ}C}$ $FeO \xrightarrow{CO, 700^{\circ}C} Fe$ Lik Ba &r G Na My Dl
- 50. The equation which is balanced and WWW.TEKACLASSES.COM. MATHS BY SUHAG KARIYA BHOPAL PHONE (0755) 32 00 000
 - (1) $\text{Li}_2\text{O} + 2\text{KCl} \rightarrow 2\text{LiCl} + \text{K}_2\text{O}$
 - (2) $[CoCl(NH_3)_5]^+ + 5H^+ \rightarrow Co^{2+}$ $+5NH_{4}^{+}+Cl^{-}$
- (3) $[Mg(H_2O)_6]^{2+} + (EDTA)^{4-}$ $\xrightarrow{\text{excess NaOH}} [Mg(EDTA)]^{2+}$) + 6H₂O

 $(4) \quad \text{CuSO}_4 + 4\text{KCN} \rightarrow \text{K}_2[\text{Cu(CN)}_4]$

- इनमें से अभिक्रियाओं का कौन-सा क्रम यथार्थ रूप में लोहे और इसके यौगिकों की रासायनिक अभिक्रियाओं को निरूपित करता है?
 - Fe $\overline{d}_{2}H_{2}SO_{4} \rightarrow FeSO_{4} \xrightarrow{H_{2}SO_{4}, O_{2}}$ (1) $Fe_2(SO_4)_3 \xrightarrow{\overline{\Pi}\Psi} Fe$
 - (2) Fe $\xrightarrow{O_2, \text{ fill}}$ FeO $\xrightarrow{\text{df} H_2SO_4}$ FeSO₄ — ताप Fe
 - (3) Fe $\frac{\text{Cl}_2, \overline{\text{niv}}}{\text{FeCl}_3}$ $\xrightarrow{\text{niv}, \overline{\text{aig}}}$ $FeCl_2 \xrightarrow{Zn} Fe$
- (4) Fe $\xrightarrow{O_2$, $\overline{\text{qlq}}$ \rightarrow Fe₃O₄ $\xrightarrow{\text{CO, 600°C}}$ $FeO \xrightarrow{CO, 700^{\circ}C} Fe$ My Zu Kr Fe.

50. समीकरण जो संतुलित है और यथार्थ क्रिया फलों की

- (1) $\text{Li}_2\text{O} + 2\text{KCl} \rightarrow 2\text{LiCl} + \text{K}_2\text{O}$
- (2) $[CoCl(NH_3)_5]^+ + 5H^+ \rightarrow Co^{2+}$ $+5NH_{4}^{+}+Cl^{-}$
- (3) $[Mg(H_2O)_6]^{2+} + (EDTA)^{4-}$ NaOH का आधिक्य Mg(EDTA)]²⁺ + 6H₂O
- (4) $CuSO_4 + 4KCN \rightarrow K_2[Cu(CN)_4]$ $+ K_2SO_4$

E/Page 23

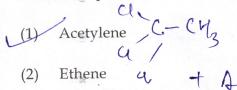
SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

6) 538 (+2x1.18 71×1.51

- **51.** In S_N^2 reactions, the correct order of reactivity for the following compounds: CH₃Cl, CH₃CH₂Cl, (CH₃)₂CHCl and $(CH_3)_3CCl$ is:
 - $CH_3Cl > (CH_3)_2CHCl > CH_3CH_2Cl$ > (CH₃)₃CCI
 - $CH_3CI > CH_3CH_2CI > (CH_3)_2CHCI$ > (CH₃)₃CCl
 - (3) $CH_3CH_2CI > CH_3CI > (CH_3)_2CHCI$ > (CH₃)₃CC1
 - $(CH_3)_2CHCI > CH_3CH_2CI > CH_3CI$

- 52. On heating an aliphatic primary amine with chloroform and ethanolic potassium hydroxide, the organic compound formed is:
 - (1)an alkanol
 - (2)an alkanediol
 - (3)an alkyl cyanide
 - an alkyl isocyanide

- यौगिकों $\mathrm{CH_3CI}$, $\mathrm{CH_3CH_2CI}$, $(\mathrm{CH_3})_2\mathrm{CHCI}$ और 51. $(CH_3)_3CC1$ का S_N^2 क्रिया में क्रिया करण का उचित स्तर क्रम होता है:
 - $CH_3CI > (CH_3)_2CHCI > CH_3CH_2CI$ (1)> (CH₃)₃CCl
 - $CH_3CI > CH_3CH_2CI > (CH_3)_2CHCI$ (2) > (CH₃)₃CC1
 - (3) $CH_3CH_2CI > CH_3CI > (CH_3)_2CHCI$ > (CH₃)₃CC1
 - (4) $(CH_3)_2CHCI > CH_3CH_2CI > CH_3CI$ > (CH₃)₃CCI
- ऐलिफैटिक प्रायमरी एमीन को क्लोरोफार्म और 52. एथानोलिक पोटैशियम हाइड्राक्साइड के साथ गरम करने पर बना आरगैनिक यौगिक होता है :
 - (1) एक ऐल्कानोल
 - (2) एक ऐल्केनडायोल
 - (3) एक ऐल्किल सियानाइड
 - एक ऐल्किल आइस्रोसियानाइड (4)


www.tekoclasses.com Maths by Suhag Kariya Bhopal Phone (0.755) 32 00 000

- The most suitable reagent for the conversion of $R-CH_2-OH \rightarrow R-CHO$ is:
 - (1) $KMnO_4$

PCC (Pyridinium Chlorochromate)

- $R-CH_2-OH \rightarrow R-CHO$ में बदलने का सबसे 53. अधिक उपयुक्त अभिकारक होता है :
 - (1)KMnO₄
 - K₂Cr₂O₇
 - (3)CrO₃
 - PCC (पिरिडीनियम क्लोरोक्रोमेट) (4)

54. The major organic compound formed by the reaction of 1, 1, 1 - trichloroethane with silver powder is:

- 2 Butyne (3)
- (4)2 - Butene

- 1, 1, 1 ट्राइक्लोरोईथेन को सिल्वर पाउडर के साथ 54. क्रिया करने पर सबसे बड़ी मात्रा में बना आरगैनिक यौगिक होता है:
 - एसिटिलीन

 - 2 ब्युटीन

WWW.TEKOCLASSES.COM MATHS BY SUHAG KARIYA BHOPAL PHONE (0755) 32 00 000

55. Sodium phenoxide when heated with CO₂ under pressure at 125°C yields a product which on acetylation produces C.

$$\bigcirc ONa + CO_2 \xrightarrow{125^{\circ}} B \xrightarrow{H^+} C$$

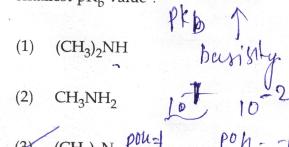
The major product C would be:

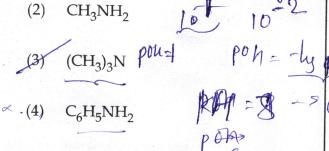
$$(3) \qquad \bigcirc COOCH_3$$

$$\begin{array}{c}
\text{O COCH}_{3} \\
\text{COOH}
\end{array}$$

सोडियम फ़ैनाक्साइड की उच्च दाब और 125°C पर CO2 से अभिक्रिया करने पर जो यौगिक प्राप्त होता है उसके एसिटिलेशन पर क्रिया फल C होता है।

$$\bigcirc -ONa + CO_2 \xrightarrow{125^{\circ}} B \xrightarrow{H^+} C$$

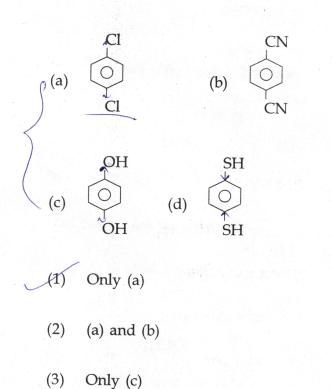

बड़ी मात्रा में क्रिया फल C होगा:


$$\begin{array}{ccc} & \text{O COCH}_3 \\ \text{(1)} & \text{COOH} \end{array}$$

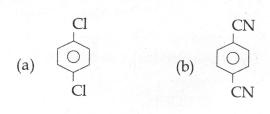
(2)
$$OH$$
 $COCH_3$

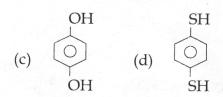
$$(4) \qquad \bigcirc \text{COCH}_3$$

56. Considering the basic strength of amines in aqueous solution, which one has the smallest pK_b value?

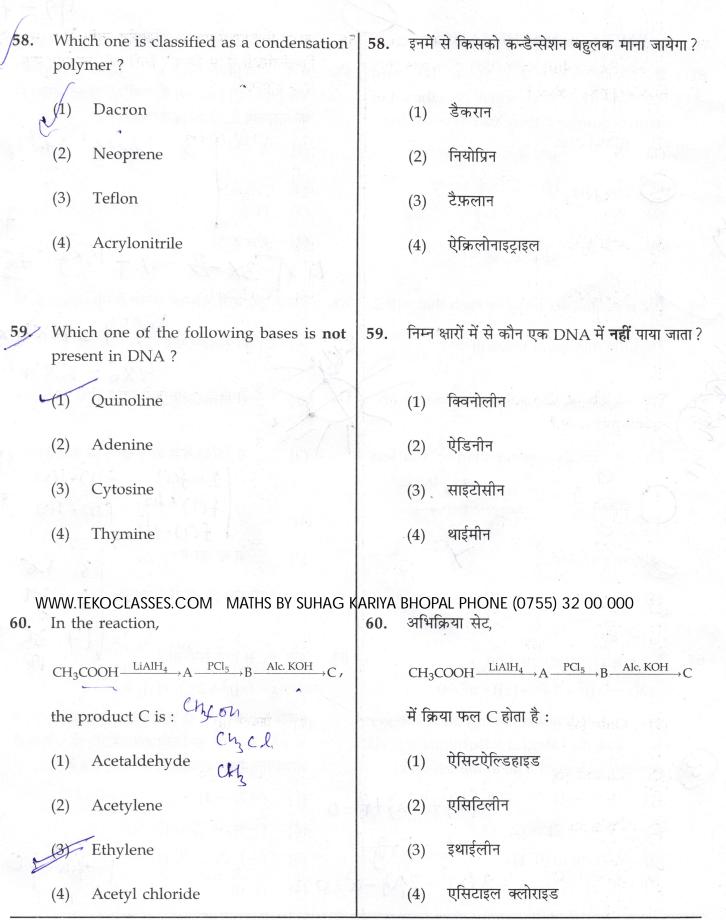


- 56. जलीय विलयन में एमीनों की क्षारीय प्रवृत्ति के अनुसार निम्नलिखितों में से किसके लिये pK_b का मान कम से कम होगा?
 - (1) $(CH_3)_2NH$
 - (2) CH₃NH₂
- (4) $(CH_3)_3N$


WWW.TEKOCLASSES.COM MATHS BY SUHAG KARIYA BHOPAL PHONE (0755) 32 00 000


57. For which of the following molecule significant $\mu\neq 0$?

(c) and (d)


- 57. निम्न में से किस अणु के लिये बहुत सीमा तक $\mu \neq 0$ होगा?

- (1) केवल (a)
- (2) (a) और (b)
- (3) केवल (c)
- (4) (c) और (d)

(4)

