>> TRIANGLES

ML-10

TRIANGLE

A plane figure bounded by three lines in a plane is called a triangle. Every triangle have three sides and three angels. If ABC is any triangle then $\mathrm{AB}, \mathrm{BC} \& \mathrm{CA}$ are three sides and $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$ are three angles.

(a) Types of Triangles:
(i) On the basis of sides we have three types of triangles:
(A) Scalene triangle : A triangle whose no two sides are equal is called a scalene triangle.
(B) Isosceles triangle - A triangle having two sides equal is called an isosceles triangle.
(C) Equilateral triangle - A triangle in which all sides are equal is called an equilateral triangle.
(ii) On the basis of angles we have three types of triangles :
(A) Right triangle - A triangle in which any one angle is right angle $\left(=90^{\circ}\right)$ is called right triangle
(B) Acute triangle - A triangle in which all angles are acute $\left(>90^{\circ}\right)$ is called an acute triangle.
(C) Obtuse triangle - A triangle in which any one angle is obtuse $\left(<90^{\circ}\right)$ is called an obtuse triangle.

CONGRUENT FIGURES

The figures are called congruent if they have same shape and same size. In order words, two figures are called congruent if they are having equal length, width and height.

Fig. (i)

Fig. (ii)

In the above figures \{fig. (i) and fig. (ii)\} both are equal in length, width and height, so these are congruent figures.

(a) Congruent Triangles:

Two triangles are congruent if and only if one of them can be made to superimposed on the other, so an to cover it exactly.

If two triangles $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are congruent then there exist a one to one correspondence between their vertices and sides. i.e. we get following six equalities.
$\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F}$ and $\mathrm{AB}=\mathrm{DE}, \mathrm{BC}=\mathrm{EF}, \mathrm{AC}=\mathrm{DF}$.
If two $\triangle \mathrm{ABC} \& \triangle \mathrm{DEF}$ are congruent under $\mathrm{A} \leftrightarrow \mathrm{D}, \mathrm{B} \leftrightarrow \mathrm{E}, \mathrm{C} \leftrightarrow \mathrm{F}$ one to one correspondence then we write $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ we can not write as $\triangle \mathrm{ABC} \cong \triangle \mathrm{DFE}$ of $\triangle \mathrm{ABC} \cong \triangle \mathrm{EDF}$ or in other forms because $\Delta \mathrm{ABC} \cong \triangle \mathrm{DFE}$ have following one-one correspondence $\mathrm{A} \leftrightarrow \mathrm{D}, \mathrm{B} \leftrightarrow \mathrm{F}, \mathrm{C} \leftrightarrow \mathrm{E}$.
Hence we can say that "two triangles are congruent if and only if there exists a one-one correspondence between their vertices such that the corresponding sides and the corresponding angles of the two triangles are equal.
(b) Sufficient Conditions for Congruence of two Triangles :
(i) SAS Congruence Criterion :

Two triangles are congruent if two sides and the included angle of one are equal to the corresponding sides and the included angle of the other triangle.
(ii) ASA Congruence Criterion : A

Two triangles are congruent if two angles and the included side of one triangle are equal to the corresponding two angles and the included side of the other triangle.
(iii) AAS Congruence Criterion :

If any two angles and a non included side of one triangle are equal to the corresponding angles and side of another triangle, then the two triangles are congruent.

Two triangles are congruent if the three sides of one triangle are equal to the corresponding three sides of the other triangle.
(v) RHS Congruence Criterion :

Two right triangles are congruent if the hypotenuse and one side of one triangle are respectively equal to the hypotenuse and one side of the other triangle.
(c) Congruence Relation in the Set of all Triangles:

By the definition of congruence of two triangles, we have following results.
(I) Every triangle is congruent to itself i.e. $\triangle \mathrm{ABC} \cong \triangle \mathrm{ABC}$
(II) If $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ then $\triangle \mathrm{DEF} \cong \triangle \mathrm{ABC}$
(III) If $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ and $\triangle \mathrm{DEF} \cong \triangle \mathrm{PQR}$ then $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$

NOTE : If two triangles are congruent then their corresponding sides and angles are also congruent by cpctc (corresponding parts of congruent triangles are also congruent).
Theorem-1 : Angles opposite to equal sides of an isosceles triangle are equal.
Given : $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=\mathrm{AC}$
To Prove: $\angle \mathrm{B}=\angle \mathrm{C}$
Construction : We draw the bisector AD of $\angle \mathrm{A}$ which meets BC in D .

Proof: In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$ we have
$\mathrm{AB}=\mathrm{AC}$
$\angle \mathrm{BAD}=\angle \mathrm{CAD}$
[Given]
[$\because \mathrm{AD}$ is bisector of $\angle \mathrm{A}$]

And, $\quad \mathrm{AD}=\mathrm{AD}$
[Common side]
$\therefore \quad$ By SAS criterion of congruence, we have
$\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
$\Rightarrow \quad \angle \mathrm{B}=\angle \mathrm{C}$ by cpctc
Hence Proved.

Theorem - 2: if two angles of a triangle are equal, then sides opposite to them are also equal.
Given : $\triangle \mathrm{ABC}$ in which $\angle \mathrm{B}=\angle \mathrm{C}$
To Prove : $A B=A C$
Construction: We draw the bisector of $\angle \mathrm{A}$ which meets BC in D .

Proof: In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$ we have
$\angle B=\angle C$
[Given]
$\angle \mathrm{BAD}=\angle \mathrm{CAD}$
$[\because \mathrm{AD}$ is bisector of $\angle \mathrm{A}$]
$\mathrm{AD}=\mathrm{AD}$
[Common side]
$\therefore \quad$ By AAS criterion of congruence, we get
$\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
$\Rightarrow \mathrm{AB}=\mathrm{AC}$
[By cpctc]
Hence, Proved.
Theorem-3 : if the bisector of the vertical angle bisects the base of the triangle, then the triangle is isosceles.

Given : $\mathrm{A} \triangle \mathrm{ABC}$ in which AD is the bisector of $\angle \mathrm{A}$ meeting BC in D such that $\mathrm{BD}=\mathrm{CD}$
To Prove: $\triangle \mathrm{ACD}$ is an isosceles triangle.
Construction : We produce AD to E such that $\mathrm{AD}=\mathrm{DE}$ and join EC .

Proof : In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{EDC}$ we have
$\mathrm{AD}=\mathrm{DE}$
$\angle \mathrm{ADB}=\angle \mathrm{CDE}$
$\mathrm{BD}=\mathrm{DC}$
[By construction]
[Vertically opposite angles]
[Given]
$\therefore \quad$ By SAS criterion of congruence, we get

$$
\Delta \mathrm{ADB} \cong \Delta \mathrm{EDC} \Rightarrow \mathrm{AB}=\mathrm{EC}
$$

And, $\angle \mathrm{BAD}=\angle \mathrm{CED}$
[By cpctc]
But, $\angle \mathrm{BAD}=\angle \mathrm{CAD}$
$\therefore \quad \angle \mathrm{CAD}=\angle \mathrm{CED}$
$\Rightarrow \mathrm{AC}=\mathrm{EC}$
$\Rightarrow \mathrm{AC}=\mathrm{AB}$
[Sides opposite to equal angles are equal]
[By eg. (i)]
Hence Proved.

Ex. 1 Prove that measure of each angle of an equilateral triangle is 60°.
Sol. Let $\triangle \mathrm{ABC}$ be an equilateral triangle, then we have

$$
\begin{equation*}
\mathrm{AB}=\mathrm{BC}=\mathrm{CA} \tag{i}
\end{equation*}
$$

$\therefore \quad \mathrm{AB}=\mathrm{BC}$
$\therefore \quad \angle \mathrm{C}=\angle \mathrm{A}$
[Angles opposite to equal sides are equal]
Also, $\quad \mathrm{BC}=\mathrm{CA}$
$\therefore \quad \angle \mathrm{A}=\angle \mathrm{B}$
[Angles opposite to equal sides]
By (ii) \& (iii) we get $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}$
Now in $\triangle \mathrm{ABC} \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 3 \angle A=180^{\circ}$
$[\therefore \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}]$
$\Rightarrow \angle A=60^{\circ}=\angle B=\angle C$

Hence Proved.

Ex. 2 If D is the mid-point of the hypotenuse AC of a right triangle ABC , prove that $\mathrm{BD}=\frac{1}{2} \mathrm{AC}$.
Sol. Let $\triangle \mathrm{ABC}$ is a right triangle such that $\angle \mathrm{B}=90^{\circ}$ and D is mid point of AC then we have to prove that $\mathrm{BD}=$ $\frac{1}{2} \mathrm{AC}$ we produce BD to E such that $\mathrm{BD}=\mathrm{AC}$ and EC .

Now is $\triangle \mathrm{ADB}$ and $\triangle \mathrm{CDE}$ we have
$\mathrm{AD}=\mathrm{DC}$
$B D=D E$
And, $\angle \mathrm{ADB}=\angle \mathrm{CDE}$
$\therefore \quad$ By SAS criterion of congruence we have
$\triangle \mathrm{ADB} \cong \Delta \mathrm{CDE}$
$\Rightarrow \mathrm{EC}=\mathrm{AB}$ and $\angle \mathrm{CED}=\angle \mathrm{ABD}$
...(i) [By cpctc]
But $\angle \mathrm{CED} \& \angle \mathrm{ABD}$ are alternate interior angles

$$
\begin{aligned}
& \therefore \quad \mathrm{CE} \| \mathrm{AB} \Rightarrow \angle \mathrm{ABC}+\angle \mathrm{ECB}=180^{\circ} \\
& \Rightarrow \quad 90+\angle \mathrm{ECB}=180^{\circ} \\
& \Rightarrow \quad \angle \mathrm{ECB}=90^{\circ}
\end{aligned}
$$

Now, In $\triangle \mathrm{ABC} \& \triangle \mathrm{ECB}$ we have
$\mathrm{AB}=\mathrm{EC}$
[By (i)]
[Common]

And, $\angle \mathrm{ABC}=\angle \mathrm{ECB}=90^{\circ}$
$\therefore \quad$ BY SAS criterion of congruence

$$
\Delta \mathrm{ABC} \cong \triangle \mathrm{ECB}
$$

$\Rightarrow \quad \mathrm{AC}=\mathrm{EB}$
[By cpctc]

Hence Proved.

Ex. 3 In a right angled triangle, one acute angle is double the other. Prove that the hypotenuse is double the smallest side.
Sol. Let $\triangle A B C$ is a right triangle such that $\angle B=90^{\circ}$ and $\angle A C B=2 \angle C A B$, then we have to prove $A C=2 B C$. we produce $C B$ to D such that $B D=C B$ and join $A D$.
Proof: In $\triangle A B D$ and $\triangle A B C$ we have
$B D=B C$
[By construction]
$A B=A B$
[Common]
$\angle \mathrm{ABD}=\angle \mathrm{ABC}=90^{\circ}$
$\therefore \quad$ By SAS criterion of congruence we get $\triangle \mathrm{ABD} \cong \triangle \mathrm{ABC}$
$\Rightarrow \quad \mathrm{AD}=\mathrm{AC}$ and $\angle \mathrm{DAB}=\angle \mathrm{CAB} \quad[$ By cpctc]
$\Rightarrow \mathrm{AD}=\mathrm{AC}$ and $\angle \mathrm{DAB}=\mathrm{x}$
$[\therefore \angle C A B=x]$

Now, $\angle \mathrm{DAC}=\angle \mathrm{DAB}+\angle \mathrm{CAB}=\mathrm{x}+\mathrm{x}=2 \mathrm{x}$
$\therefore \quad \angle \mathrm{DAC}=\angle \mathrm{ACD}$
\Rightarrow DC = AD [Side Opposite to equal angles]
$\Rightarrow \quad 2 \mathrm{BC}=\mathrm{AD} \quad[\because \mathrm{DC}=2 \mathrm{BC}$
$\Rightarrow 2 B C=A C$
[$\mathrm{AD}=\mathrm{AC}$]
Hence Proved.
Ex. 4 In figure, two sides $A B$ and $B C$ and the median $A M$ of a $\triangle A B C$ are respectively equal to sides $D E$ and $E F$ and the median $D N$ of $\triangle \mathrm{DEF}$. Prove that $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$.

Sol. $\quad \therefore \quad \mathrm{AM}$ and DN are medians of $\triangle \mathrm{ABC} \& \triangle \mathrm{DEF}$ respectively

$$
\begin{align*}
& \therefore \quad \mathrm{BM}=\mathrm{MC} \& \mathrm{EN}=\mathrm{NF} \\
& \Rightarrow \quad \mathrm{BM}=\frac{1}{2} \mathrm{BC} \& \mathrm{EN}=\frac{1}{2} \mathrm{EF} \\
& \text { But, } \mathrm{BC}=\mathrm{EF} \quad \therefore \mathrm{BM}=\mathrm{EN} \tag{i}
\end{align*}
$$

In $\triangle \mathrm{ABM} \& \triangle \mathrm{DEN}$ we have
$\mathrm{AB}=\mathrm{DE}$
$\mathrm{AM}=\mathrm{DN}$
Given]
$B M=E N$
[Given]
[By (i)]
$\therefore \quad$ By SSS criterion of congruence we have

$$
\Delta \mathrm{ABM} \cong \triangle \mathrm{DEN} \Rightarrow \angle \mathrm{~B}=\angle \mathrm{E} \ldots \text {...ii) } \quad[\text { By cpctc }]
$$

Now, In $\triangle \mathrm{ABC} \& \triangle \mathrm{DEF}$
$\mathrm{AB}=\mathrm{DE}$
[Given]
$\angle \mathrm{B}=\angle \mathrm{E}$
[By (ii)]
$B C=E F$
[Given]
$\therefore \quad$ By SAS criterion of congruence we get
$\Delta \mathrm{ABC} \cong \Delta \mathrm{DEF}$

SOME INEQUALITY RELATIONS IN A TRIANGLE

(i) If two sides of triangle are unequal, then the longer side has greater angle opposite to it. i.e. if in any $\triangle \mathrm{ABCAB}>\mathrm{AC}$ then $\angle \mathrm{C}>\angle \mathrm{B}$.
(ii) In a triangle the greater angle has the longer side opposite to it.
i.e. if in any $\triangle \mathrm{ABC} \angle \mathrm{A}>\angle \mathrm{B}$ then $\mathrm{BC}>\mathrm{AC}$.
(iii) The sum of any two sides of a triangle is greater than the third side.
i.e. if in any $\triangle A B C, A B+B C>A C, B C+C A>A B$ and $A C+A B>B C$.
(iv) Of all the line segments that can be drawn to a given line, from a point, not lying on it, the perpendicular line segment is the shortest.

P is any point not lying online $\ell, \mathrm{PM} \perp$ then $\mathrm{PM}<\mathrm{PN}$.
(v) The difference of any two sides of a triangle is less than the third side.
i.e. In any $\triangle A B C, A B-B C<A C, B C-C A<A B$ and $A C<A B<B C$.

Ex. 5 In figure, $P Q=P R$, show that $P S>P Q$

Sol. In $\triangle P Q R$
$\therefore \quad \mathrm{PQ}=\mathrm{PR}$
$\Rightarrow \quad \angle \mathrm{PRQ}=\angle \mathrm{PQR}$
In $\triangle P S Q, S Q$ is produced to R
$\therefore \quad$ Ext. $\angle \mathrm{PQR}>\angle \mathrm{PSQ}$
$\angle \mathrm{PRQ}>\angle \mathrm{PSQ}$
$\Rightarrow \quad \angle \mathrm{PRS}>\angle \mathrm{PSR}$
$\Rightarrow \mathrm{PS}>\mathrm{PR} \quad$ [Sides opposite to greater angles is larger]
But, $\quad P R=P Q$
$\therefore \quad \mathrm{PS}>\mathrm{PQ}$ Hence Proved.
Ex. 6 In figure, T is a point on side QR of $\triangle \mathrm{PQR}$ and S is a point such that $\mathrm{RT}=\mathrm{ST}$. Prove that $\mathrm{PQ}+\mathrm{PR}>\mathrm{QS}$
Sol. In $\triangle P Q R$ we have
$\mathrm{PQ}+\mathrm{PR}>\mathrm{QR}$
$\Rightarrow \mathrm{PQ}+\mathrm{PR}>\mathrm{QT}+\mathrm{TR}$
$\Rightarrow \mathrm{PQ}+\mathrm{PR}>\mathrm{QT}+\mathrm{ST} \therefore \mathrm{RT}=\mathrm{ST}$
In $\triangle \mathrm{QST}$ QT $+\mathrm{ST}>\mathrm{SQ}$
$\therefore \quad \mathrm{PQ}+\mathrm{PR}>\mathrm{SQ}$

Hence Proved.

EXERCISE

OBJECTIVE DPP \# 10.1

1. In the three altitudes of a Δ are equal then triangle is :
(A) isosceles
(B) equilateral
(C) right angled
(D) none
2. $A B C D$ is a square and P, Q, R are points on $A B, B C$ and $C D$ respectively such that $A P=B Q=C R$ and $\angle \mathrm{PQR}=90^{\circ}$, then $\angle \mathrm{QPR}$
(A) 45^{0}
(B) 50^{0}
(C) 60^{0}
(D) LM
3. In a $\triangle \mathrm{XYZ}, \mathrm{LM} \| \mathrm{YZ}$ and bisectors YN and ZN of $\angle \mathrm{Y} \& \angle \mathrm{Z}$ respectively meet at N on LM then $\mathrm{YL}+\mathrm{ZM}=$
(A) YZ
(B) $X Y$
(C) XZ
(D) LM
4. In a $\triangle \mathrm{PQR}, \mathrm{PS}$ is bisector of $\angle \mathrm{P}$ and $\angle \mathrm{Q}=70^{\circ} \angle \mathrm{R}=30^{\circ}$, then
(A) $\mathrm{QS}>\mathrm{PQ}>\mathrm{PR}$
(B) $\mathrm{QS}<\mathrm{PQ}<\mathrm{PR}$
(C) $\mathrm{PQ}>\mathrm{QS}>\mathrm{SR}$
(D) $\mathrm{PQ}<\mathrm{QS}<\mathrm{SR}$
5. If D is any point on the side $B C$ of a $\triangle A B C$, then :
(A) $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>2 \mathrm{AD}$
(B) $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}<2 \mathrm{AD}$
(C) $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>3 \mathrm{AD}$
(D) None
6. For given figure, which one is correct :

(A) $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$
(B) $\triangle \mathrm{ABC} \cong \triangle \mathrm{FED}$
(C) $\triangle \mathrm{ABC} \cong \triangle \mathrm{DFE}$
(D) $\triangle \mathrm{ABC} \cong \triangle \mathrm{EDF}$
7. In a right angled triangle. One acute angle is double the other then the hypotenuse is :
(A) Equal to smallest side
(B) Double the smallest side
(C) Triple the smallest side
(D) None of these

SUBJECTIVE DPP - 10.2

1. In the $\triangle \mathrm{ABC}$ given below, BD bisects $\angle \mathrm{B}$ and is perpendicular to $A C$. If the lengths of the sides of the triangle are expressed in terms of x and y as shown, find the values of x and y.

2. In the figure, $\mathrm{AB}=\mathrm{AD}$ prove that $\angle \mathrm{BCD}$ is a right angle.

3. If the bisector of an angle of a triangle also bisects the opposite side, prove that the triangle is isosceles.
4. AD is meadian of $\triangle \mathrm{ABC}$. Prove that $\mathrm{AB}+\mathrm{AC}>2 \mathrm{AD}$.
5. O is any point in the interior of a triangle $A B C$. Prove that $O B+O C<A B+A C$.
6. In figure, $\triangle \mathrm{ABC}$ is a right angled triangle at B . ADEC and BCFG are square Prove that $\mathrm{AF}=\mathrm{BE}$.

7. In figure $C D$ is the diameter perpendicular to the chord $A B$ of a circle with centre O. Prove that
(a) $\angle \mathrm{CAO}=\angle \mathrm{CBO}$
(b) $\angle \mathrm{AOB}=2 \angle \mathrm{ACB}$
8. $A B C D$ is a square and $E F \| B D$. E and F are the mid point of $B C$ and $D C$ respectively. Prove that
(a) $\mathrm{BE}=\mathrm{DF}$
(b) AR bisects $\angle \mathrm{BAD}$

9. In figure, $\triangle A B C$ is an equilateral triangle $P Q \| A C$ and $A C$ is produced to R such that $C R=P Q$. Prove that QR bisects PC.

10. In figure, the congruent parts of triangles have been indicated by line markings. Find the values of x \& y.

ANSWER KEY

(Objective DPP \# 10.1)

Qus.	1	2	3	4	5	6	7
Ans.	B	A	D	B	A	C	B

(Subjective DPP \# 10.2)

1. 16,8
2. 71,9

QUADRILATERIAL <<<

ML - 11

QUADRILATERL

A quadrilateral is a closed figure obtained by joining four points (with no three points collinear) In an order.
(I) Since, 'quad' means 'four' and 'lateral' is for 'sides' therefore 'quadrilateral' means 'a figure bounded by four sides'.
(II) Every quadrilateral has :
(A) Four vertices,
(B) Four sides
(C) Four angles and
(D) Two diagonals.
(III) A diagonals is a line segment obtained on joining the opposite vertices.

(a) Sum of the Angles of a Quadrilateral :

Consider a quadrilateral $A B C D$ as shown alongside. Join A and C to get the diagonal $A C$ which divides the quadrilateral ABCD into two triangles ABC and ADC .
We know the sum of the angles of each triangle is 180° (2 right angles).
$\therefore \quad$ In $\triangle \mathrm{ABC} ; \angle \mathrm{CAB}+\angle \mathrm{B}+\angle \mathrm{BCA}=180^{\circ}$ and
In $\triangle \mathrm{ADC} ; \angle \mathrm{DAC}+\angle \mathrm{D}+\angle \mathrm{DCA}=180^{\circ}$
On adding, we get : $(\angle \mathrm{CAB}+\angle \mathrm{DAC})+\angle \mathrm{B}+\angle \mathrm{D}+(\angle \mathrm{BCA}+\angle \mathrm{DCA})=180^{\circ}+180^{\circ}$

$\Rightarrow \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{D}+\angle \mathrm{C}=360^{\circ}$
Thus, the sum of the angles of a quadrilateral is 360° (4-right angles).
Ex. 1 The angles of a quadrilateral are in the ratio $3: 5: 9: 13$. Find all the angles of the quadrilateral.
Sol. Given the ratio between the angles of the quadrilateral $=3: 5: 9: 13$ and $3+5+9+13=30$
Since, the sum of the angles of the quadrilateral $=360^{\circ}$
$\therefore \quad$ First angle of it $=\frac{3}{30} \times 360^{\circ}=36^{\circ}$,
Second angle $=\frac{5}{30} \times 360^{\circ}=60^{\circ}$,
Third angle $=\frac{9}{30} \times 360^{\circ}=108^{0}$,
And, Fourth angle $=\frac{13}{30} \times 360^{\circ}=156^{0}$
\therefore The angles of quadrilateral are $360^{\circ}, 60^{\circ}, 108^{\circ}$ and 156°.

ALTERNATE SOLUTION :

Let the angles be $3 x, 5 x, 9 x$ and 13 .

$$
\begin{array}{ll}
\therefore \quad & 3 x+5 x+9 x+13 x=360^{0} \\
\Rightarrow & 30 x=360^{\circ} \text { and } x=\frac{360^{0}}{30}=12^{0} \\
\therefore \quad & 1^{\text {st }} \text { angle }=3 x=2 \times 12^{0}=360^{0} \\
& 2^{\text {nd }} \text { angle }=5 x=\times 12^{0}=60^{\circ} \\
& 3^{\text {rd }} \text { angle }=9 x=9 \times 12^{0}=108^{0}
\end{array}
$$

And, $\quad 4^{\text {th }}$ angle $=13 \times 12^{0}=156^{0}$.
Ex. 2 Use the informations given in adjoining figure to calculate the value of x.
Sol. Since, EAB is a straight line.
$\therefore \quad \angle \mathrm{DAE}+\angle \mathrm{DAB}=180^{0}$
$\Rightarrow \quad 73^{0}+\angle \mathrm{DAB}=180^{0}$
i.e., $\angle \mathrm{DAB}=180^{\circ}-73^{0}=107^{0}$

Since, the sum of the angles of quadrilateral ABCD is 360°

$\therefore \quad 107^{0}+105^{0}+\mathrm{x}+80^{0}=360^{\circ}$
$\Rightarrow 292^{0}+x=360^{0}$
$\Rightarrow \mathrm{x}=360^{\circ}-292^{\circ}$
$\Rightarrow \quad \mathrm{x}=68^{0}$
Ans.
(b) Types of Quadrilaterals:
(i) Trapezium : It is a quadrilateral in which one pair of opposite sides are parallel. In the quadrilateral $A B C D$, drawn alongside, sides $A B$ and $D C$ are parallel, therefore it is a trapezium.

(ii) Parallelogram : It is a quadrilateral in which both the pairs of opposite sides are parallel. The adjoining figure shows a quadrilateral $A B C D$ in which $A B$ is parallel to $D C$ and $A D$ is parallel to $B C$, therefore $A B C D$ is a parallelogram.

(iii) Rectangle : it is a quadrilateral whose each angle is 90°
(A) $\angle \mathrm{A}+\angle \mathrm{B}=90^{\circ}+90^{\circ}=180^{\circ} \Rightarrow \mathrm{AD} \| \mathrm{BC}$
(B) $\angle \mathrm{B}+\angle \mathrm{C}=90^{\circ}+90^{\circ}=180^{\circ} \Rightarrow \mathrm{AB} \| \mathrm{DC}$

Rectangle ABCD is a parallelogram Also.
(iv) Rhombus : It is a quadrilateral whose all the sides are equal. The adjoining figure shows a quadrilateral $A B C D$ in which $A B=B C=C D=D A$; therefore it is a rhombus.

(v) Square : It is a quadrilateral whose all the sides are equal and each angle is 90°. The adjoining figure shows a quadrilateral ABCD in which $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$ and $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$, therefore ABCD is a square.

(vi) Kite : It is a quadrilateral in which two pairs of adjacent sides are equal. The adjoining figure shows a quadrilateral $A B C D$ in which adjacent sides $A B$ and $A D$ are equal i.e., $A B=A D$ and also the other pair of adjacent sides are equal i.e., $B C=C D$; therefore it is a kite or kite shaped figure.

REMARK :

(i) Square, rectangle and rhombus are all parallelograms.
(ii) Kite and trapezium are not parallelograms.
(iii) A square is a rectangle.
(iv) A square is a rhombus.
(v) A parallelogram is a trapezium.

PARALLELOGRAM

A parallelogram is a quadrilateral in which both the pairs of opposite sides are parallel.
Theorem 1 : A diagonal of a parallelogram divides the parallelogram into two congruent triangles.
Given : A parallelogram $A B C D$.
To Prove: A diagonal divides the parallelogram into two congruent triangles
i.e., if diagonal $A C$ is drawn then $\triangle A B C \cong \triangle C D A$
and if diagonal BD is drawn then $\triangle \mathrm{ABD} \cong \triangle \mathrm{CDB}$

Construction : Join A and C
Proof: Sine, $A B C D$ is a parallelogram
AB || DC and AD || BC
Free www.tekoclasses.com Director : SUHAG R. KARIY A (SRK Sir), Bhopal Ph.:(0755) 3200000 Page 95

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDA}$

$$
\begin{aligned}
\angle \mathrm{BAC}=\angle \mathrm{DCA} & \text { [Alternate angles] } \\
\angle \mathrm{BCA}=\angle \mathrm{DAC} & \text { [Alternate angles] } \\
\text { And, } \mathrm{AC}=\mathrm{AC} & \text { [Common side] } \\
\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{CDA} &
\end{aligned}
$$

Similarly, we can prove that
$\Delta \mathrm{ABD} \cong \Delta \mathrm{CDB}$
Theorem 2 : In a parallelogram, opposite sides are equal.
Given : A parallelogram $A B C D$ in which $A B \| D C$ and $A D \| B C$.

To Prove : Opposite sides are equal i.e., $\mathrm{AB}=\mathrm{DC}$ and $\mathrm{AD}=\mathrm{BC}$
Construction : Join A and C
Proof : In $\triangle A B C$ and $\triangle C D A$

$\angle \mathrm{BAC}=\angle \mathrm{DCA}$	[Alternate angles]
$\angle \mathrm{BCA}=\angle \mathrm{DAC}$	

$\mathrm{AC}=\mathrm{AC} \quad$ [Common]
$\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{CDA} \quad[\mathrm{By} \mathrm{ASA}]$
$\Rightarrow \mathrm{AB}=\mathrm{DC}$ and $\mathrm{AD}=\mathrm{BC} \quad$ [By cpctc]
Hence Proved.
Theorem 3: If each pair of opposite sides of a quadrilateral is equal, then it is a parallelogram Given : A quadrilateral ABCD in which

To Prove: ABCD is a parallelogram i.e., $\mathrm{AB} \| \mathrm{DC}$ and $\mathrm{AD} \| \mathrm{BC}$
Construction : Join A and C
Proof : In $\triangle A B C$ and $\triangle C D A$

	$\mathrm{AB}=\mathrm{DC}$	[Given]
	$\mathrm{AD}=\mathrm{BC}$	[Given]
And	$\mathrm{AC}=\mathrm{AC}$	[Common]
\therefore	$\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$	[By SSS]
\Rightarrow	$\angle 1=\angle 3$	[By cpctc]
And	$\angle 2=\angle 4$	[By cpctc]

But these are alternate angles and whenever alternate angles are equal, the lines are parallel.
$\therefore \quad \mathrm{AB} \| \mathrm{DC}$ and $\mathrm{AD} \| \mathrm{BC}$
$\Rightarrow \quad \mathrm{ABCD}$ is a parallelogram. Hence Proved.

Theorem 4: In a parallelogram, opposite angles are equal.
Given : A parallelogram $A B C D$ in which $A B|\mid D C$ and $A D| \mid B C$.
To Prove : Opposite angles are equal
i.e. $\angle \mathrm{A}=\angle \mathrm{C}$ and $\angle \mathrm{B}=\angle \mathrm{D}$

Construction: Draw diagonal AC

Proof : In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDA}$:
$\angle \mathrm{BAC}=\angle \mathrm{DCA} \quad$ [Alternate angles]
$\angle \mathrm{BCA}=\angle \mathrm{DAC} \quad$ [Alternate angles]
$\mathrm{AC}=\mathrm{AC} \quad$ [Common]
$\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$ [By ASA]
$\Rightarrow \quad \angle \mathrm{B}=\angle \mathrm{D} \quad$ [By cpctc]
And, $\quad \angle \mathrm{BAD}=\angle \mathrm{DCB}$ i.e., $\quad \angle \mathrm{A}=\angle \mathrm{C}$
Similarly, we can prove that $\quad \angle \mathrm{B}=\angle \mathrm{D}$
Hence Proved.
Theorem 5: If in a quadrilateral, each pair of opposite angles is equal, then it is a parallelogram.
Given : A quadrilateral ABCD in which opposite angles are equal.
i.e., $\angle \mathrm{A}=\angle \mathrm{C}$ ad $\angle \mathrm{B}=\angle \mathrm{D}$

To prove : ABCD is a parallelogram i.e, $\mathrm{AB} \| \mathrm{DC}$ and $\mathrm{AD} \| \mathrm{BC}$.
Proof : Since, the sum of the angles of quadrilateral is 360°

$\Rightarrow \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}$
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{D}+\angle \mathrm{A}+\angle \mathrm{D}=360 . . \quad[\angle \mathrm{A}=\angle \mathrm{C}$ and $\angle \mathrm{B}=\angle \mathrm{D}]$
$\Rightarrow 2 \angle \mathrm{~A}=2 \angle \mathrm{D}=360^{\circ}$
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{D}=180^{\circ} \quad$ [Co-interior angle]
$\Rightarrow \mathrm{AB} \| \mathrm{DC}$
Similarly,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}$
$\Rightarrow \quad \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{A}+\angle \mathrm{B}=360^{\circ} \quad[\angle \mathrm{A}=\angle \mathrm{C}$ and $\angle \mathrm{B}=\angle \mathrm{D}]$
$\Rightarrow \quad 2 \angle \mathrm{~A}+2 \angle \mathrm{~V}=360^{\circ}$
$\Rightarrow \quad \angle A+\angle B=180^{\circ} \quad[\because$ This is sum of interior angles on the same side of transversal $A B]$
$\therefore \quad \mathrm{AD} \| \mathrm{BC}$
So, $\quad A B \| D C$ and $A D|\mid B C$
$\Rightarrow A B C D$ is a parallelogram. Hence Proved.
Theorem 6 : The diagonal of a parallelogram bisect each other.
Given : A parallelogram ABCD . Its diagonals AC and BD intersect each other at point O .
To Prove : Diagonals $A C$ and $B D$ bisect each other i.e., $O A=O C$ and $O B=O D$.
Proof : In $\triangle A O B$ and $\triangle C O D$
$\because \quad \mathrm{AB} \| \mathrm{DC}$ and BD is a transversal line.
$\therefore \quad \angle \mathrm{ABO}=\angle \mathrm{DCO}$
[Alternate angles]
$\therefore \quad \mathrm{AB} \| \mathrm{DC}$ and AC is a transversal line.
$\therefore \quad \angle \mathrm{BAO}=\angle \mathrm{DCO}$
[Alternate angles]

And, $\quad \mathrm{AB}=\mathrm{DC}$
$\Rightarrow \quad \triangle \mathrm{AOB} \cong \triangle C O D$
$\Rightarrow \mathrm{OA}=\mathrm{OC}$ and $\mathrm{OB}=\mathrm{OD}$
[By ASA]
[By cpctc]
Hence Proved.

Theorem 7 : If the diagonals of a quadrilateral bisect each other, then it is a parallelogram.

Given : A quadrilateral ABCD whose diagonals AC and BD bisect each other at point O .
i.e., $O A=O C$ and $O B=O D$

To prove : $A B C D$ is a parallelogram
i.e., $A B \| D C$ and $A D \| B C$.

Proof: In $\triangle A O B$ and $\triangle C O D$

$$
\begin{array}{ll}
\mathrm{OA}=\mathrm{OC} & {[\text { Given }]} \\
\mathrm{OB}=\mathrm{OD} & {[\text { Given }\}}
\end{array}
$$

And, $\angle A O B=\angle C O D$
[Vertically opposite angles]
$\Rightarrow \quad \triangle \mathrm{AOB} \cong \triangle C O D$
[By SAS]
$\Rightarrow \quad \angle 1=\angle 2$
[By cpctc]
But these are alternate angles and whenever alternate angles are equal, the lines are parallel.
$\therefore \quad \mathrm{AB}$ is parallel to DC i.e., $\mathrm{AB} \| \mathrm{DC}$
Similarly,

$$
\begin{array}{lll}
& \Delta \mathrm{AOD} \cong \triangle \mathrm{COB} & \\
\Rightarrow \quad \angle 3=\angle 4 & & \\
\text { But these are also alternate angles }
\end{array} \quad \Rightarrow \quad \mathrm{AD} \| \mathrm{BC}
$$

$\mathrm{AB} \| \mathrm{DC}$ and $\mathrm{AD} \| \mathrm{BC} \quad \Rightarrow \quad \mathrm{ABCD}$ is parallelogram. Hence Proved.
Theorem 8 : A quadrilateral is a parallelogram, if a pair of opposite sides is equal and parallel.
Given : A quadrilateral ABCD in which $\mathrm{AB} \| \mathrm{DC}$ and $\mathrm{AB}=\mathrm{DC}$.
To Prove : $A B C D$ is a parallelogram
i.e., $A B \| D C$ and $A D \| B C$.

Construction : Join A and C.
Proof : Since AB is parallel to DC and AC is transversal

$$
\begin{aligned}
& \angle \mathrm{BAC}=\angle \mathrm{DCA} \\
& \mathrm{AB}=\mathrm{DC}
\end{aligned}
$$

[Alternate angles]
[Given]
And $\quad A C=A C$
[Common side]
$\Rightarrow \quad \triangle \mathrm{BAC} \cong \triangle \mathrm{DCA}$
[By SAS]
$\Rightarrow \angle \mathrm{BCA}=\angle \mathrm{DAC}$
[By cpctc]
But these are alternate angles and whenever alternate angles are equal, the lines are parallel.
$\Rightarrow \mathrm{AD} \| \mathrm{BC}$
Now, $\mathrm{AB} \| \mathrm{DC}$ (given) and $\mathrm{AD} \| \mathrm{BC} \quad$ [Proved above]
$\Rightarrow \quad \mathrm{ABCD}$ is a parallelogram
Hence Proved.
REMARKS :
In order to prove that given quadrilateral is parallelogram, we have to prove that :
(i) Opposite angles of the quadrilateral are equal, or
(ii) Diagonals of the quadrilateral bisect each other, or
(iii) A pair of opposite sides is parallel and is of equal length, or
(iv) Opposite sides are equal.
(v) Every diagonal divides the parallelogram into two congruent triangles.

EXERCISE

OBJECTIVE DPP \# 11.1

1. In a parallelogram $\mathrm{ABCD}, \angle \mathrm{D}=105^{\circ}$, then the $\angle \mathrm{A}$ and $\angle \mathrm{B}$ will be.
(A) $105^{0}, 75^{0}$
(B) $75^{0}, 105^{0}$
(C) $105^{0}, 105^{0}$
(D) $75^{0}, 75^{0}$
2. In a parallelogram ABCD diagonals AC and BD intersects at O and $\mathrm{AC}=12.8 \mathrm{~cm}$ and $\mathrm{BD}=7.6 \mathrm{~cm}$, then the measure of OC and OD respectively equal to :
(A) $1.9 \mathrm{~cm}, 6.4 \mathrm{~cm}$
(B) $3.8 \mathrm{~cm}, 3.2 \mathrm{~cm}$
(C) $3.8 \mathrm{~cm}, 3.2 \mathrm{~cm}$
(D) $6.4 \mathrm{~cm}, 3.8 \mathrm{~cm}$
3. Two opposite angles of a parallelogram are $(3 x-2)^{0}$ and $(50-x)^{0}$ then the value of x will be :
(A) 17^{0}
(B) 16^{0}
(C) 15^{0}
(D) 13^{0}
4. When the diagonals of a parallelogram are perpendicular to each other then it is called.
(A) Square
(B) Rectangle
(C) Rhombus
(D) Parallelogram
5. In a parallelogram $A B C D, E$ is the mid-point of side $B C$. If $D E$ and $A B$ when produced meet at F then :
(A) $\mathrm{AF}=\frac{1}{2} \mathrm{AB}$
(B) $\mathrm{AF}=2 \mathrm{AB}$
(C) $\mathrm{AF}=4 \mathrm{AB}$
(D) Data Insufficient
6. ABCD is a rhombus with $\angle \mathrm{ABC}=56^{\circ}$, then the $\angle \mathrm{ACD}$ will be.
(A) 56^{0}
(B) 62^{0}
(C) 124^{0}
(D) 34^{0}
7. In a triangle, P, Q, and R are the mid-points of the sides $B C, C A$ and $A B$ respectively. If $A C=16 \mathrm{~cm}, B C=20$ cm and $\mathrm{AB}=24 \mathrm{~cm}$ then the perimeter of the quadrilateral ARPQ will be.
(A) 60 cm
(B) 30 cm
(C) 40 cm
(D) None
8. LMNO is a trapezium with $\mathrm{LM} \| \mathrm{NO}$. If P and Q are the mid-points of LO and MN respectively and $\mathrm{LM}=$ 5 cm and $\mathrm{ON}=10 \mathrm{~cm}$ then $\mathrm{PQ}=$
(A) 2.5 m
(B) 5 cm
(C) 7.5 cm
(D) 15 cm
9. In a Isosceles trapezium ABCD if $\angle \mathrm{A}=45^{\circ}$ then $\angle \mathrm{C}$ will be.
(A) 90°
(B) 135^{0}
(C) 90°
(D) None
10. In a right angle triangle ABC is right angled at B . Given that $\mathrm{AB}=9 \mathrm{~cm}, \mathrm{AC}=15 \mathrm{~cm}$ and D, E are the midpoints of the sides $A B$ and $A C$ respectively, then the area of $\triangle A D E=$
(A) $67.5 \mathrm{~cm}^{2}$
(B) $13.5 \mathrm{~cm}^{2}$
(C) $27 \mathrm{~cm}^{2}$
(D) Data insufficient
11. Find the measures of all the angles of a parallelogram, if one angle is 24^{0} less than twice the smallest angle.
12. In the following figure, ABCD is a parallelogram in which $\angle \mathrm{DAB}=75^{\circ}$ and $\angle \mathrm{DBC}=60^{\circ}$. Find $\angle \mathrm{COB}$ and $\angle \mathrm{ADB}$.

13. In the following figure, ABCD is a parallelogram $\angle \mathrm{DAO}=40^{\circ}, \angle \mathrm{BAO}=35^{\circ}$ and $\angle \mathrm{COD}=65^{\circ}$. Find
(i) $\angle \mathrm{ABO}$
(ii) $\angle \mathrm{ODC}$
(iii) $\angle \mathrm{ACB}$
(iv) $\angle \mathrm{CBD}$

14. In the following figure, ABCD is a parallelogram in which $\angle \mathrm{A}=65^{\circ}$. Find $\angle \mathrm{B}, \angle \mathrm{C}$ and $\angle \mathrm{D}$.

15. In the following figure, ABCD is a parallelogram in which $\angle \mathrm{A}=60^{\circ}$. If the bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ meet at P , prove that $\angle \mathrm{APB}=90^{\circ}$. Also, prove that $\mathrm{AD}=\mathrm{DP}, \mathrm{PC}=\mathrm{BC}$ and $\mathrm{DC}=2 \mathrm{AD}$.

ML - 12

MID-POINT THEOREM

Statement : In a triangle, the line segment joining the mid-points of any two sides is parallel to the third side and is half of it.

Given : A triangle $A B C$ is which P is the mid-point of side $A B$ and Q is the mid-point of side $A C$.
To Prove : P is parallel to $B C$ and is half of it i.e., $P Q \| B C$ and $P Q=\frac{1}{2} B C$
Construction : Produce $P Q$ upto point R such that $P Q=Q R$. Join T and C.
Proof: In $\triangle A P Q$ and $\triangle C R Q$:-
$P Q=Q R$
[By construction]
$A Q=Q C$
And, $\quad \angle \mathrm{AQP}=\angle \mathrm{CQR}$
$\Rightarrow \quad \triangle \mathrm{APQ} \cong \triangle C R Q$
$\Rightarrow \mathrm{AP}=\mathrm{CR}$
And, $\quad \angle \mathrm{APQ}=\angle \mathrm{CRQ}$
[Given]
[Vertically opposite angles]
[By SAS]
[By cpctc]
[By cpctc]

But, $\angle \mathrm{APQ}$ and $\angle \mathrm{CRQ}$ are alternate angles and we know, whenever the alternate angles are equal, the lines are parallel.
$\Rightarrow \mathrm{AP} \| \mathrm{CR}$
$\Rightarrow \mathrm{AB} \| \mathrm{CR}$
$\Rightarrow \mathrm{BP} \| \mathrm{CR}$
Given, P is mid-point of $A B$
$\Rightarrow \mathrm{AP}=\mathrm{BP}$
$\Rightarrow \quad \mathrm{CR}=\mathrm{BP} \quad[\mathrm{As}, \mathrm{AP}=\mathrm{CR}]$
Now, $\quad \mathrm{BP}=\mathrm{CR}$ and $\mathrm{BP} \| \mathrm{CR}$
$\Rightarrow B C R P$ is a parallelogram.
[When any pair of opposite sides are equal and parallel, the quadrilateral is a parallelogram] $B C R P$ is a parallelogram and opposite sides of a parallelogram are equal and parallel.
$\therefore \quad \mathrm{PR}=\mathrm{BC}$ and $\mathrm{PR} \| \mathrm{BC}$
Since, $\mathrm{PQ}=\mathrm{QR}$
$\Rightarrow \mathrm{PQ}=\frac{1}{2} \mathrm{PR}$
$=\frac{1}{2} B C$
[As, $\mathrm{PR}=\mathrm{BC}$]
Also, $\quad \mathrm{PQ}|\mid \mathrm{BC}$
[As, PR || BC]
$\therefore \quad \mathrm{PQ} \| \mathrm{BC}$ and $\mathrm{P}+\frac{1}{2} \mathrm{BC}$

ALTERNATIVE METHOD :

Construction : Draw CR parallel to BA intersecting PQ produced at point R.
Proof: In $\triangle \mathrm{APQ}$ and $\triangle \mathrm{CRQ}$

$$
\begin{array}{ll}
\mathrm{AQ}=\mathrm{CQ} & \text { [Given] } \\
\angle \mathrm{AQP}=\angle \mathrm{RQC} & \text { [Vertically opposite angles] }
\end{array}
$$

And

$$
\angle \mathrm{PAQ}=\angle \mathrm{RCQ}
$$

$$
\Delta \mathrm{APQ} \cong \Delta \mathrm{CRQ}[\mathrm{By} \mathrm{ASA}]
$$

$\Rightarrow \quad \mathrm{CR}=\mathrm{AP}$ and $\mathrm{QR}=\mathrm{PQ}$
[Alternate angles, as $\mathrm{AB} \| \mathrm{CR}$]
[By cpctc]
Since, $\quad C R=A P$ and $A P=P B$
$\Rightarrow \mathrm{CR}=\mathrm{PB}$
Also, $\quad \mathrm{CR} \| \mathrm{PB} \quad$ [By construction]
$\therefore \quad$ PBCR is a parallelogram [As, opposite sides PB and CR are equal and parallel]
$\Rightarrow B C \| P R$ and $B C=P R$
$\Rightarrow B C \| P Q$ and $B C=2 P Q \quad[\because P Q=Q R]$
$\Rightarrow \mathrm{PQ} \| \mathrm{BC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{BC}$

Hence Proved.

(a) Converse of the Mid-Point Theorem

Statement : The line drawn through the mid-point of one side of a triangle parallel to the another side bisects the third side.

Given : A triangle $A B C$ in which P is the mid-point of side $A B$ nd $P Q$ is parallel to $B C$.
To prove: $P Q$ bisects the third side $A B$ i.e., $A Q=Q C$.
Construction : Through C, draw CR parallel to $B A$, which meets $P Q$ produced at point R.
Proof : Since, $\mathrm{PQ} \|$ BC i.e., $\mathrm{PR} \| \mathrm{BC}$ [Given] and CR || BA i.e., CR || BP [By construction]
\therefore Opposite sides of quadrilateral PBCR are parallel.
$\Rightarrow \mathrm{PBCR}$ is a parallelogram
$\Rightarrow \mathrm{BP}=\mathrm{CR}$
Also, $\mathrm{BP}=\mathrm{AP} \quad[\mathrm{As}, \mathrm{P}$ is mid-point of AB$]$
$\therefore \quad C R=A P$
$\therefore \quad \mathrm{AB} \| \mathrm{CR}$ and AC is transversal, $\angle \mathrm{PAQ}=\angle \mathrm{RCQ}$
[Alternate angles]
$\therefore \quad \mathrm{AB} \| \mathrm{CR}$ and PR is transversal, $\angle \mathrm{APQ}=\angle \mathrm{CRQ}$
[Alternate angles]
In $\triangle \mathrm{APQ}$ and $\triangle \mathrm{CRQ}$
$\mathrm{CR}=\mathrm{AP}, \angle \mathrm{PAQ}=\angle \mathrm{RCQ}$ and $\angle \mathrm{APQ}=\angle \mathrm{CRQ}$
$\Rightarrow \quad \triangle \mathrm{APQ} \cong \triangle C R Q$
$\Rightarrow \mathrm{AAQ}=\mathrm{QC}$
[By ASA]
Hence Proved.

Ex. $1 \quad A B C D$ is a rhombus and P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Prove that the quadrilateral PQRS is a rectangle.

Sol. According to the given statement, the figure will be a shown alongside; using mid-point theorem :-

In $\triangle \mathrm{ABC}, \mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$
In $\triangle \mathrm{ADC}, \mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=\frac{1}{2} \mathrm{AC}$
$\therefore \quad \mathrm{P}=\mathrm{SR}$ and $\mathrm{PQ} \| \mathrm{SR}$
[From (i) and (ii)]
$\Rightarrow \mathrm{PQRS}$ is a parallelogram.
Now, PQRS will be a rectangle if any angle of the parallelogram PWRS is 90°
PQ \| AC [By mid-point theorem]
$\mathrm{QR}=\mathrm{BD}$
[By mid-point theorem]
But, $\mathrm{AC} \perp \mathrm{BD}$
[Diagonals of a rhombus are perpendicular to each other]
$\therefore \quad \mathrm{PQ} \perp \mathrm{QR}$
[Angle between two lines = angles between their parallels]
$\Rightarrow P Q R S$ is a rectangle
Hence Proved.
Ex. $2 \quad \mathrm{ABCD}$ is a trapezium in which $\mathrm{AB} \| \mathrm{DC}, \mathrm{BD}$ is a diagonal and E is the mid-point of AD . A line is drawn through E parallel to $A B$ intersecting $B C$ at F (as shown). Prove that F is the mid-point of $B C$.
Sol. Given line $E F$ is parallel to $A B$ and $A B \| D C$
$\therefore \quad \mathrm{EF}\|\mathrm{AB}\| \mathrm{DC}$.

According to the converse of the mid-point theorem, is $\triangle \mathrm{ABD}, \mathrm{E}$ is the mid-point of AD .
EP is parallel to $A B$
[As EF \| AB]
$\therefore \quad \mathrm{P}$ is mid-point of side BD
[The line through the mid-point of a side of a triangle and parallel to the other side, bisects the third side]
Now, in $\triangle \mathrm{BCD}, \mathrm{P}$ is mid-point of BD [Proved above]
And, PF is parallel to DC [As EF || DC]
$\therefore \quad \mathrm{F}$ is mid-point of BC
[The line through the mid-point of a side of a triangle and parallel to the other side, bisects the third side]
Hence Proved.

REMARK :

In quadrilateral $A B C D$, if side $A D$ is parallel to side $B C ; A B C D$ is a trapezium.

Now, P and Q are the mid-points of the non-parallel sides of the trapezium; then $P Q=\frac{1}{2}(A D+B C)$. i.e. The length of the line segment joining the mid-points of the two non-parallel sides of a trapezium is always equal to half of the sum of the lengths of its two parallel sides.

Theorem.3: If there are three or more parallel lines and the intercepts made by them on a transversal are equal, then the corresponding intercepts on any other transversal are also equal.
Given : Three parallel lines I, m and n i.e., I \| m \| n. A transversal p meets these parallel lines are points A, B and C respectively such that $A B=B C$. Another transversal q also meets parallel lines I, m and n at points D, E and F respectively.

To Prove: DE = EF
Construction : Through point A, draw a line parallel to DEF; which meets BE at point P and CF and point Q.

Proof : In $\triangle A C Q, B$ is mid-point of $A C$ and $B P$ is parallel to $C Q$ and we know that the line through the midpoint of one side of the triangle and parallel to another sides bisects the third side.
$\therefore \quad \mathrm{AP}=\mathrm{PQ}$
When the opposite sides of a quadrilateral are parallel, it is a parallelogram and so its opposite sides are equal.
$\therefore \quad \mathrm{AP} \| \mathrm{DE}$ and $\mathrm{AD} \| \mathrm{PE} \quad \Rightarrow \quad$ APED is a parallelogram.
$\Rightarrow \mathrm{AP}=\mathrm{DE}$
And $\quad \mathrm{PQ} \| \mathrm{EF}$ and $\mathrm{PE} \| \mathrm{QF} \Rightarrow \quad$ PQFE is a parallelogram
$\Rightarrow \mathrm{PQ}=\mathrm{EF}$
From above equations, we get

$$
\mathrm{DE}=\mathrm{EF}
$$

Hence Proved.

Ex. 3 In the given figure, E and F are respectively, the mid-points of non-parallel sides of a trapezium ABCD.

Prove that

(i) $\mathrm{EF} \| \mathrm{AB}$
(ii) $\mathrm{EF}=\frac{1}{2}(\mathrm{AB}+\mathrm{DC})$.

Sol. Join BE and produce it to intersect CD produced at point P. In $\triangle A E B$ and $\triangle D E P, A B \| P C$ and $B P$ is transversal

\[

\]

Since, the line joining the mind-points of any two sides of a triangle is parallel and half of the third side, therefore, is $\triangle \mathrm{BPC}$,
E is mid-point of BP
[As, BE = PE]
and F is mid-point of $B C$
[Given]
$\Rightarrow \mathrm{EF} \| \mathrm{PC}$ and $\mathrm{EF}=\frac{1}{2} \mathrm{PC}$
$\Rightarrow \quad \mathrm{EF} \| \mathrm{DC}$ and $\mathrm{EF}=\frac{1}{2}(\mathrm{PD}+\mathrm{DC})$
$\Rightarrow \mathrm{EF} \| \mathrm{AB}$ and $\mathrm{EF}=\frac{1}{2}(\mathrm{AB}+\mathrm{DC})$
[As, $\mathrm{DC} \| \mathrm{AB}$ and $\mathrm{PD}=\mathrm{AB}$]
Hence Proved.

EXERCISE

OBJECTIVE DPP \# 12.1

1. When the opposite sides of quadrilateral are parallel to each other then it is called.
(A) Square
(B) Parallelogram
(C) Trapezium
(D) Rhombus
2. In a $\triangle A B C, D, E$ and F are respectively, the mid-points of $B C, C A$ and $A B$. If the lengths of side $A B, B C$ and CA are $17 \mathrm{~cm}, 18 \mathrm{~cm}$ and 19 cm respectively, then the perimeter of $\triangle D E F$ equal to :
(A) 54 cm
(B) 18 cm
(C) 27 cm
(D) 13.5 cm
3. When only one pair of opposite sides of a quadrilateral parallel to each other it is called.
(A) Square
(B) Rhombus
(C) Parallelogram
(D) Trapezium
4. When the diagonals of a parallelogram are equal but not perpendicular to each other it is called a.
(A) Square
(B) Rectangle
(C) Rhombus
(D) Parallelogram
5. When each angle of a rhombus equal to 90.0 , it is called a.
(A) Square
(B) Rectangle
(C) Trapezium
(D) Parallelogram
6. In the adjoining figure, AP and BP are angle bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ which meets at P on the parallelogram ABCD . Then $2 \angle \mathrm{APB}=$

(A) $\angle \mathrm{C}+\angle \mathrm{D}$
(B) $\angle \mathrm{A}+\angle \mathrm{C}$
(C) $\angle \mathrm{B}+\angle \mathrm{D}$
(D) $2 \angle \mathrm{C}$
7. In a quadrilateral $\mathrm{ABCD}, \mathrm{AO} \& \mathrm{DO}$ are angle bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{D}$ and given that $\angle \mathrm{C}=105^{\circ}, \angle \mathrm{B}=70^{\circ}$ then the $\angle \mathrm{AOD}$ is :
(A) 67.5^{0}
(B) 77.5^{0}
(C) 87.5^{0}
(D) 99.75°
8. In a parallelogram the sum of the angle bisectors of two adjacent angle is :
(A) 30°
(B) 45^{0}
(C) 60°
(D) 90°
9. In the adjoining parallelogram ABCD , the angles x and y are :

(A) $60^{0}, 30^{\circ}$
(B) $30^{0}, 60^{0}$
(C) $45^{0}, 45^{0}$
(D) $90^{\circ}, 90^{\circ}$
10. From the figure find the value of $\angle \mathrm{SQP}$ and $\angle \mathrm{QSP}$ of parallelogram PQRS .

(A) $60^{0}, 50^{0}$
(B) $60^{0}, 45^{0}$
(C) $70^{0}, 35^{0}$
(D) $35^{0}, 70^{0}$

SUBJECTIVE DPP 12.2

1. Prove that the line joining the mid-points of the diagonals of a trapezium is parallel to each to the parallel sides and is equal to half of the difference of these sides.
2. $A B C D$ is a parallelogram. P is a point on $A D$ such that $A P=\frac{1}{3} A D$. Q is a point on $B C$ such that $C Q=\frac{1}{3} B C$. Prove that AQCP is a parallelogram.
3. In the following figure, AD is a median and $\mathrm{DE} \| \mathrm{AB}$. Prove that BE is a median.

4. Prove that "If a diagonal of a parallelogram bisects one of the angles of the parallelogram, it also bisects the second angle and then the two diagonals are perpendicular to each other.
5. Prove that the figure formed by joining the mid-points of the consecutive sides of a quadrilateral is a parallelogram.
6. In a parallelogram ABCD , the bisector of $\angle \mathrm{A}$ also bisects BC at P. Prove that $\mathrm{AD}=2 \mathrm{AB}$.
7. The diagonals of parallelogram $A B C D$ intersect at O. A line through O intersects $A B$ at X and $D C$ at Y. Prove that $\mathrm{OX}=\mathrm{OY}$.
8. Show that the quadrilateral formed by joining the mid points of the sides of square is also a square.
9. $\quad \mathrm{ABCD}$ is a trapezium in which side AB is parallel to side DC and E is the mid-point of side AD . If F is a point on side $B C$ such that segment $E F$ is parallel to side $D C$. Prove that $E F=\frac{1}{2}(A B+D C)$.
10. In $\triangle A B C, A D$ is the median through A and E is the mid-point of $A D$. $B E$ produced meets $A C$ in F. Prove that $\mathrm{AF}=\frac{1}{3} \mathrm{AC}$.

ANSWER KEY

(Objective DPP \# 11.1)

Qus.	1	2	3	4	5	6	7	8	9	10
Ans.	B	D	D	C	B	B	C	C	B	C

(Subjective DPP \# 11.2)

1. $68^{0}, 12^{0}, 68^{0}, 112^{0}$
2. $45^{0} \& 60^{\circ}$
3. (i) 80° (ii) 80° (iii) 40° (iv) 25°
4. $115^{0}, 65^{0}$ and 115^{0}
(Objective DPP \# 12.1)

Qus.	1	2	3	4	5	6	7	8	9	10
Ans.	B	C	D	B	A	A	C	D	A	A

>>>
 AREA OF PARALLELOGRAMS
 AND TRIANGLE

 <<<

 <<<}

ML - 13

POLYGONAL REGION

Polygon region can be expressed as the union of a finite number of triangular regions in a plane such that if two of these intersect, their intersection is either a point or a line segment. It is the shaded portion including its sides as shown in the figure.
(a) Area Axioms :

Every polygonal region R has an area, measure in square unit and denoted by $\operatorname{ar}(\mathrm{R})$.
(i) Congruent area axiom : if R_{1} and R_{2} be two regions such that $R_{1} \cong R_{2}$ then $\operatorname{ar}\left(R_{1}\right)=\operatorname{ar}\left(R_{2}\right)$.
(ii) Area monotone axiom : If $R_{1} \subset R_{2}$, then are $\left(R_{1}\right) \leq \operatorname{ar}\left(R_{2}\right)$.
(iii) Area addition axiom : If R_{1} are two polygonal regions, whose intersection is a finite number of points and line segments and $R=R_{1} \cup R_{2}$, then $\operatorname{ar}(R)=\operatorname{ar}\left(R_{1}\right)+\operatorname{ar}\left(R_{2}\right)$.
(iv) Rectangular area axiom : If $\mathrm{AB}=\mathrm{a}$ metre and $\mathrm{AD}=\mathrm{b}$ metre then,
ar $($ Rectangular region $A B C D)=a b$ sq. m.
(b) Unit of Area :

There is a standard square region of side 1 metre, called a square metre, which is the unit of area measure.
The area of a polygonal region is square metres (sq. m or m^{2}) is a positive real number

AREA OF A PARALLELOGRAM

(a) Base and Altitude of a Parallelogram :
(i) Base : Any side of parallelogram can be called its base.
(ii) Altitude : The length of the line segment which is perpendicular to the base from the opposite side is called the altitude or height of the parallelogram corresponding to the given base.

In the Adjoining Figure
(i) DL is the altitude of $\| \mathrm{gm} A B C D$, corresponding to the base $A B$.
(ii) DM is the altitude of $\|^{\mathrm{gm}} \mathrm{ABCD}$, corresponding to the base BC.

Theorem -1 A diagonal of parallelogram divides it into two triangles of equal area.
Given : A parallelogram ABCD whose one of the diagonals is BD .
To prove : $\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{CDB})$.
Proof: In $\triangle A B D$ and $\triangle C D B$.
$\mathrm{AB}=\mathrm{DC}$
[Opp. sides of a $\|^{\mathrm{gm}}$]
$A D=B C$
[Opp. sides of a $\|^{g m}$]
$\mathrm{BD}=\mathrm{BD}$
$\therefore \quad \triangle \mathrm{ABD} \cong \triangle \mathrm{CDB}$
$\therefore \quad \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{CDB})$
[Common side]
[By SSS]
[Congruent area axiom]

Hence Proved.

Theorem -2: Parallelograms on the same base or equal base and between the same parallels are equal in area.

Given : Two $\|^{g m} A B C D$ and $A B E F$ on the same base $A B$ and between the same parallels $A B$ and $F C$.
To Prove : $\operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})=\operatorname{ar}(\| \mathrm{gm}$ ABEF $)$
Proof: In $\triangle A D F$ and $\triangle B C E$, we have

$$
\begin{aligned}
\mathrm{AD}=\mathrm{BC} & {\left[\text { Opposite sides of a } \|^{\mathrm{gm}}\right] } \\
\mathrm{AF}=\mathrm{BE} & {\left[\text { Opposite sides of a } \|^{\mathrm{gm}}\right] } \\
\angle \mathrm{DAF}=\angle \mathrm{CBE} & {[\because \mathrm{AD} \| \mathrm{BC} \text { and } \mathrm{AF} \| \mathrm{BE}] }
\end{aligned}
$$

[Angle between AD and $\mathrm{AF}=$ angle between BC and BE]

$$
\begin{align*}
\therefore & \Delta \mathrm{ADF} \cong \Delta \mathrm{BCE} \\
\therefore & \operatorname{ar}(\Delta \mathrm{ADF})= \\
\therefore & \operatorname{ar}(\Delta \mathrm{BCE}) \quad \ldots \mathrm{By} \text { SAS] } \tag{i}\\
\therefore & =\operatorname{ar}(\mathrm{gm} \mathrm{ABCD})=\operatorname{ar}(\mathrm{ABED})+\operatorname{ar}(\Delta \mathrm{BCE}) \\
& =\operatorname{ar}(\| \mathrm{gm} \mathrm{ABED}) .
\end{align*}
$$

Hence, $\operatorname{ar}(\| g \mathrm{gm}$ ABCD $)=\operatorname{ar}(\| \mathrm{gm} \mathrm{ABEF})$.
Hence Proved.
NOTE : A rectangle is also parallelogram.
Theorem -3: The are of parallelogram is the product of its base and the corresponding altitude.

Given : $\mathrm{A} \|^{\mathrm{gm}} \mathrm{ABCD}$ in which AB is the base and AL is the corresponding height.
To prove: Area $\left(\| g^{m} A B C D\right)=A B \times A L$.
Construction : Draw $B M \perp D C$ so that rectangle $A B M L$ is formed.
Proof : $\| \mathrm{gm} A B C D$ and rectangle $A B M L$ are on the same base $A B$ and between the same parallel lines $A B$ and LC.
$\therefore \quad \operatorname{ar}(\| g \mathrm{gmCD})=\operatorname{ar}($ rectangle ABML$)=\mathrm{AB} \times \mathrm{AL}$.
$\therefore \quad$ area of a $\|^{g m}=$ base \times height.

Hence Proved.

Theorem-4 : Parallelograms on equal bases and between the same parallels are equal in area.

Given : Two $\| \mathrm{gm} A B C D$ and $P Q R S$ with equal base $A B$ and $P Q$ and between the same parallels, $A Q$ and DR.
To prove: $\operatorname{ar}\left(\left\|\|^{\mathrm{gm}} \mathrm{ABCD}\right)=\operatorname{ar}\left(\|{ }^{\mathrm{gm}} \mathrm{PQRS}\right)\right.$.
Construction: Draw AL $\perp \mathrm{DR}$ and $\mathrm{PM} \perp \mathrm{DR}$.
Proof : AB \| DR, AL $\perp \mathrm{DR}$ and $\mathrm{PM} \perp \mathrm{Dr}$
$\therefore \quad \mathrm{AL}=\mathrm{PM}$.
$\therefore \quad \operatorname{ar}\left(\| g^{g m} \mathrm{ABCD}\right)=\mathrm{AB} \times \mathrm{AL}$

$$
\begin{aligned}
& =\mathrm{PQ} \times \mathrm{PM} \quad[\because \mathrm{AB}=\mathrm{PQ} \text { and } \mathrm{AL}=\mathrm{PM}] \\
& =\mathrm{a}\left(\| \mathrm{gm}^{\mathrm{m}} \mathrm{PQRS}\right) .
\end{aligned} \quad \text { Hence Proved. } \quad \text {. } \quad \text {. } \quad \text {. }
$$

ILLUSTRATIONS :

Ex. 1 In a parallelogram $A B C D, A B=8 \mathrm{~cm}$. The altitudes corresponding to sides $A B$ and $A D$ are respectively 4 m and 5 cm . Find AD.
Sol. We know that, Area of a parallelogram $=$ Base \times Corresponding altitude

$$
\begin{array}{ll}
\therefore & \text { Area of parallelogram } \mathrm{ABCD}=\mathrm{AD} \times \mathrm{BN}=\mathrm{AB} \times \mathrm{DM} \\
\Rightarrow & \mathrm{AD} \times 5=8 \times 4 \\
\Rightarrow & \mathrm{AD}=\frac{8 \times 4}{5} \\
& =6.4 \mathrm{~cm} . \quad \text { Ans. }
\end{array}
$$

Ex. 2 In figure, ABCD is a parallelogram, $\mathrm{AE} \perp \mathrm{DC}$ and $\mathrm{CF} \perp \mathrm{AD}$. If $\mathrm{AB}=16 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm}$ and $\mathrm{CF}=10 \mathrm{~cm}$ find AD.

Sol. We have $\mathrm{AB}=16 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm} \mathrm{CF}=10 \mathrm{~cm}$.
We know that are of parallelogram $=$ Base \times Height

$$
\text { [Base }=\text { CD, height }=\text { AE }]
$$

$\mathrm{ABCD}=\mathrm{CD} \times \mathrm{AE}=16 \times 8=128 \mathrm{~cm}^{2}$
Again, Area of parallelogram $=$ Base \times Height $=A D \times C F$
[Base $=$ AD, height $=C F]$

$$
128=\mathrm{AD} \times 10
$$

$\Rightarrow \quad \mathrm{AD}=\frac{128}{10}=12.8 \mathrm{~cm}$
Ans.
Ex. $3 \quad \mathrm{ABCD}$ is a quadrilateral and BD is one of its diagonal as shown in the figure. Show that the quadrilateral $A B C D$ is a parallelogram and find its area.
Sol. From figure, the transversal DB is intersecting a pair of lines DC and AB such that $\angle \mathrm{CDB}=\angle \mathrm{ABD}=90^{\circ}$.
Hence these angles from a pair of alternate equal angles.
$\therefore \quad \mathrm{DC} \| \mathrm{AB}$.
Also $\quad \mathrm{DC}=\mathrm{AB}=2.5$ units.
\therefore Quadrilateral ABCD is a parallelogram.
Now, area of parallelogram ABCD
$=$ Base \times Corresponding altitude

$=2.5 \times 4$
$=10$ sq. units Ans.
Ex. 4 The diagonals of a parallelogram $A B C D$ intersect in O. A line through O meets $A B$ is X and the opposite side $C D$ in Y. Show that ar (quadrilateral $A X Y D)=\frac{1}{2}$ far (parallelogram $\left.A B C D\right)$.

Sol. $\quad \therefore \quad A C$ is a diagonal of the parallelogram $A B C D$.

$$
\begin{equation*}
\operatorname{ar}(\triangle \mathrm{ACD})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD}) \tag{i}
\end{equation*}
$$

Now, in $\Delta \mathrm{s} A O X$ and COY,

$$
\mathrm{AO}=\mathrm{CO}
$$

\because Diagonals of parallelogram bisect each other.

$$
\begin{array}{ll}
\angle \mathrm{AOX}=\angle \mathrm{COY} & \text { [Vert. opp. } \angle \text { s] } \\
\angle \mathrm{OAX}=\angle \mathrm{OCY} & {[\text { Alt. Int. } \angle \text { s }]}
\end{array}
$$

AB || DC and transversal AC intersects them
$\therefore \quad \triangle \mathrm{AOX} \cong \triangle C O Y$
[ASA]
$\therefore \quad \operatorname{ar}(\triangle \mathrm{AOX})=\operatorname{ar}(\triangle \mathrm{COY})$
Adding ar(quad. AOYD) to both sides of (ii), we get
$\operatorname{ar}($ quad. $A O Y D)+\operatorname{ar}(\triangle A O X)=\operatorname{ar}($ quad. $A O Y D)+\operatorname{ar}(\triangle C O Y)$
$\Rightarrow \operatorname{ar}($ quad. $A X Y D)=\operatorname{ar}(\triangle A C D)=\frac{1}{2} \operatorname{ar}(\| g m A B C D) \quad($ using $(i))$

Hence Proved.

AREA OF A TRIANGLE

Theorem-5 : Two triangles on the same base (or equal bases) and between the same parallels are equal in area.

Given : Two triangles ABC and PCs on the same base $B C$ and between the same parallel lines $B C$ and $A P$.
To prove : $\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{PBC})$

Construction : Through B, draw BD || CA intersecting PA produced in D and through C, draw CQ || BP, intersecting line AP in Q .

Proof: We have,
And, $\begin{aligned} & \mathrm{BD} \| \mathrm{CA} \\ & \mathrm{BC} \| \mathrm{DA}\end{aligned}$
[By construction]
And, $\quad B C$ || DA
[Given]

$\therefore \quad$ Quad. BCAD is a parallelogram.
Similarly, Quad. BCQP is a parallelogram.
Now, parallelogram BCQP and BCAD are on the same base BC, and between the same parallels.
$\therefore \quad \operatorname{ar}(\| \mathrm{gm} \mathrm{BCQP})=\operatorname{ar}(\| \mathrm{gm} \mathrm{BCAD})$
We know that the diagonals of a parallelogram divides it into two triangles of equal area.
$\therefore \quad \operatorname{ar}\left(\triangle \mathrm{PBC}=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{BCQP})\right.$
And $\quad \operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{BCAD})$
Now, $\operatorname{ar}\left(\left\|\|^{\mathrm{gm}} \mathrm{BCQP}\right)=\operatorname{ar}(\| \mathrm{gm} \mathrm{BCAD}) \quad\right.$ [From (i)]
$\Rightarrow \quad \frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{BCAD})=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{BCQP})$
Hence, $\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{PBC})$
[Using (ii) and (iii)]

Hence Proved.

Theorem-6 : The area of a trapezium is half the product of its height and the sum of the parallel sides.

Given : Trapezium ABCD in which $\mathrm{AB} \| \mathrm{DC}, \mathrm{AL} \perp \mathrm{DC}, \mathrm{CN} \perp \mathrm{AB}$ and $\mathrm{AL}=\mathrm{CN}=\mathrm{h}$ (say) $\mathrm{AB}=\mathrm{a}, \mathrm{DC}=\mathrm{b}$.
To prove : $\operatorname{ar}(\operatorname{trap} . A B C D)=\frac{1}{2} h \times(a+b)$.
Construction : Join AC.
Proof: AC is a diagonal of quad. $A B C D$.
$\therefore \quad \operatorname{ar}(\operatorname{trap} . A B C D)=\operatorname{ar}(\triangle \mathrm{ABC})+\operatorname{ar}(\triangle \mathrm{ACD})=\frac{1}{2} \mathrm{~h} \times \mathrm{a}+\frac{1}{2} \mathrm{~h} \times \mathrm{b}=\frac{1}{2} \mathrm{~h}(\mathrm{a}+\mathrm{b}) . \quad$ Hence Proved.
Theorem -7: Triangles having equal areas and having one side of the triangle equal to corresponding side of the other, have their corresponding altitudes equal/
Given : Two triangles ABC and PQR such that (i) $\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{PQR})$ and (ii) $\mathrm{AB}=\mathrm{PQ}$.
CN and RT and the altitude corresponding to AB and PQ respectively of the two triangles.

To prove: CR = RT.
Proof : In $\triangle A B C, C N$ is the altitude corresponding to the side $A B$.
$\operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{2} \mathrm{AB} \times \mathrm{CN}$

Similarly, $\quad \operatorname{ar}(\triangle \mathrm{PQR})=\frac{1}{2} \mathrm{PQ} \times \mathrm{RT}$
Since $\quad \operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{PQR}) \quad$ [Given]
$\therefore \quad \frac{1}{2} \mathrm{AB} \times \mathrm{CN}=\frac{1}{2} \mathrm{PQ} \times \mathrm{RT}$
Also,

$$
\mathrm{AB}=\mathrm{PQ}
$$

[Given]

$$
\mathrm{CN}=\mathrm{RT}
$$

Ex. 5 In figure, E is any point on median AD of a $\triangle \mathrm{ABC}$. Show that $\operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACE})$.

Sol. Construction : From A draw $\mathrm{AG} \perp \mathrm{BC}$ and from E draw $\mathrm{EF} \perp \mathrm{BC}$.

$$
\text { Proof : } \begin{aligned}
\operatorname{ar}(\triangle \mathrm{ABD}) & =\frac{\mathrm{BD} \times \mathrm{AG}}{2} \\
\operatorname{ar}(\triangle \mathrm{ADC}) & =\frac{\mathrm{DC} \times \mathrm{G}}{2}
\end{aligned}
$$

But, $\quad \mathrm{BD}=\mathrm{DC} \quad[\therefore \mathrm{D}$ is the mid-point of BC, AD being the median]

$$
\begin{equation*}
\operatorname{ar}(\Delta \mathrm{ABD})=\operatorname{ar}(\Delta \mathrm{ADC}) \tag{i}
\end{equation*}
$$

Again, $\operatorname{ar}(\triangle \mathrm{EBD})=\frac{\mathrm{BD} \times \mathrm{EF}}{2}$
$\operatorname{ar}(\Delta \mathrm{EDC})=\frac{\mathrm{DC} \times \mathrm{EF}}{2}$
But, $\quad \mathrm{BD}=\mathrm{DC}$
$\therefore \quad \operatorname{ar}(\triangle \mathrm{EBD})=\operatorname{ar}(\triangle \mathrm{EDC})$
Subtracting (ii) from (i), we get
$\operatorname{ar}(\triangle \mathrm{ABD})-\operatorname{ar}(\Delta \mathrm{EBD})=\operatorname{ar}(\triangle \mathrm{ADC})-\operatorname{ar}(\Delta \mathrm{EDC})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{ACE})$.
Hence Proved.
Ex. 6 Triangles $A B C$ and $D B C$ are on the same base $B C$; with A, D on opposite sides of the line $B C$, such that $\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{DBC})$. Show that BC bisects $A D$.

Sol. Construction : Draw $\mathrm{AL} \perp \mathrm{BC}$ and $\mathrm{DM} \perp \mathrm{BC}$.

$$
\begin{aligned}
& \text { Proof }: \operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle D B C) \\
& \Rightarrow \quad \frac{B C \times A L}{2}=\frac{B C \times D M}{2} \\
& \Rightarrow \quad A L=D M
\end{aligned}
$$

[Given]

[Vert. opp. \angle s]
[Third angles of the triangles]
[By ASA]
[By cpctc]

Now in $\Delta \mathrm{s}$ OAL and OMD

$$
\begin{array}{cl}
& \mathrm{AL}=\mathrm{DM} \\
\Rightarrow & \angle \mathrm{ALO}=\angle \mathrm{DMO} \\
\Rightarrow & \angle \mathrm{AOL}=\angle \mathrm{MOD} \\
\Rightarrow & \angle \mathrm{OAL}=\angle \mathrm{ODM} \\
\therefore & \Delta \mathrm{OAL} \cong \triangle \mathrm{OMD} \\
\therefore & \quad \mathrm{OA}=\mathrm{OD}
\end{array}
$$

i.e., BC bisects AD .

Hence Proved.

Ex. $7 \quad \mathrm{ABC}$ is a triangle in which D is the mid-point of BC and E is the mid-point of AD . Prove that the area of $\Delta \mathrm{BED}=\frac{1}{4}$ area of $\Delta \mathrm{ABC}$.

Sol. Given : A $\triangle \mathrm{ABC}$ in which D is the mid-point of BC and E is the mid-point of AD .
To prove: $\operatorname{ar}(\triangle \mathrm{BED})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$.

Proof: $\because \mathrm{AD}$ is a median of $\triangle \mathrm{ABC}$.
$\therefore \quad \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ADC})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$
[\therefore Median of a triangle divides it into two triangles of equal area $)=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$
Again,
$\because \quad \quad \quad \mathrm{BE}$ is a median of $\triangle \mathrm{ABD}$,
$\therefore \quad \operatorname{ar}(\triangle \mathrm{BEA})=\operatorname{ar}(\Delta \mathrm{BED})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABD})$
[\therefore Median of a triangle divides it into two triangles of equal area]
And $\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{2} \times \frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC}) \quad[$ From (i)]

$$
\therefore \quad \operatorname{ar}(\triangle \mathrm{BED})=\frac{1}{4} \operatorname{ar}(\Delta \mathrm{ABC})
$$

Ex. 8 if the medians of a $\triangle A B C$ intersect at G, show that $\operatorname{ar}(\triangle A G B)=\operatorname{ar}(\triangle B G C)=\frac{1}{3} \operatorname{ar}(\triangle A B C)$.
Sol. Given : $\mathrm{A} \triangle \mathrm{ABC}$ its medians AD, BE and CF intersect at G .
To prove : $\operatorname{ar}(\Delta \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\Delta \mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\Delta \mathrm{ABC})$.
Proof: A median of triangle divides it into two triangles of equal area. In $\triangle A B C, A D$ is the median.

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ACD}) \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{GBC}, \mathrm{GD}$ is the median.
$\therefore \quad \operatorname{ar}(\Delta \mathrm{GBD})=\operatorname{ar}(\Delta \mathrm{GCD})$

From (i) and (ii), we get

$$
\begin{array}{ll}
& \operatorname{ar}(\Delta \mathrm{ABD})-\operatorname{ar}(\Delta \mathrm{GBD})=\operatorname{ar}(\Delta \mathrm{ACD})-\operatorname{ar}(\Delta \mathrm{GCD}) \\
\therefore \quad & \mathrm{a}(\Delta \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{AGC}) .
\end{array}
$$

Similarly,

$$
\begin{equation*}
\operatorname{ar}(\Delta \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{AGC})=\operatorname{ar}(\Delta \mathrm{BGC}) \tag{iii}
\end{equation*}
$$

But, $\operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\Delta \mathrm{AGB})+\operatorname{ar}(\Delta \mathrm{AGC})+\operatorname{ar}(\Delta \mathrm{BGC})$

$$
=3 \operatorname{ar}(\Delta \mathrm{AGB})
$$

[Using (iii)]
$\therefore \quad \operatorname{ar}(\triangle \mathrm{AGB})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$.
Hence, $\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar} \Delta(\mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$.
Hence proved.
Ex. $9 \quad$ D,E and F are respectively the mid points of the sides $B C, C A$ and $A B$ of a $\triangle A B C$. Show that
(i) BDEF is parallelogram
(ii) $\operatorname{ar}(\| g \mathrm{gm} \mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$
(iii) $\operatorname{ar}(\triangle \mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$

Sol. Given : A $\triangle A B C$ in which D, E, F are the mid-point of the side $B C, C A$ and $A B$ respectively.
To prove:
(i) Quadrilateral BDEF is parallelogram.
(ii) $\operatorname{ar}(\| \mathrm{gm} \mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$.
(iii) $\operatorname{ar}(\triangle \mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$.

Proof:
(i) In $\triangle A B C$,

$\therefore \quad F$ is the mid-point of side $A B$ and E is the mid point of side $A C$.
$\therefore \quad \mathrm{EF} \| \mathrm{BD}$
[\because Line joining the mid-points of any two sides of a Δ is parallel to the third side.]
Similarly,
ED \| FB.
Hence, BDEF is a parallelogram.
Hence Proved.
(ii) Similarly, we can prove that AFDE and FDCE are parallelograms.
$\therefore \quad$ FD is diagonals of parallelogram BDEF.
$\therefore \quad \operatorname{ar}(\triangle \mathrm{FBD})=\operatorname{ar}(\triangle \mathrm{DEF})$
Similarly,

$$
\begin{equation*}
\operatorname{ar}(\triangle \mathrm{FAE})=\operatorname{ar}(\Delta \mathrm{DEF}) \tag{ii}
\end{equation*}
$$

And $\quad \operatorname{ar}(\triangle \mathrm{DCE})=\operatorname{ar}(\triangle \mathrm{DEF})$
From above equations, we have

$$
\operatorname{ar}(\Delta \mathrm{FBD})=\operatorname{ar}(\Delta \mathrm{FAE})=\operatorname{ar}(\Delta \mathrm{DCE})=\operatorname{ar}(\Delta \mathrm{DEF})
$$

And
$\operatorname{ar}(\triangle \mathrm{FBD})+\operatorname{ar}(\triangle \mathrm{DCE})+\operatorname{ar}(\Delta \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{FAE})=\operatorname{ar}(\triangle \mathrm{ABC})$
$\Rightarrow \quad 2[\operatorname{ar}(\Delta \mathrm{FBD})+\operatorname{ar}(\triangle \mathrm{DEF})]=\operatorname{ar}(\Delta \mathrm{AC})$
[By using (i), (ii) and (iii)]
$\Rightarrow \quad 2[\operatorname{ar}(\| \operatorname{gm} \mathrm{BDEF})]=\operatorname{ar}(\triangle \mathrm{ABC})$
$\Rightarrow \operatorname{ar}(\| \mathrm{gm} \mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$
(iii) Since, $\triangle \mathrm{ABC}$ is divided into four non-overlapping triangles FBD, FAE, DCE and DEF.

$$
\begin{aligned}
& \therefore \quad \operatorname{ar}(\Delta \mathrm{ABC})=\operatorname{ar}(\Delta \mathrm{FBD})+\operatorname{ar}(\Delta \mathrm{FAE})+\operatorname{ar}(\Delta \mathrm{DCE})+\operatorname{ar}(\Delta \mathrm{DEF}) \\
& \Rightarrow \quad \operatorname{ar}(\Delta \mathrm{ABC})=4 \operatorname{ar}(\Delta \mathrm{DEF}) \quad[\mathrm{Using}(\mathrm{i}), \text { (ii) and (iii)] }
\end{aligned}
$$

$$
\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{DEF})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})
$$

Hence Proved.

Ex. 10 Prove that the area of an equilateral triangle is equal to $\frac{\sqrt{3}}{4} a^{2}$, where a is the side of the triangle.
Sol. Draw $A D \perp B C$

$$
\begin{array}{lrl}
\Rightarrow & \Delta \mathrm{ABD} \cong \triangle \mathrm{ACD} & \text { [Br R.H.S.] } \\
\therefore & \mathrm{BD}=\mathrm{DC} & \text { [By cpctc] } \\
\therefore & \mathrm{BC}=\mathrm{a} & \\
\therefore & \mathrm{BD}=\mathrm{DC}=\frac{\mathrm{a}}{2} &
\end{array}
$$

In right angled $\triangle \mathrm{ABD}$

$$
\begin{aligned}
\mathrm{AD}^{2} & =\mathrm{AB}^{2}-\mathrm{BD}^{2}=\mathrm{a}^{2}-\left(\frac{\mathrm{a}}{2}\right)^{2}=\mathrm{a}^{2}-\frac{\mathrm{a}^{2}}{4}=\frac{3 \mathrm{a}^{2}}{4} \\
\Rightarrow \quad \mathrm{AD} & =\frac{\sqrt{3} \mathrm{a}}{2}
\end{aligned}
$$

Area of $\triangle \mathrm{ABC}=\frac{1}{2} \mathrm{BC} \times \mathrm{AD}=\frac{1}{2} \mathrm{a} \frac{\sqrt{3} \mathrm{a}}{2}=\frac{\sqrt{3} \mathrm{a}^{2}}{4}$.

$H \longrightarrow \mathrm{C}$

Hence Proved.

Ex. 11 In figure, P is a point in the interior of rectangle ABCD . Show that
(i) $\operatorname{ar}(\triangle \mathrm{APB})+\operatorname{ar}(\triangle \mathrm{PCD})=\frac{1}{2} \operatorname{ar}($ rect. ABCD$)$
(ii) $\operatorname{ar}(\mathrm{APD})+\operatorname{ar}(\mathrm{PBC})=\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})$

Sol. Given : A rect. ABCD and P is a point inside it. $\mathrm{PA}, \mathrm{PB}, \mathrm{PC}$ and PD have been joined.

To prove :

(i) $\operatorname{ar}(\triangle \mathrm{APB})+\operatorname{ar}(\triangle \mathrm{PCD})=\frac{1}{2} \operatorname{ar}($ rect. ABCD$)$
(ii) $\operatorname{ar}(\triangle \mathrm{APD})+\operatorname{ar}(\triangle \mathrm{BPC})=\operatorname{ar}(\triangle \mathrm{APB})+\operatorname{ar}(\triangle \mathrm{CPD})$.

Construction : Draw EPF \|AB and LPM \| AD.
Proof : (i) EPF || AB and DA cuts them,

$$
\begin{array}{ll}
\therefore & \angle \mathrm{DEP}=\angle \mathrm{EAB}=90^{\circ} \\
\therefore & \mathrm{PE} \perp \mathrm{AD} .
\end{array} \quad \text { [Corresponding angles] }
$$

Similarly, $\mathrm{PR} \perp \mathrm{BC} ; \mathrm{PL} \perp \mathrm{AB}$ and $\mathrm{PM} \perp \mathrm{DC}$.

$$
\begin{array}{rlr}
\therefore & \operatorname{ar}(\triangle \mathrm{APD})+\operatorname{ar}(\triangle \mathrm{BPC}) & \\
& =\left(\frac{1}{2} \times \mathrm{AD} \times \mathrm{PE}\right)+\operatorname{ar}\left(\frac{1}{2} \times \mathrm{BC} \times \mathrm{PF}\right)=\frac{1}{2} \mathrm{AD} \times(\mathrm{PE}+\mathrm{PF}) \quad[\therefore \mathrm{BC}=\mathrm{AD}] \\
& =\frac{1}{2} \times \mathrm{AD} \times \mathrm{EF}=\frac{1}{2} \times \mathrm{AD} \times \mathrm{AB} & {[\therefore \mathrm{EF}=\mathrm{AB}]} \\
& =\frac{1}{2} \times(\text { rectangle } \mathrm{ABCD}) .
\end{array}
$$

(ii) $\operatorname{ar}(\triangle \mathrm{APB})+\operatorname{ar}(\mathrm{PCD})$

$$
=\left(\frac{1}{2} \times \mathrm{AB} \times \mathrm{PL}\right)+\left(\frac{1}{2} \times \mathrm{DC} \times \mathrm{PM}\right)=\frac{1}{2} \times \mathrm{AB} \times(\mathrm{PL}+\mathrm{PM}) \quad[\therefore \mathrm{EF}=\mathrm{AB}]
$$

$$
=\frac{1}{2} \times \mathrm{AB} \times \mathrm{LM}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{AD} \quad[\because \mathrm{LM}=\mathrm{AD}]
$$

$$
=\frac{1}{2} \times \operatorname{ar}(\text { rect. } \mathrm{ABCD})
$$

$$
\operatorname{ar}(\triangle \mathrm{APD})+\operatorname{ar}(\mathrm{PBC})=\operatorname{ar}(\triangle \mathrm{APB})+\operatorname{ar}(\mathrm{PCD}) \quad \text { Hence Proved. }
$$

Ex. 12 Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that:

$$
\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{CPD})=\operatorname{ar}(\mathrm{APD}) \times \operatorname{ar}(\mathrm{BPC})
$$

Sol. Draw perpendiculars AF and CE on BD .

From above equations, we get $\operatorname{ar}(\mathrm{APB}) \times \operatorname{ar}(\mathrm{CPD})=\operatorname{ar}(\mathrm{APD}) \times \operatorname{ar}(\mathrm{BPC})$

Hence Proved.

EXERCISE

OBJECTIVE DPP - 13.1

1. The sides $B A$ and $D C$ of the parallelogram $A B C D$ are produced as shown in the figure then
(A) $a+x=b+y$
(B) $a+y=b+a$
(C) $a+b=x+y$
(D) $a-b=x-y$

2. The sum of the interior angles of polygon is three times the sum of its exterior angles. Then numbers of sides in polygon is
(A) 6
(B) 7
(C) 8
(D) 9
3. In the adjoining figure, AP and BP are angle bisector of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ which meet at a point P of the parallelogram ABCD . Then $2 \angle \mathrm{APB}=$
(A) $\angle \mathrm{A}+\angle \mathrm{B}$
(B) $\angle \mathrm{A}+\angle \mathrm{C}$
(C) $\angle \mathrm{B}+\angle \mathrm{D}$
(D) $\angle \mathrm{C}+\angle \mathrm{D}$

4. In a parallelogram the sum of the angle bisector of two adjacent angles is
(A) 30^{0}
(B) 45^{0}
(C) 60°
(D) 90°
5. In a parallelogram $\mathrm{ABCD} \angle \mathrm{D}=60^{\circ}$ then the measurement of $\angle \mathrm{A}$

(A) 120°
(B) 65^{0}
(C) 90°
(D) 75^{0}
6. In the adjoining figure $A B C D$, the angles x and y are
(A) $60^{0}, 30^{0}$
(B) $30^{0}, 60^{0}$
(C) $45^{0}, 45^{0}$
(D) $90^{\circ}, 90^{\circ}$
7. From the figure parallelogram PQRS , the values of $\angle \mathrm{SQP}$ and $\angle \mathrm{QSP}$ are are
(A) $45^{0}, 60^{0}$
(B) $60^{\circ}, 45^{0}$
(C) $70^{0}, 35^{0}$
(D) $35^{0}, 70$

8. In parallelogram $A B C D, A B=12 \mathrm{~cm}$. The altitudes corresponding to the sides $A B$ and $A D$ are respectively 9 cm and 11 cm . Find $A D$.
(A) $\frac{108}{11} \mathrm{~cm}$
(B) $\frac{108}{10} \mathrm{~cm}$
(C) $\frac{99}{10} \mathrm{~cm}$
(D) $\frac{108}{17} \mathrm{~cm}$

9. In $\triangle A B C, A D$ is a median and P is a point is $A D$ such that $A P: P D=1: 2$ then the area of $\triangle A B P=$
(A) $\frac{1}{2} \times$ Area of $\triangle \mathrm{ABC}$
(B) $\frac{2}{3} \times$ Area of $\triangle \mathrm{ABC}$
(C) $\frac{1}{3} \times$ Area of $\triangle \mathrm{ABC}$
(D) $\frac{1}{6} \times$ Area of $\triangle \mathrm{ABC}$
10. In $\triangle \mathrm{ABC}$ if D is a point in BC and divides it the ratio $3: 5$ i.e., if $\mathrm{BD}: \mathrm{DC}=3: 5$ then, $\operatorname{ar}(\triangle \mathrm{ADC}): \operatorname{ar}(\triangle \mathrm{ABC})$ = ?
(A) $3: 5$
(B) $3: 8$
(C) $5: 8$
(D) $8: 3$
11. If each diagonal of a quadrilateral separates into two triangles of equal area, then show that the quadrilateral is a parallelogram.
12. In the adjoining figure, PQRS and PABC are two parallelograms of equal area. Prove that $\mathrm{QC} \| \mathrm{BR}$.

13. In the figure $A B C D$ is rectangle inscribed in a quadrant of a circle of radius 10 cm . If $A D=2 \sqrt{5} \mathrm{~cm}$. Find the area of the rectangle.

14. $\quad \mathrm{P}$ and Q are any two points lying on the sides DC and AD respectively of parallelogram ABCD . Prove that $: \operatorname{ar}(\triangle \mathrm{APB})=\operatorname{ar}(\triangle \mathrm{BQC})$.
15. In the figure, given alongside, PQRS and $A B R S$ are parallelograms and X is any point on side $B R$. Prove that
(i) $\operatorname{ar}(\mathrm{PQRS})=\operatorname{ar}(\mathrm{ABRS})$
(ii) $\operatorname{ar}(\mathrm{AXS})=\frac{1}{2} \operatorname{ar}(\mathrm{PQRS})$

16. Find the area a rhombus, the lengths of whose diagonals are 16 cm and 24 cm respectively.
17. Find the area of trapezium whose parallel sides are 8 cm and 6 cm respectively and the distance between these sides is 8 cm .
18. (i) Calculate the area of quad. ABCD , given in fig. (i)
(ii) Calculate the area of trap. PQRS, given in fig. (ii).

19. In figure, $A B C D$ is a trapezium in which $A B \| D C ; A B=7 \mathrm{~cm} ; A D=B C=5 \mathrm{~cm}$ and the distance between AB and DC is 4 cm .

Find the length of $D C$ and hence, find the area of trap. $A B C D$.
10. $B D$ is one of the diagonals of quadrilateral $A B C D$. If $A L \perp B D$ and $C M \perp B D$, show that : ar(quadrilateral $A B C D)=\frac{1}{2} \times B C \times(A L+C M)$.

11. In the figure, ABCD is a quadrilateral in which diag. $\mathrm{BD}=20 \mathrm{~cm}$. If $\mathrm{AL} \perp \mathrm{BD}$ and $\mathrm{CM} \perp \mathrm{BD}$, such that : $A L=10 \mathrm{~cm}$ and $C M=5 \mathrm{~cm}$, find the area of quadrilateral $A B C D$.

12. In fig. $A B C D$ is a trapezium in which $A B \| D C$ and $D C=40 \mathrm{~cm}$ and $A B=60 \mathrm{~cm}$. If X and Y are, respectively, the mid - points of $A D$ and $B C$, prove that
(i) $X Y=50 \mathrm{~cm}$
(ii) DCYX is a trapezium
(iii) Area (trapezium DCYX) $=\frac{9}{11}$ Area (trapezium XYBA)

13. Show that a median of a triangle divides it into two triangles of equal area.
14. In the figure, given alongside, D and E are two points on $B C$ such that $B D=D E=E C$. Prove that : $\operatorname{ar}(A B D)$ $=\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC})$

15. In triangle $A B C$, if a point D divides $B C$ in the ratio $2: 5$, show that $: \operatorname{ar}(\triangle A B D): \operatorname{ar}(\triangle A C D)=2: 5$.

ANSWER KEY
(Objective DPP \# 13.1)

Qus.	1	2	3	4	5	6	7	8	9	10
Ans.	C	C	D	D	A	A	A	A	D	C

(Subjective DPP \# 13.2)
3. $40 \mathrm{~cm}^{2}$
7. $56 \mathrm{~cm}^{2}$
6. $192 \mathrm{~cm}^{2}$
9. $40 \mathrm{~cm}^{2}$
8. (i) $114 \mathrm{~cm}^{2} \quad$ (ii) $195 \mathrm{~cm}^{2}$
11. $150 \mathrm{~cm}^{2}$

DEFINITIONS

(A) Circle :

The collection of all the points in a plane, which are at a fixed distance from a fixed point in the plane, is called a circle.

The fixed point is called the centre of the circle and the fixed distance is called the radius of the circle.

In figure, O is the centre and the length $O P$ is the radius of the circle. So the line segment joining the centre and any point on the circle is called a radius of the circle.
(b) Interior and Exterior of a Circle :

A circle divides the plane on which it lies into three parts. They are
(i) inside the circle (or interior of the circle)
(ii) the circle nd
(iii) outside the circle (or exterior of the circle.)

The circle and its interior make up the circular region.
(c) Chord:

If we take two points P and Q on a circle, then the line segment $P Q$ is called a chord of the circle.

(d) Diameter:

The chord which passes through the centre of the circle, is called a diameter of the circle.

A diameter is the longest chord and all diameter have the same length, which is equal to two times the radius. In figure, AOB is a diameter of circle.
(e) Arc :

A piece of a circle between two points is called an arc. If we look at the pieces of the circle between two points P and Q in figure, we find that there are two pieces, one longer and the other smaller. The longer one is called the major arc PQ and the shorter one is called the minor arc PQ. The minor arc PQ is also denoted by PQ and the major arc PQ by PRQ, where R is some point on the arc between P and Q. Unless otherwise states, arc PQ or PQ stands for minor arc PQ. When P and Q are ends of a diameter, then both arcs are equal and each is called a semi circle.

(f) Circumference:

The length of the complete circle is called its circumference.
(g) Segment :

The region between a chord and either of its arcs is called a segment of the circular region or simply a segment of the circle. There are two types of segments also, which are the major segment and the minor segment (as in figure).

(h) Sector :

The region between an arc and the two radii, joining the centre to the end points of the arc is called a sector. Like segments, we find that the minor arc corresponds to the minor sector and the major arc corresponds to the major sector. In figure, the region OPQ in the minor sector and the remaining part of the circular region is the major sector. When two arcs are equal, then both segments and both sectors become the same and each is known as a semicircular region.

Theorem-1 : Equal chords of a circle subtend equal angles at the centre.
Given : AB and CD are the two equal chords of a circle with centre O .
To Prove: $\angle A O B=\angle C O D$.
Proof : In $\triangle A O B$ and $\triangle C O D$,

$$
\begin{aligned}
& \mathrm{OA}=\mathrm{OC} \\
\mathrm{OB}=\mathrm{OD} & {[\text { Radii of a circle }] } \\
& \mathrm{AB}=\mathrm{CD} \\
\therefore \quad \triangle \mathrm{AOB} \cong \triangle \mathrm{COD} & {[\text { Radii of a circle }] } \\
\therefore \quad \angle \mathrm{AOB}=\angle \mathrm{COD} . & {[\text { Given }] } \\
& {[\text { By SSS }] } \\
& {[\text { By cpctc }] }
\end{aligned}
$$

Converse of above Theorem :

In the angles subtended by the chords of a circle at the centre are equal, then the chords are equal.

Given : $\angle \mathrm{AOB}$ and $\angle \mathrm{POQ}$ are two equal angles subtended by chords AB and PQ of a circle at its centre O .
To Prove : $\mathrm{AB}=\mathrm{PQ}$

Proof: In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{POQ}$,

$$
\begin{aligned}
& \mathrm{OA}=\mathrm{OP} \\
& \text { [Radii of a circle] } \\
& O B=O Q \\
& \angle \mathrm{AOB}=\angle \mathrm{POQ} \\
& \text { [Radii of a circle] } \\
& \text { [Given] } \\
& \therefore \quad \triangle \mathrm{AOB} \cong \triangle \mathrm{POQ}
\end{aligned}
$$

$\therefore \quad \mathrm{AB}=\mathrm{PQ}$
[By cpctc]
Hence Proved.

Theorem-2 : The perpendicular from the centre of a circle to a chord bisects the chord.

Given : A circle with centre $O . A B$ is a chord of this circle. $O M \perp A B$.
To Prove : MA = MB.
Construction : Join OA and OB.
Proof: In right triangles OMA and OMB,

$\mathrm{OA}=\mathrm{OB}$	[Radii of a circle $]$
$\mathrm{OM}=\mathrm{OM}$	[Common]
$\angle \mathrm{OMA}=\angle \mathrm{OMB}$	$\left[90^{0}\right.$ each]
$\triangle \mathrm{OMA} \cong \triangle \mathrm{OMB}$	[By RHS]
$\mathrm{MA}=\mathrm{MB}$	$[$ By cpctc $]$

Hence Proved.
Converse of above Theorem :
The line drawn through the centre of a circle to bisect a chord a perpendicular to the chord.
Given : A circle with centre $\mathrm{O} . \mathrm{AB}$ is a chord of this circle whose mid-point is M .
To Prove : $\mathrm{OM} \perp \mathrm{AB}$.
Construction : Join OA and OB.
Proof: In $\triangle \mathrm{OMA}$ and $\triangle \mathrm{OMB}$.

$\mathrm{MA}=\mathrm{MB}$	[Given]
$\mathrm{OM}=\mathrm{OM}$	[Common]
$\mathrm{OA}=\mathrm{OB}$	[Radii of a circle]
$\therefore \quad \triangle \mathrm{OMA} \cong \triangle \mathrm{OMB}$	[By SSS]
$\therefore \quad \angle \mathrm{AMO}=\angle \mathrm{BMO}$	[By cpctc]
But $\angle \mathrm{AMO}+\angle \mathrm{BMO}=180^{\circ}$	[Linear pair axiom]
$\therefore \angle \mathrm{AMO}=\angle \mathrm{BMO}=90^{\circ}$	
$\Rightarrow \mathrm{OM} \perp \mathrm{AB}$.	

$\therefore \quad \triangle \mathrm{OMA} \cong \triangle \mathrm{OMB}$
But $\angle \mathrm{AMO}+\angle \mathrm{BMO}=180^{\circ}$
[By cpctc]
$\therefore \quad \angle \mathrm{AMO}=\angle \mathrm{BMO}=90^{\circ}$
$\Rightarrow \mathrm{OM} \perp \mathrm{AB}$.
Theorem-3 : There is one and only one circle passing through three given non-collinear points.
Proof : Let us take three points A, B and C, which are not on the same line, or in other words, they are not collinear [as in figure]. Draw perpendicular bisectors of AB and BC say, PQ and RS respectively. Let these perpendicular bistros intersect at one point O. (Note that PQ and RS will intersect because they are not parallel) [as in figure].

$\therefore \quad \mathrm{O}$ lies on the perpendicular bisector PQ of AB .
$\therefore \quad \mathrm{OA}=\mathrm{OB}$
[\because Every point on the perpendicular bisector of a line segment is equidistant from its end points]

Similarly,
\therefore O lies on the perpendicular bisector RS of BC.
$\therefore \quad \mathrm{OB}=\mathrm{OC}$
[\because Every point on the perpendicular bisector of a line segment is equidistant from its end points]
So, $\mathrm{OA}=\mathrm{OB}=\mathrm{OC}$
i.e., the points A, B and C are at equal distances from the point O .

So, if we draw a circle with centre O and radius $O A$ it will also pass through B and C. This shows that there is a circle passing through the three points A, B and C . We know that two lines (perpendicular bisectors) can intersect at only one point, so we can draw only one circle with radius OA. In other words, there is a unique circle passing through A, B and C .

Hence Proved.

REMARK :

If $A B C$ is a triangle, then by above theorem, there is a unique circle passing through the three vertices A, B and C of the triangle. This circle the circumcircle of the $\triangle A B C$. Its centre and radius are called respectively the circumcentre and the circumradius of the triangle.
Ex. 1 In figure, $\mathrm{AB}=\mathrm{CB}$ and O is the centre of the circle. Prove that BO bisects $\angle \mathrm{ABC}$.
Sol. Given : In figure, $\mathrm{AB}=\mathrm{CB}$ and O is the centre of the circle.
To Prove : BO bisects $\angle A B C$.
Construction : Join OA and OC.

Proof: In $\triangle \mathrm{OAB}$ and $\triangle \mathrm{OCB}$,
 Hence Proved.
Ex. 2 Two circles with centres A and B intersect at C and D . Prove that $\angle \mathrm{ACB}=\angle \mathrm{ADB}$.
Sol. Given : Two circles with centres A and B intersect at C and D.
To Prove : $\angle \mathrm{ACB}=\angle \mathrm{ADB}$.
Construction : Join AC, AD, BC, BD and AB.
Proof: In $\triangle \mathrm{ACB}$ an $\triangle \mathrm{ADB}$,

$$
\begin{array}{ll}
\mathrm{AC}=\mathrm{AD} & {[\text { Radii of the same circle }]} \\
\mathrm{BC}=\mathrm{BD} & {[\text { Radii of the same circle }]} \\
\mathrm{AB}=\mathrm{AB} & {[\text { Common }]}
\end{array}
$$

$\therefore \quad \triangle \mathrm{ACB} \cong \triangle \mathrm{ADB} \quad[\mathrm{By} \mathrm{SSS}]$
$\therefore \quad \angle \mathrm{ACB}=\angle \mathrm{ADB} . \quad$ [By cpctc]

In figure, $A B \cong A C a n d O$ is the centre of the circle. Prove that $O A$ is the perpendicular bisector of $B C$.

Sol. Given : In figure, $\mathrm{AB} \cong \mathrm{AC}$ and O is the centre of the circle.
To Prove : OA is the perpendicular bisector of $B C$.
Construction : Join OB and OC.
Proof:
$\therefore \quad A B \cong A C$

[Given]

\therefore chord $A B=$ chord $A C$.
[\because If two arcs of a circle are congruent, then their corresponding chords are equal.]
$\therefore \quad \angle \mathrm{AOB}=\angle \mathrm{AOC}$
$\ldots .$. (i) $\quad \because$ Equal chords of a circle subtend equal angles at the centre]
In $\triangle \mathrm{OBC}$ and $\triangle \mathrm{OCD}$,
$\angle \mathrm{DOB}=\angle \mathrm{DOC}$
$\mathrm{OB}=\mathrm{OC}$
$\mathrm{OD}=\mathrm{OD}$
$\therefore \quad \triangle \mathrm{OBD} \cong \triangle \mathrm{OCD}$
$\therefore \quad \angle \mathrm{ODB}=\angle \mathrm{ODC}$
....(ii) [By cpctc]
And $\quad \mathrm{BD}=\mathrm{CD}$
But $\angle \mathrm{BDC}=180^{\circ}$
...(ii) [By cpctc]
[From (1)]
[Radii of the same circle]
[Common]
[By SAS]
$\therefore \quad \angle \mathrm{ODB}+\angle \mathrm{ODC}=180^{\circ}$
$\Rightarrow \angle \mathrm{ODB}+\angle \mathrm{ODB}=180^{\circ}$
[From equation (ii)]
$\Rightarrow 2 \angle \mathrm{ODB}=180^{\circ}$
$\Rightarrow \angle \mathrm{ODB}=90^{\circ}$
$\therefore \quad \angle \mathrm{ODB}=\angle \mathrm{ODC}=90^{\circ}$
[From (ii)]
So, by (iii) and (iv), OA is the perpendicular bisector of BC.
Hence Proved.
Ex. 4 Prove that the line joining the mid-points of the two parallel chords of a circle passes through the centre of the circle.

Sol. Let AB and CD be two parallel chords of a circle whose centre is O .
Let l and M be the mid-points of the chords $A B$ and CD respectively. Join PL and OM.
Draw $\quad O X \| A B$ or $C D$.

$\therefore \quad \mathrm{L}$ is the mid-point of the chord AB and O is the centre of the circle
$\therefore \quad \angle \mathrm{OLB}=90^{\circ}$
$[\because$ The perpendicular drawn from the centre of a circle to chord bisects the chord]
But, OX || AB
$\therefore \quad \angle \mathrm{LOX}=90^{\circ}$
[\because Sum of the consecutive interior angles on the same side of a transversal is 180°]
$\therefore \quad \mathrm{M}$ is the mid-point of the chord CD and O is the centre of the circle.
$\therefore \angle \mathrm{OMD}=90^{\circ}$
$[\because$ The perpendicular drawn from the centre of a circle to a chord bisects the chord]

But OX || CD
[\because Sum of the consecutive interior angles on the same side of a transversal is 180°]
$\therefore \quad \angle \mathrm{MOX}=90^{\circ}$
From above equations, we get
$\Rightarrow \quad \angle \mathrm{LOX}+\angle \mathrm{MOX}=90^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{LOM}=180^{\circ}$
\Rightarrow LM is a straight line passing through the centre of the circle.
Hence Proved.
Ex. $5 \quad \ell$ is a line which intersects two concentric circle (i.e., circles with the same centre) with common centre O at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D (as in figure). Prove that $\mathrm{AB}=\mathrm{CD}$.
Sol. Given : ℓ is a line which intersects two concentric circles (i.e., circles with the same centre) with common centre O at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
To Prove: $A B=C D$.
Construction : Draw OE $\perp \ell$
Proof :
\therefore The perpendicular drawn from the centre of a circle to a chord bisects the chord
$\therefore \quad \mathrm{AE}=\mathrm{ED}$
And $\quad \mathrm{BE}=\mathrm{EC}$

Subtracting (ii) from (i), we get
$\mathrm{AE}-\mathrm{BE}=\mathrm{ED}-\mathrm{EC}$
$\Rightarrow A B=C D$.

Hence Proved.

Ex. 6 PQ and RS are two parallel chords of a circle whose centre is O and radius is 10 cm . If $\mathrm{PQ}=16 \mathrm{~cm}$ and $\mathrm{RS}=$ 12 cm , find the distance between PQ and RS, if they lie.
(i) on the same side of the centre O .
(ii) on opposite sides of the centre O.

Sol. (i) Draw the perpendicular bisectors OL and OM of PQ and RS respectively.
$\therefore \quad \mathrm{PQ} \| \mathrm{RS}$
$\therefore \mathrm{OL}$ and OM are in the same line.
$\Rightarrow \mathrm{O}, \mathrm{L}$ and M are collinear.
Join OP and OR.
In right triangle OLP,
$\mathrm{OP}^{2}=\mathrm{OL}^{2}+\mathrm{PL}^{2}$
[By Pythagoras Theorem]

$$
\Rightarrow \quad(10)^{2}=\mathrm{OL}^{2}+\left(\frac{1}{2} \times \mathrm{pq}\right)^{2}
$$

[\therefore The perpendicular drawn from the centre of a circle to a chord bisects the chord]

$$
\begin{aligned}
& \Rightarrow \quad 100=\mathrm{OL}^{2}+\left(\frac{1}{2} \times 16\right)^{2} \\
& \Rightarrow 100=\mathrm{OL}^{2}+(8)^{2} \\
& \Rightarrow 100=\mathrm{OL}^{2}+64 \\
& \Rightarrow \mathrm{OL}^{2}=100-64 \\
& \Rightarrow \mathrm{OL}^{2}=36=(6)^{2} \\
& \Rightarrow \mathrm{OL}=6 \mathrm{~cm}
\end{aligned}
$$

In right triangle OMR,
$\mathrm{OR}^{2}=\mathrm{OM}^{2}+\mathrm{RM}^{2}$

[By Pythagoras Theorem]

$\Rightarrow \mathrm{OR}^{2}=\mathrm{OM}^{2}+\left(\frac{1}{2} \times \mathrm{RS}\right)^{2}$
$[\because$ The perpendicular drawn from the centre of a circle to a chord bisects the chord]
$\Rightarrow \quad(10)^{2}=\mathrm{OM}^{2}+\left(\frac{1}{2} \times 12\right)^{2}$
$\Rightarrow \quad(10)^{2}=\mathrm{OM}^{2}+(6)^{2}$
$\Rightarrow \mathrm{OM}^{2}=(10)^{2}-(6)^{2}=(10-6)(10+6)=(4)(16)=64=(8)^{2}$
$\Rightarrow \mathrm{OM}=8 \mathrm{~cm}$
$\therefore \quad \mathrm{LM}=\mathrm{OM}-\mathrm{OL}=8-6=2 \mathrm{~cm}$
Hence, the distance between PQ and RS, if they lie on he same side of the centre O, is 2 cm .
(ii) Draw the perpendicular bisectors OL and OM of PQ and RS respectively.

$\therefore \quad \mathrm{PQ} \| \mathrm{RS}$

$\therefore \quad \mathrm{OL}$ and OM are in the same line
$\Rightarrow \mathrm{L}, \mathrm{O}$ and M are collinear.
Join OP nd OR.
In right triangle OLP,

$$
\mathrm{OP}^{2}=\mathrm{OL}^{2}+\mathrm{PL}^{2} \quad[\text { By Pythagoras Theorem }]
$$

$\Rightarrow \mathrm{OP}^{2}=\mathrm{OL}^{2}+\left(\frac{1}{2} \times \mathrm{pQ}\right)^{2}$
[\because The perpendicular drawn from the centre of a circle to a chord bisects the chord]

$$
\begin{aligned}
& \Rightarrow \quad(10))^{2}=\mathrm{OL}^{2}+\left(\frac{1}{2} \times 16\right)^{2} \\
& \Rightarrow \quad 100=\mathrm{OL}^{2}+(8)^{2} \\
& \Rightarrow \quad 100=\mathrm{OL}^{2}+64 \\
& \Rightarrow \quad \mathrm{OL}^{2}=100-64 \\
& \Rightarrow \quad \mathrm{OL}^{2}=36=(6)^{2} \\
& \Rightarrow \quad \mathrm{OL}=6 \mathrm{~cm} \\
& \text { In right triangle } \mathrm{OMR}, \\
& \quad \mathrm{OR}^{2}=\mathrm{OM}^{2}+\mathrm{RM}^{2} \\
& \Rightarrow \quad \mathrm{OR}^{2}=\mathrm{OM}^{2}+\left(\frac{1}{2} \times 12\right)^{2} \quad \text { [By Pythagoras Theorem] }
\end{aligned}
$$

[\because The perpendicular drawn from the centre of a circle to a chord bisects the chord]

$$
\begin{aligned}
& \Rightarrow(10)^{2}=\mathrm{OM}^{2}+\left(\frac{1}{2} \times \mathrm{RS}\right)^{2} \\
& \Rightarrow(10)^{2}=\mathrm{OM}^{2}+(6)^{2} \\
& \Rightarrow \mathrm{OM}^{2}=(10)^{2}-(6)^{2}=(10-6)(10+6)=(4)(16)=64=(8)^{2} \\
& \Rightarrow \mathrm{OM}=8 \mathrm{~cm} \\
& \therefore \quad \mathrm{LM}=\mathrm{OL}+\mathrm{OM}=6+8=14 \mathrm{~cm}
\end{aligned}
$$

Hence, the distance between PQ and RS, if they lie on the opposite side of the centre O , is 14 cm .

Theorem-4 : Equal chords of a circle (or of congruent circles) are equidistant from the centre (or centres).

Given : A circle have two equal chords $\mathrm{AB} \& \mathrm{CD}$. .e. $\mathrm{AB}=\mathrm{CD}$ and $\mathrm{OM} \perp \mathrm{AB}, \mathrm{ON} \perp \mathrm{CD}$
To Prove: OM = ON
Construction : Join OB \& OD
Proof : AB = CD (Given)
[\because The perpendicular drawn from the centre of a circle to bisect the chord.]
$\therefore \quad \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{CD}$
$\Rightarrow \mathrm{BM}=\mathrm{DN}$
In $\triangle \mathrm{OMB} \& \triangle \mathrm{OND}$

$\angle \mathrm{OMB}=\angle \mathrm{OND}=90^{\circ}$	$[$ Given $]$	
$\mathrm{OB}=\mathrm{OD}$	$[$ Radii of same circle $]$	
Side $\mathrm{BM}=$ Side DN	$[$ Proved above $]$	
$\triangle \mathrm{OMB} \cong \triangle \mathrm{OND}$	$[$ By R.H.S. $]$	Hence Proved.
$\mathrm{OM}=\mathrm{ON}$	$[$ By cpctc]	

REMARK:
Chords equidistant from the centre of a circle are equal in length.

Ex. $7 \quad \mathrm{AB}$ and CD are equal chords of a circle whose centre is O . When produced, these chords meet at E. Prove that $\mathrm{EB}=\mathrm{ED}$.
Sol. Given : AB and CD are equal chords of a circle whose centre is O . When produced, these chords meet at E .
To Prove: EB = ED.
Construction : From O draw $O P \perp A B$ and $O Q \perp C D$. Join $O E$.

Proof: $\therefore \mathrm{AB}=\mathrm{CD}$
$\therefore \quad \mathrm{OP}=\mathrm{OQ}$
Now in right tingles OPE and OQE,

$$
\mathrm{OE}=\mathrm{OE}
$$

Side OP $=$ Side $O Q$
$\therefore \quad \triangle \mathrm{OPE} \cong \triangle \mathrm{OQE}$
$\therefore \quad \mathrm{OE}=\mathrm{QE}$
$\Rightarrow \mathrm{PE}-\frac{1}{2} \mathrm{AB}=\mathrm{QE}-\frac{1}{2} \mathrm{CD}$
$\Rightarrow \mathrm{PE}-\mathrm{PB}=\mathrm{QE}-\mathrm{QD}$
$\Rightarrow \mathrm{EB}=\mathrm{ED}$.
[Given]
[\therefore Equal chords of a circle are equidistant from the centre]
[Common]
[Proved above]
[By RHS]
[By cpctc]
$[\therefore \mathrm{AB}=\mathrm{CD}$ (Given)]

Hence Proved.

Ex. 8 Bisector AD of $\angle \mathrm{BAC}$ of $\triangle \mathrm{ABC}$ passed through the centre O of the circumcircle of $\triangle \mathrm{ABC}$. Prove that $\mathrm{AB}=$ AC.
Sol. Given : Bisector $A D$ of $\angle B A C$ of $\triangle A B C$ passed through the centre O of the circumcircle of $\triangle A B C$,
To Prove : $\mathrm{AB}=\mathrm{AC}$.
Construction : Draw $O P \perp A B$ and $O Q \perp A C$.
Proof :

In $\triangle \mathrm{APO}$ and $\triangle \mathrm{AQO}$,

	$\angle \mathrm{OPA}=\angle \mathrm{OQA}$	$\left[\right.$ Each $=90^{\circ}$ (by construction) $]$
	$\angle \mathrm{OAP}=\angle \mathrm{OAQ}$	$[$ Given $]$
	$\mathrm{OA}=\mathrm{OA}$	$[$ Common $]$
\therefore	$\triangle \mathrm{APO} \cong \triangle \mathrm{AQO}$	$[$ By ASS cong. prog. $]$
\therefore	$\mathrm{OP}=\mathrm{OQ}$	$[$ By cpctc $]$
\therefore	$\mathrm{AB}=\mathrm{AC}$.	$[\because$ Chords equidistant from the centre are equal $] \quad$ Hence Proved.

Ex. $9 \quad \mathrm{AB}$ and CD are the chords of a circle whose centre is O . They intersect each other at P. If PO be the bisector of $\angle \mathrm{APD}$, prove that $\mathrm{AB}=\mathrm{CD}$.

OR
In the given figure, O is the centre of the circle and $P O$ bisect the angle $A P D$. prove that $A B=C D$.
Sol. Given : AB and CD are the chords of a circle whose centre is O. They interest each other at P. PO is the bisector of $\angle \mathrm{APD}$.
To Prove : $A B=C D$.
Construction : Draw $O R \perp A B$ and $O Q \perp C D$.
Proof: In $\triangle \mathrm{OPR}$ and $\triangle \mathrm{OPQ}$,

$$
\begin{array}{ll}
\angle \mathrm{OPR}=\angle \mathrm{OPQ} & {[\text { Given }]} \\
\mathrm{OP}=\mathrm{OP} & {[\text { Common }]}
\end{array}
$$

And $\quad \angle \mathrm{ORP}=\angle \mathrm{OQP}\left[\mathrm{Each}=90^{\circ}\right]$

$\therefore \quad \triangle \mathrm{ORP} \cong \triangle \mathrm{OPQ}$
[By AAS]
$\therefore \quad \mathrm{OR}=\mathrm{OQ}$
[By cpctc]
$\therefore \quad \mathrm{AB}=\mathrm{CD}$
[\because Chords of a circle which are equidistant from the centre are equal]

REMARK:

Angle Subtended by an Arc of a Circle :

In figure, the angle subtended by the minor arc PQ at O is $\angle \mathrm{POQ}$ and the angle subtended by the major arc PQ at O is reflex angle $\angle \mathrm{POQ}$.

OBJECTIVE DPP \# 14.1

1. If two circular wheels rotate on a horizontal road then locus of their centres will be
(A) Circles
(B) Rectangle
(C) Two straight line
(D) Parallelogram
2. In a plane locus of a centre of circle of radius r, which passes through a fixed point
(A) rectangle
(B) A circle
(C) A straight line
(D) Two straight line
3. In a circle of radius 10 cm , the length of chord whose distance is 6 cm from the centre is
(A) 4 cm
(B) 5 cm
(C) 8 cm
(D) 16 cm
4. If a chord a length 8 cm is situated at a distance of 3 cm form centre, then the diameter of circle is :
(A) 11 cm
(B) 10 m
(C) 12 cm
(D) 15 cm
5. In a circle the lengths of chords which are situated at a equal distance from centre are :
(A) double
(B) four times
(C) equal
(D) three times

SUBJECTIVE DPP \# 14.2

1. The radius of a circle is 13 cm and the length of one of its chords is 10 cm . Find the distance of the chord from the centre.
2. Show is the figure, O is the centre of the circle of radius 5 cm . $O P \perp A B, O Q \Re C D, A B \| C D, A B=6 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$. Determine PQ .

3. $A B$ and $C D$ are two parallel chords of a circle such that $A B=10 \mathrm{~cm}$ and $C D 24 \mathrm{~cm}$. If the chords are on the opposite side of the centre and the distance between is 17 cm , Find the radius of the circle.
4. In a circle of radius $5 \mathrm{~cm}, \mathrm{AB}$ and AC are two chords such that $\mathrm{AB}=\mathrm{AC}=6 \mathrm{~cm}$. Find the length of the chord BC.
5. $\quad A B$ and $C D$ are two parallel chords of a circle whose diameter is $A C$. Prove that $A B=C D$.
6. Two circles of radii 10 cm and 8 cm interest and the length of the common chord is 12 cm . Find the distance between their centries.
7. Two circles with centre A and B and of radii 5 cm and 3 cm touch each other internally. If the perpendicular bisector of segment $A B$ meet the bibber circle is P and Q, find the length of $P Q$.

SOME IMPORTANT THEOREMS

Theorem- $\mathbf{1}$: Equal chords of a circle subtend equal angles at the centre.
Given : A circle with centre O in which chord $\mathrm{PQ}=$ chord RS .
To Prove: $\angle \mathrm{POQ}=\angle \mathrm{ROS}$.
Proof: In $\triangle \mathrm{POQ}$ and $\triangle \mathrm{ROS}$,

$$
\begin{aligned}
& \mathrm{OP}=\mathrm{OR} \\
& \mathrm{OQ}=\mathrm{OS} \\
& \mathrm{PW}=\mathrm{RS} \\
\Rightarrow & \Delta \mathrm{POQ}=\triangle \mathrm{ROS} \text { [Radii of the same circle }] \\
\Rightarrow & \angle \mathrm{POQ}=\angle \mathrm{ROS}
\end{aligned}
$$

Theorem-2 : If the angles subtended by the chords at the centre (of a circle) are equal then the chords are equal.
Given : A circle with centre O . Chords PQ and RS subtend equal angles at the enter of the circle.
i.e. $\angle \mathrm{POQ}=\angle \mathrm{ROS}$

To Prove : Chord PQ = chord RS.
Proof : In $\triangle P O Q$ and $\triangle R O S$,

$$
\begin{array}{cl}
\angle \mathrm{POQ}=\angle \mathrm{ROS} & {[\text { Given }]} \\
\mathrm{OP}=\mathrm{OR} & {[\text { Radii of the same circle }]} \\
\mathrm{OQ}=\mathrm{OS} & {[\text { Radii of the same circle }]}
\end{array}
$$

$\Rightarrow \quad \triangle \mathrm{POQ} \cong \triangle \mathrm{ROS} \quad[\mathrm{By} \mathrm{SSS}]$
\Rightarrow chord $\mathrm{PQ}=$ chord RS
[By cpctc]
Hence Proved.
Corollary-1 : Two arc of a circle are congruent, if the angles subtended by them at the centre are equal.
Corollary 2 : If two arcs of a circle are equal, they subtend equal angles at the centre.
Corollary 3 : If two arc of a circle are congruent (equal), their corresponding chords are equal.
Corollary 4: If two chords of a circle are equal, their corresponding arc are also equal. $\angle \mathrm{AOB}=\angle \mathrm{COD}$
$\therefore \quad$ Chord $\mathrm{AB}=$ Chord CD
$\therefore \quad$ Arc APB $=$ Arc COD.

Theorem-3 : The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
Given : An arc PQ of a circle subtending angles POQ at the centre O and PAQ at a point A on the remaining part of the circle.
To Prove: $\angle \mathrm{POQ}=2 \angle \mathrm{PAQ}$.
Construction : Join AO and extend it to a point B.

(A)

(B)

(C)

Proof: There arises three cases :
(A) are PQ is minor
(B) arc PQ s a semi - circle
(C) arc PQ is major.

In all the cases,

$$
\begin{equation*}
\angle \mathrm{BOQ}=\angle \mathrm{OAQ}+\angle \mathrm{AQO} \tag{i}
\end{equation*}
$$

[\because An exterior angle of triangle is equal to the sum of the two interior opposite angles]
In OAQ,

$$
\begin{equation*}
\mathrm{OA}=\mathrm{OQ} \tag{ii}
\end{equation*}
$$

[Radii of a circle]
$\therefore \quad \angle \mathrm{OAQ}=\angle \mathrm{OQA}$
[Angles opposite equal of a triangle are equal]
(i) and (ii), give,

$$
\begin{equation*}
\angle \mathrm{BOQ}=2 \angle \mathrm{OAQ} \tag{iii}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\angle \mathrm{BOP}=2 \angle \mathrm{OAP} \tag{iv}
\end{equation*}
$$

Adding (iii) and (iv), we get

$$
\begin{align*}
& \angle \mathrm{BOP}+\angle \mathrm{BOQ}=2(\angle \mathrm{OAP}+\angle \mathrm{OAQ}) \\
\Rightarrow \quad & \angle \mathrm{POQ}=2 \angle \mathrm{PA} . \tag{v}
\end{align*}
$$

NOTE : For the case (C), where PQ is the major arc, (v) is replaced by reflex angles.
Thus, $\quad \angle \mathrm{POQ}=2 \angle \mathrm{PAQ}$.
Theorem- 4 : Angles in the same segment of a circle are equal.
Proof : Let P and Q be any two points on a circle to form a chord $P Q, A$ and C any other points on the remaining part of the circle and O be the centre of the circle. Then,

$$
\begin{equation*}
\angle \mathrm{POQ}=2 \angle \mathrm{PAQ} \tag{i}
\end{equation*}
$$

And $\quad \angle \mathrm{POQ}=2 \angle \mathrm{PCQ}$
From above equations, we get
$2 \angle \mathrm{PAQ}=2 \angle \mathrm{PCQ}$
$\Rightarrow \quad \angle \mathrm{PAQ}=\angle \mathrm{PCQ}$

Hence Proved

Theorem-5 : Angle in the semicircle is a right angle.
Proof : $\angle \mathrm{PAQ}$ is an angle in the segment, which is a semicircle.
$\therefore \quad \angle \mathrm{PAQ}=\frac{1}{2} \angle \mathrm{PAO}=\frac{1}{2} \times 180^{\circ}=90^{\circ}$
[$\therefore \angle \mathrm{PQR}$ is straight line angle or $\angle \mathrm{PQR}=180^{\circ}$]
If we take any other point C on the semicircle, then again we get

$$
\angle \mathrm{PCQ}=\frac{1}{2} \angle \mathrm{POQ}=\frac{1}{2} \times 180^{\circ}=90^{\circ}
$$

Hence Proved.

Theorem-6: If a line segment joining two points subtend equal angles at two other points lying on the same side of the lien containing the line segment the four points lie on a circle (i.e., they are concyclic).
Given : AB is a line segment, which subtends equal angles at two points C and D. i.e., $\angle \mathrm{ACB}=\angle \mathrm{ADB}$.
To Prove : The points A, B, C and D lie on a circle.
Proof: Let us draw a circle through the points A, C and B.
Suppose it does not pass through the point D.
Then it will intersect AD (or extended AD) at a point, say E (or E^{\prime}).
If points $\mathrm{A}, \mathrm{C}, \mathrm{E}$ and B lie on a circle,

But it is given that

$$
\angle \mathrm{ACD}=\angle \mathrm{AEB} \quad[\therefore \text { Angles in the same segment of circle are equal }]
$$

Therefore, $\angle \mathrm{ACB}=\angle \mathrm{ADB}$
$\angle \mathrm{AEB}=\angle \mathrm{ADB}$
This is possible only when E coincides with D . [As otherwise $\angle \mathrm{AEB}>\angle \mathrm{ADB}$]
Similarly, E' should also coincide with D. So A, B, C and D are concyclic
Hence Proved.

CYCLIC QUADRILATERAL

A quadrilateral $A B C D$ is called cyclic if all the four vertices of it lie on a circle.

Theorem-7 : The sum of either pair of opposite angles of a cyclic quadrilateral is $\mathbf{1 8 0}^{\mathbf{0}}$
Given : A cyclic quadrilateral ABCD.
To Prove: $\angle \mathrm{A}+\angle \mathrm{C}=\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$
Construction : Join AC and BD.
Proof: $\angle \mathrm{ACB}=\angle \mathrm{ADB}$
[Angles of same segment]
And $\quad \angle \mathrm{BAC}=\angle \mathrm{BDC} \quad$ [Angles of same segment]
$\therefore \quad \angle \mathrm{ACB}+\angle \mathrm{BAC}=\angle \mathrm{ADB}+\angle \mathrm{BDC}=\angle \mathrm{ADC}$.

Adding $\angle \mathrm{ABC}$ to both sides, we get

$$
\angle \mathrm{ACB}+\angle \mathrm{BAC}+\angle \mathrm{ABC}=\angle \mathrm{ADC}+\angle \mathrm{ABC}
$$

The left side being the sum of three angles of $\triangle A B C$ is equal to 180°.
$\therefore \quad \angle \mathrm{ADC}+\angle \mathrm{ABC}=180^{\circ}$
i.e., $\angle \mathrm{D}+\angle \mathrm{B}=180^{\circ}$
$\therefore \quad \angle \mathrm{A}+\angle \mathrm{C}=360^{\circ} \quad-(\angle \mathrm{B}+\angle \mathrm{D})=180^{\circ} \quad\left[\therefore \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}\right] \quad$ Hence Proved.

Corollary : If the sum of a pair of opposite angles of a quadrilateral is $18 \mathbf{0}^{\mathbf{}}$, then quadrilateral is cyclic.
Ex. 1 In figure, $\angle A B C=69^{\circ}, \angle A C B=31^{\circ}$, find $\angle B D C$.
Sol. In $\triangle A B C$.

$$
\angle \mathrm{BAC}+\angle \mathrm{ABC}+\angle \mathrm{ACB}=180^{\circ}
$$

[Sum of all the angles of a triangle is 180°]

$$
\begin{aligned}
& \Rightarrow \angle B A C+69^{0}+31^{0}=180^{0} \\
& \Rightarrow \angle B A C+100^{\circ}=180^{\circ} \\
& \Rightarrow \angle B A C=180^{\circ}-100^{\circ}=80^{\circ}
\end{aligned}
$$

Now, $\quad \angle \mathrm{BDC}=\angle \mathrm{BAC}=80^{\circ}$. Ans. [Angles in the same segment of a circle are equal]
Ex. 2 ABCD is a cyclic quadrilateral whose diagonals intersect at a point E . If $\angle \mathrm{DBC}=70^{\circ}, \angle \mathrm{BAC}$ is 30°, find $\angle B C D$. Further, if $B=B C$, find $\angle E C D$.

Sol. $\quad \angle \mathrm{CDB}=\angle \mathrm{BAC}=30^{\circ}$
[Angles in the same segment of a circle are equal]
$\angle \mathrm{DBC}=70^{\circ}$
In $\triangle \mathrm{BCD}$,

$$
\begin{align*}
& \angle \mathrm{BCD}+\angle \mathrm{DBC}+\angle \mathrm{CDB}=180^{\circ} \quad\left[\text { Sum of all he angles of a triangle is } 180^{\circ}\right] \\
& \Rightarrow \angle \mathrm{BCD}+70^{\circ}+30.0=180^{\circ} \quad[\mathrm{Using} \text { (i) and (ii) } \\
& \Rightarrow \angle \mathrm{BCD}+100^{\circ}=180^{\circ} \\
& \Rightarrow \angle \mathrm{BCD}=180^{\circ}-100^{\circ} \\
& \Rightarrow \angle \mathrm{BCD}=80^{\circ} \tag{iii}\\
& \text { In } \triangle \mathrm{ABC},
\end{align*}
$$

$\mathrm{AB}=\mathrm{BC}$
$\therefore \quad \angle \mathrm{BCA}=\angle \mathrm{BAC}=30^{\circ}$
...(iv) [Angles opposite to equal sides of a triangle are equal]
Now, $\angle B C D=80^{\circ}$
[From (iii)]
$\Rightarrow \angle \mathrm{BCA}+\angle \mathrm{ECD}=80^{\circ}$
$\Rightarrow 30^{\circ}+\angle \mathrm{ECD}=80^{\circ}$
$\Rightarrow \angle \mathrm{ECD}=80^{\circ}-30^{\circ}$
$\Rightarrow \angle \mathrm{ECD}=50^{\circ}$

Ex. 3 If the nonparallel side of a trapezium are equal, prove that it is cyclic.
Sol. Given : ABCD is a trapezium whose two non-parallel sides $A B$ and $B C$ are equal.
To Prove : Trapezium ABCD is a cyclic.
Construction: Draw BE \| AD.

Proof : $\therefore \mathrm{AB} \\| \mathrm{DE}$	[Given]
$\mathrm{AD} \\| \mathrm{BE}$	[By construction]

\therefore Quadrilateral ABCD is a parallelogram.

$$
\begin{array}{lll}
\therefore \quad \angle \mathrm{BAD}=\angle \mathrm{BED} & \ldots . .(\mathrm{i}) & {[\text { Opp. angles of a } \| \mathrm{gm}]} \\
\text { And, } \quad \mathrm{AD}=\mathrm{BE} & \ldots . \text { (ii) } & {[\text { Opp. sides of a } \| \mathrm{gm}]} \\
\text { But } \mathrm{AD}=\mathrm{BC} & \ldots .(\text { (iii) } & {[\text { Given }]}
\end{array}
$$

From (ii) and (iii),

$$
\begin{array}{lll}
& \mathrm{BE}=\mathrm{BC} \\
\therefore & \angle \mathrm{BEC}=\angle \mathrm{BCE} \quad \ldots . .(\mathrm{iv}) & \\
& \angle \mathrm{BEC}+\angle \mathrm{BED}=180^{\circ} & \text { [Angles opposite to equal sides] } \tag{iv}\\
\Rightarrow & \angle \mathrm{BCE}+\angle \mathrm{BAD}=180^{\circ} & \text { [Linear Pair Axiom] } \\
\Rightarrow & \text { Trapezium } \mathrm{ABCD} \text { is cyclic. } & \\
{\left[\therefore \text { If a pair of opposite angles of a quadrilateral } 180^{\circ},\right. \text { then the quadrilateral is cyclic] Hence Proved. }}
\end{array}
$$

Ex. 4 Prove that a cyclic parallelogram is a rectangle.
Sol. Given : ABCD is a cyclic parallelogram.
To Prove: $A B C D$ is a rectangle.
Proof : $\therefore \mathrm{ABCD}$ is a cyclic quadrilateral
$\therefore \quad \angle 1+\angle 2=180^{\circ}$

[\therefore Opposite angles of a cyclic quadrilateral are supplementary]
$\therefore \quad \mathrm{ABCD}$ is a parallelogram
$\therefore \quad \angle 1=\angle 2$
...(ii) [Opp. angles of a || gm]
From (i) and (ii),

$$
\angle 1=\angle 2=90^{\circ}
$$

$\therefore \quad \| \mathrm{gm} \mathrm{ABCD}$ is a rectangle.

Hence Proved.

Ex. 5 Bisectors of angles A, B and C of a triangle ABC intersect its circumcircle at D, E and F respectively.
Prove that the angles of the triangle DEF are $90^{\circ}-\frac{1}{2} \mathrm{~A}, 90^{\circ}-\frac{1}{2} \mathrm{~B}$ and $90^{\circ}-\frac{\angle \mathrm{C}}{2}$.
Sol. Given : Bisectors of angles A, B and C of a triangle $A B C$ intersect its circumcircle at D, E and F respectively.

To Prove : The angles of the $\triangle \mathrm{DEF}$ are $90^{\circ}-\frac{\angle \mathrm{A}}{2}, 90^{\circ}-\frac{\angle \mathrm{B}}{2}$ and $90^{\circ}-\frac{\mathrm{C}}{2}$ respectively.
Construction : Join DE, EF and FD.

$$
\begin{array}{rlrl}
\text { Proof }: & \angle \mathrm{FDE}=\angle \mathrm{FDA}+\angle \mathrm{EDA}=\angle \mathrm{FCA}+\angle \mathrm{EBA} & & {[\therefore \text { Angles in the same segment are equal }]} \\
& =\frac{1}{2} \angle \mathrm{C}+\frac{1}{2} \angle \mathrm{~B} & \\
\Rightarrow & \angle \mathrm{D} & =\frac{\angle \mathrm{C}+\angle \mathrm{B}}{2}=\frac{180^{\circ}-\angle \mathrm{A}}{2} & \\
\Rightarrow & \angle \mathrm{D} & =90^{\circ}-\frac{\angle \mathrm{A}}{2} & {\left[\therefore \text { In } \triangle \mathrm{ABC}, \angle \mathrm{~A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}\right]}
\end{array}
$$

Similarly, we can show that

$$
\angle \mathrm{E}=90^{\circ}-\frac{\angle \mathrm{B}}{2}
$$

And $\angle \mathrm{F}=90^{\circ}-\frac{\angle \mathrm{C}}{2}$.

Hence Proved.

Ex. 6 Find the area of a triangle, the radius of whose circumcircle is 3 cm and the length of the altitude drawn from the opposite vertex to the hypotenuse is 2 cm .
Sol. We know that the hypotenuse of a right angled triangle is the diameter of its circumcircle.
$\therefore \quad \mathrm{BC}=2 \mathrm{OB}=2 \times 3=6 \mathrm{~cm}$
Let, $A D \perp B C$
$\mathrm{AD}=2 \mathrm{~cm}$
[Given]
$\therefore \quad$ Area of $\triangle \mathrm{ABC}=\frac{1}{2}(\mathrm{BC})(\mathrm{AD})$

$$
\begin{aligned}
& =\frac{1}{2}(6)(2) \\
& =6 \mathrm{~cm}^{2}
\end{aligned}
$$

Ans.
Ex. 7 In figure, PQ is a diameter of a circle with centre O . $\mathrm{IF} \angle \mathrm{PQR}=65^{\circ}, \angle \mathrm{SPR}=40^{\circ}, \angle \mathrm{PQ} M=50^{\circ}$, find $\angle \mathrm{QPR}$, $\angle \mathrm{PRS}$ and $\angle \mathrm{QPM}$.
Sol. (i) $\angle Q P R$
$\therefore \mathrm{PQ}$ is a diameter
$\therefore \quad \angle \mathrm{PRQ}=90^{\circ}$
[Angle in a semi-circle is 90°]
In $\triangle \mathrm{PQR}$,
$\angle \mathrm{QPR}+\angle \mathrm{PRQ}+\angle \mathrm{PQR}=180^{\circ} \quad$ [Angle Sum Property of a triangle]

$\Rightarrow \quad \angle \mathrm{QPR}+90^{\circ}+65^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{QPR}+155^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{QPR}=180^{\circ}-155^{\circ}$
$\Rightarrow \angle \mathrm{QPR}=25^{\circ}$.
(ii) $\angle \mathrm{PRS}$
$\therefore \quad \mathrm{PQRS}$ is a cyclic quadrilateral
$\therefore \quad \angle \mathrm{PSR}+\angle \mathrm{PQR}=180^{\circ} \quad[\therefore$ Opposite angles of a cyclic quadrilateral are supplementary]
$\Rightarrow \quad \angle \mathrm{PSR}+65^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{PSR}=180^{\circ}-65^{\circ}$
$\Rightarrow \quad \angle \mathrm{PSR}=115^{\circ}$
In $\triangle \mathrm{PSR}$,

$$
\angle \mathrm{PSR}+\angle \mathrm{SPR}+\angle \mathrm{PRS}=180^{\circ} \quad \text { [Angles Sum Property of a triangle] }
$$

$\Rightarrow 115^{\circ}+40^{\circ}+\angle \mathrm{PRS}=180^{\circ}$
$\Rightarrow 115^{\circ}+\angle \mathrm{PRS}=180^{\circ}$
$\Rightarrow \angle \mathrm{PRS}=180^{\circ}-155^{\circ}$
$\Rightarrow \angle \mathrm{PRS}=25^{\circ}$
(iii) $\angle \mathrm{QPM}$
$\therefore \quad \mathrm{PQ}$ is a diameter
$\therefore \quad \angle \mathrm{PMQ}=90^{\circ} \quad\left[\because\right.$ Angle in a semi - circle is $\left.90^{\circ}\right]$
In $\triangle \mathrm{PMQ}$,

$$
\begin{aligned}
& \angle \mathrm{PMQ}+\angle \mathrm{PQM}+\angle \mathrm{QPM}=180^{\circ} \quad \text { [Angle sum Property of a triangle] } \\
\Rightarrow & 90^{\circ}+50^{\circ}+\angle \mathrm{QPM}=180^{\circ} \\
\Rightarrow & 140^{\circ}+\angle \mathrm{QPM}=180^{\circ} \\
\Rightarrow & \angle \mathrm{QPM}=180^{\circ}-140^{\circ} \\
\Rightarrow & \angle \mathrm{QPM}=40^{\circ} .
\end{aligned}
$$

Ex. 8 In figure, O is the centre of the circle. Prove that $\angle \mathrm{x}+\angle \mathrm{y}=\angle \mathrm{z}$.
Sol. $\quad \angle \mathrm{EBF}=\frac{1}{2} \angle \mathrm{EOF}=\frac{1}{2} \angle \mathrm{z} \quad[\because$ Angle subtended by an arc of a circle at the centre in twice the angle subtended by it at any point of the remaining part of the circle]

$$
\begin{array}{rlr}
\therefore \angle \mathrm{ABF} & =180^{\circ}-\frac{1}{2} \angle \mathrm{z} & \ldots \text { (i) } \tag{i}\\
& \angle \mathrm{EDF} & =\frac{1}{2} \angle \mathrm{EOF}=\frac{1}{2} \angle \mathrm{z}
\end{array} \quad \text { [Linear Pair Axiom] }
$$

[\because Angle subtend by any arc of a circle at the centre is twice the angle subtended by it at any point of the remaining part of the circle]

$$
\begin{align*}
& \therefore \quad \angle \mathrm{ADE}=180^{\circ}-\frac{1}{2} \angle \mathrm{z} \tag{ii}\\
& \angle \mathrm{BCD} \\
&=\angle \mathrm{ECF}=\angle \mathrm{y} \\
& \angle \mathrm{BAD}=\angle \mathrm{x}
\end{align*}
$$

In quadrilateral ABCD

$$
\begin{aligned}
& \angle \mathrm{ABC}+\angle \mathrm{BCD}+\angle \mathrm{CDA}+\angle \mathrm{BAD}=2 \times 180^{\circ} \text { [Angle Sum Property of a quadrilateral] } \\
& \Rightarrow 180^{\circ}-\frac{1}{2} \angle \mathrm{z}+\angle \mathrm{y}+180^{\circ}-\frac{1}{2} \angle \mathrm{z}+\angle \mathrm{x}=2 \times 180^{\circ} \\
& \Rightarrow \angle \mathrm{x}+\angle \mathrm{y}=\angle \mathrm{z} \\
& \text { Hence Proved. }
\end{aligned}
$$

Ex. 9 AB is a diameter of the circle with centre O and chord $C D$ is equal to radius $O C, A C$ and $B D$ produced meet at P. Prove that $\angle C P D=60^{\circ}$.
Sol. Given : $A B$ is a diameter of the circle with centre O and chord $C D$ is equal to radius $O C . A C$ and $B D$ produced meet at P.
To Prove : $\angle \mathrm{CPD}=60^{\circ}$
Construction : Join AD.
Proof: In $\triangle O C D$,

$$
\begin{align*}
& O C=O D \tag{i}\\
& O C=C D \tag{ii}
\end{align*}
$$

[Radii of the same circle] [Given]

From (i) and (ii),

$$
O C=O D=C D
$$

$\therefore \quad \triangle \mathrm{OCD}$ is equilateral
$\therefore \quad \angle \mathrm{COD}=60^{\circ}$
$\therefore \quad \angle \mathrm{CAD}=\frac{1}{2} \angle \mathrm{COD}=\frac{1}{2} \angle\left(60^{\circ}\right)=30^{\circ}$
$[\because$ Angle subtended by any arc of a circle at the centre is twice the angle subtended by it at any point of the reaming part of the circle]
$\Rightarrow \angle \mathrm{PAD}=30^{\circ}$
And, $\angle \mathrm{ADB}=90^{\circ}$
[Angle in a semi-circle]
$\Rightarrow \angle \mathrm{ADB}+\angle \mathrm{ADP}=180^{\circ}$
[Linear Pair Axiom]
$\Rightarrow 90^{\circ}+\angle \mathrm{ADP}=180^{\circ}$ [From (iv)]
$\Rightarrow \angle \mathrm{ADP}=90^{\circ}$

In $\Delta \mathrm{DP}$,

$$
\begin{aligned}
& \angle \mathrm{ADP}+\angle \mathrm{PAD}+\angle \mathrm{ADP}=180^{\circ} \quad\left[\because \text { The sum of the three angles of a triangles is } 180^{\circ}\right] \\
\Rightarrow & \angle \mathrm{APD}+30^{\circ}+90^{\circ}=180^{\circ} \quad[\text { From (iii) and (v) }] \\
\Rightarrow & \angle \mathrm{APD}+120^{\circ}=180^{\circ} \\
\Rightarrow & \angle \mathrm{APD}=180^{\circ}-120^{\circ}=60^{\circ} \\
\Rightarrow & \angle \mathrm{CPD}=60^{\circ} .
\end{aligned}
$$

Ex. 10 Prove that the quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic.
Sol. Given : ABCD is a cyclic quadrilateral. Its angle bisectors from a quadrilateral PQRS.
To Prove : PQRS is a cyclic quadrilateral.

Proof : $\angle 1+\angle 2+\angle 3=180^{\circ}$

$$
\begin{equation*}
\angle 4+\angle 5+\angle 6=180^{\circ} \tag{1}
\end{equation*}
$$

$\therefore \quad \angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6=360$.
But $\angle 2+\angle 3+\angle 6+\angle 5=\frac{1}{2}[\angle \mathrm{~A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}]$

$$
=\frac{1}{2} \cdot 360^{\circ}=180^{\circ} \quad\left[\because \text { Sum of the angles of quadrilateral is } 360^{\circ}\right]
$$

$\therefore \quad \angle 1+\angle 4=360^{\circ}-(\angle 2+\angle 3+\angle 6+\angle 5)$
$\therefore \quad$ PQRS is a cyclic quadrilateral.
[\because If the sum of any pair of opposite angles of a quadrilateral is 180°, then the quadrilateral is a cyclic] Hence Proved.
Ex. 11 Prove that the angle bisectors of the angles formed by producing opposite sides of a cyclic quadrilateral (Provided they are not parallel) intersect a right angle.
Sol. Given : ABCD is a cyclic quadrilateral. Its opposite sides DA and CB are produced to meet at P and opposite sides AB and DC are produced to meet at Q . The bisectors of $\angle \mathrm{P}$ and $\angle \mathrm{Q}$ meet is F .
To Prove: $\angle \mathrm{PFQ}=90^{\circ}$.
Construction : Produce PF to meet DC is G.
Proof: In $\triangle \mathrm{PEB}$,

$$
\begin{equation*}
\angle 5=\angle 2+\angle 6 \tag{i}
\end{equation*}
$$

[\because Exterior angle of a triangle is equal to the sum of interior opposite angles]
But $\angle 2=\angle 1$
And, $\angle 6=\angle \mathrm{D} \quad[\because$ In a cyclic quadrilateral, exterior angle $=$ interior opposite angle $]$
$\therefore \quad \angle 5=\angle 1+\angle \mathrm{D}$
....(ii) [From (i)]
Now in \triangle PDG,
$\angle 7=\angle 1+\angle \mathrm{D}$
[\because Exterior angle of a triangle is equal to the sum of interior opposite angles]
Frim (ii) and (iii), we have

$$
\angle 5=\angle 7
$$

Now, in Δ QEF and Δ QGF,
[Proved above]

$$
\begin{aligned}
& \angle 5=\angle 7 \\
& \mathrm{QF}=\mathrm{QF} \\
& \angle 3=\angle 4
\end{aligned}
$$

[Common side]
[Given]
$\therefore \quad \Delta \mathrm{QEF} \cong \Delta \mathrm{QGE}$ [AAS criterion]
$\therefore \quad \angle 8=\angle 9$
But $\angle 8+\angle 9=180^{\circ}$
$\therefore \angle 8=\angle 9=90^{\circ}$ [By cpctc]
$\therefore \quad \angle \mathrm{PFQ}=90^{\circ}$
[Linear Pair Axiom]

Hence Proved.
Ex. 12 Two concentric circles with centre O have A, B, C, D as the points of intersection with the line ℓ as shown in the figure. If $A D=12 \mathrm{~cm}$ and $\mathrm{BC}=8 \mathrm{~cm}$, find the length of $\mathrm{AB}, \mathrm{CD}, \mathrm{AC}$ and BD .
Sol. Since $\mathrm{OM} \perp \mathrm{BC}$, a chord of the circle,
\therefore is bisects BC.
$\therefore \quad B M=C M=\frac{1}{2}(B C)=\frac{1}{2}(8)=4 \mathrm{~cm}$
Since, $\mathrm{OM} \perp \mathrm{AD}$, a chord of the circle,
$\therefore \quad$ it bisects AD.
$\therefore \quad \mathrm{AM}=\mathrm{AD}=\frac{1}{2} \mathrm{AD}=\frac{1}{2}(8)=4 \mathrm{~cm}$
Since, $O M \perp C D$, a chord of the circle,
$\therefore \quad$ it bisects AD.
$\therefore \quad \mathrm{AM}=\mathrm{MD}=\frac{1}{2} \mathrm{AD}=\frac{1}{2}(12)=6 \mathrm{~cm}$
Now, $\quad \mathrm{AB}=\mathrm{AM}-\mathrm{BM}=6-4=2 \mathrm{~cm}$
$C D=M D-M D=6-4=2 \mathrm{~cm}$
$\mathrm{AC}=\mathrm{AM}+\mathrm{MC}=6+4=10 \mathrm{~cm}$

$$
\mathrm{BD}=\mathrm{BM}+\mathrm{MD}=4+6=10 \mathrm{~cm}
$$

Ex. 13 OABC is a rhombus whose three vertices, A B and C lie on a circle with centre O. If the radius of the circle is 10 cm . Find the area of the rhombus.
Sol. Since OABC is a rhombus
$\therefore \mathrm{OA}=\mathrm{AB}=\mathrm{BC}=\mathrm{OC}=10 \mathrm{~cm}$
Now, $\mathrm{OD} \perp \mathrm{BC} \Rightarrow \mathrm{CD}=\frac{1}{2} \mathrm{BC}=\frac{1}{2}(10)=5 \mathrm{~cm}$
\therefore By Pythagoras theorem,

$$
\mathrm{OC}^{2}=\mathrm{OD}^{2}+\mathrm{DC}^{2}
$$

$\Rightarrow \mathrm{OD}^{2}=\mathrm{OC}^{2}-\mathrm{DC}^{2}=(10)^{2}-(5)^{2}=100-25=75$
$\Rightarrow \mathrm{OD}=\sqrt{75}=5 \sqrt{3}$
$\therefore \quad$ Area $(\triangle \mathrm{OBC})=\frac{1}{2} \mathrm{BC} \times \mathrm{OD}=\frac{1}{2}(10) \times 5 \sqrt{3}=25 \sqrt{3} \mathrm{sq} . \mathrm{cm}$.

Ex. 14 Chords AB and CD of a circle with centre O, intersect at a point E. If $O E$ objects $\angle A E D$. Prove that $A B=C D$.
Sol. In $\triangle \mathrm{OLE}$ and $\triangle \mathrm{OME}$
$\angle \mathrm{OLE}=\angle \mathrm{OME}$ $\angle \mathrm{LEO}=\angle \mathrm{MEO}$
And $\quad \mathrm{OE}=\mathrm{OE}$
[90° each]
[Given]
$\therefore \quad \triangle \mathrm{OLE} \cong \triangle \mathrm{OME}$
[Common]
$\Rightarrow \mathrm{OL}=\mathrm{OM}$
[By AAS Criteria]
[By cpctc]

This chords AB and CD are equidistant from centre. But we know that only equal chords are equidistant from centre.
$\Rightarrow \mathrm{AB}=\mathrm{DC}$

Ex. 15 In the given figure. $A B$ is the chord of a circle with centre O. $A B$ is produced to C such that $B C=O B$. $C O$ is joined and produced to meet the circle in D. If $\angle A C D=y^{0}$ and $\angle A O D=x^{0}$, prove that $x^{0}=3 y^{0}$.
Sol. Since $B C=O B$
[Given]

$$
\begin{aligned}
& \therefore \quad \angle \mathrm{OCB}=\angle \mathrm{BOC}=\mathrm{y}^{0} \quad[\because \text { Angles opposite to equal sides are equal }] \\
& \angle \mathrm{OBA}=\angle \mathrm{BOC}+\angle \mathrm{OCB}=\mathrm{y}^{0}+\mathrm{y}^{0}=2 \mathrm{y}^{0} .
\end{aligned}
$$

[\because Exterior angle of a Δ is equal to the sum of the opposite interior angles]

Also	$\mathrm{OA}=\mathrm{OB}$
$\angle \mathrm{OAB}=\angle \mathrm{OBA}=2 \mathrm{y}^{0}$	[Radii of the same circle]
$\angle \mathrm{AOD}=\angle \mathrm{OAC}+\angle \mathrm{OCA}$	
$=2 \mathrm{y}^{0}+\mathrm{y}^{0}=3 \mathrm{y}^{0}$	

[\because Exterior angle of a Δ is equal to the sum of the opposite interior angles]
Hence $x^{0}=3 y^{0}$

Hence Proved.

Ex. 16 In the given figure, the chord ED is parallel to the diameter AC. Find $\angle C E D$.
Sol.

$$
\begin{align*}
& \angle \mathrm{CBE}=\angle 1 \\
& \angle 1=50^{\circ} \tag{i}\\
& \angle \mathrm{AEC}=90^{\circ} \tag{ii}
\end{align*}
$$

[$\angle \mathrm{s}$ in the same segment]
$\left[\because \angle \mathrm{CBE}=50^{\circ}\right]$
[Semicircle Angle is right angle]

Now, in $\triangle A E C$,

$$
\angle 1+\angle \mathrm{AEC}+\angle 2=180^{\circ} \quad\left[\because \text { Sum of angles of a } \Delta=180^{\circ}\right]
$$

$\therefore \quad 50^{\circ}+90^{\circ}+\angle 2=180^{\circ}$
$\Rightarrow \quad \angle 2=180^{\circ}-140^{\circ}=40^{\circ}$
Thus $\angle 2=40^{\circ}$
Also, ED || AC
$\therefore \quad \angle @=\angle 3$
[Given]
$\therefore \quad 40^{\circ}=\angle 3$ i.e., $\angle 3=40^{\circ}$
Hence $\angle C E D=40^{\circ}$ Ans.

Ex. 17 ABCD is a parallelogram. The circle through A, B, C intersects CD (produced if necessary) at E. Prove that $\mathrm{AD}=\mathrm{AE}$.
Sol. Given : ABCD is a parallelogram. The circle through A, B, C intersects CD, when produced in E.
To prove : $\mathrm{AE}=\mathrm{AD}$.
Proof: Since $A B C E$ is a cyclic quadrilateral
$\therefore \quad \angle 1+\angle 2=180^{\circ} \quad$...(i) \quad [opposite angles of a cyclio quadrilateral are supplementary]

Also $\quad \angle 3+\angle 4=180^{\circ}$ [linear pair]
From (i) and (ii), we get $\angle 1+\angle 2=\angle 3+\angle 4$
But $\angle 2=\angle 3$
$\therefore \quad$ From (iii) and (iv), we get $\angle 1=\angle 4$
Now in $\triangle \mathrm{ADE}$, since $\angle 1=\angle 4$
$\mathrm{AD}=\mathrm{AE}$
[Sides opp. to equal angles of a triangle are equal]

Hence Proved.

EXERCISE

OBJECTIVE DPP \# 15.1

1. I the given circle $\mathrm{ABCD}, \mathrm{O}$ is the centre and $\angle \mathrm{BDE}=42^{\circ}$. The $\angle \mathrm{ACB}$ is equal to :
(A) 48^{0}
(B) 45^{0}
(C) 42^{0}
(C) 60°

2. In the diagram, O is the centre of the circle. The angles CBD is equal to :
(A) 25^{0}
(B) 50°
(C) 40^{0}
(D) 130^{0}

3. In the given figure, $\angle C A B=80^{\circ}, \angle A B C=40^{\circ}$. The sum of $\angle D A B+\angle A B D$ is equal to :
(A) 80°
(B) 100^{0}
(C) 120°
(D) 140°

4. In the given figure, if C is the centre of the circle and $\angle \mathrm{PC}=25^{\circ}$ and $\angle \mathrm{PRC}=15^{\circ}$, then $\angle \mathrm{QCR}$ is equal to :
(A) 40°
(B) 60°
(C) 80°
(D) 120°

5. In a cyclic quadrilateral if $\angle \mathrm{B}-\angle \mathrm{D}=60^{\circ}$, then the smaller of the angles B and D is :
(A) 30°
(B) 45^{0}
(C) 60°
(D) 75^{0}
6. Three wires of length $\ell_{1}, \ell_{2}, \ell_{3}$ from a triangle surmounted by another circular wire, If ℓ_{3} is the diameter and $\ell_{3}=2 \ell_{1}$, then the angle between ℓ_{1} and ℓ_{3} will be
(A) 30^{0}
(B) 60°
(C) 45^{0}
(D) 90°
7. In a circle with centre $O, O D \perp$ chord $A B$. If $B C$ is the diameter, then :
(A) $\mathrm{AC}=\mathrm{BC}$
(B) $\mathrm{OD}=\mathrm{BC}$
(C) $\mathrm{AC}=2 \mathrm{OD}$
(D) None of these
8. In the diagram two equal circles of radius 4 cm intersect each other such that each passes through the centre of the other. Find the length of the common chord.
(A) $2 \sqrt{3} \mathrm{~cm}$
(B) $4 \sqrt{3} \mathrm{~cm}$
(C) $4 \sqrt{2} \mathrm{~cm}$

(D) 8 cm
9. The sides $A B$ and $D C$ of cyclic quadrilateral $A B C D$ are produced to meet at P, the sides $A D$ and $B C$ are produced to meet at Q . If $\angle \mathrm{ADC}=85^{\circ}$ and $\angle \mathrm{BPC}=40^{\circ}$, then $\angle \mathrm{CQD}$ equals.
(A) 30^{0}
(B) 45^{0}
(C) 60°
(D) 75^{0}
10. In the given figure, if $\angle \mathrm{ACB}=40^{\circ}, \angle \mathrm{DPB}=120^{\circ}$, then will be :
(A) 40°
(B) 20°
(C) 0^{0}
(D) 60°

11. Any cyclic parallelogram is a.
(A) rectangle
(B) rhombus
(C) trapezium
(D) square
12. The locus of the centre of all circles of given radius r, in the same planes, passing through a fixed point is :
(A) A point
(B) A circle
(C) A straight line
(D) Two straight lines
13. In a cyclic quadrilateral if $\angle \mathrm{A}-\angle \mathrm{C}=70^{\circ}$, then the greater of the angles A and C is equal to :
(A) 95°
(B) 105^{0}
(C) 125^{0}
(D) 115^{0}
14. The length of a chord a circle is equal to the radius of the circle. The angle which this chord subtends on the longer segment of the circle is equal to :
(A) 30^{0}
(B) 45^{0}
(C) 60°
(D) 90°
15. If a trapezium is cyclic then,
(A) Its parallel sides are equal.
(B) Its non-parallel sides are equal.
(C) Its diagonals are not equal.
(D) None of these above

SUBJECTIVE DPP - 15.2

1. In the given figure, BC is diameter bisecting $\angle \mathrm{ACD}$, find the values of a, b (o is centre of circle).

2. In the given figure, find the value of $a \& b$.

3. Find the value of $\mathrm{a} \& \mathrm{~b}$.

4. Find the value of a \& b .

5. Prove that $\mathrm{a}+2 \mathrm{~b}=90^{\circ}$

6. ABCD is a cyclic quadrilateral in which $\angle \mathrm{A}=(\mathrm{x}+\mathrm{y}+10)^{0}, \angle \mathrm{~B}=(\mathrm{y}+20)^{0}, \angle \mathrm{C}=(\mathrm{x}+\mathrm{y}-30)^{0}$ and $\angle \mathrm{D}=(\mathrm{x}+$ $y)^{0}$. Find x and y.
7. Find the value of a and b, if $b=2 a$.

8. Find the value of a if BC || EA

9. In the adjoining fig., O is centre of the circle, chord AC and BD are perpendicular to each other, $\angle \mathrm{OAB}=\mathrm{a}$ and $\angle \mathrm{DBC}=\mathrm{b}$. Show that $\mathrm{a}=\mathrm{b}$.

10. In the fig. given below, AB is diameter of the circle whose centre is O . Given that: $\angle \mathrm{ECD}=\angle \mathrm{EDC}=32^{\circ}$. Show that $\angle \mathrm{COF}=\angle \mathrm{CEF}$.

11. In the given fig., AC is the diameter of circle centre O . Chord BD is perpendicular to AB . Write down the angles $p, q \& r$ in terms of x.

12. Prove that the line segment joining the mid-point of hypotenuse of a right triangle to its opposite vertex is half of the hypotenuse.
(Objective DPP \# 14.1)

Qus.	1	2	3	4	5
Ans.	C	B	D	B	C

(Subjective DPP \# 14.2)

1. 12 cm
2. 7 cm
3. 13 cm
4. $\quad 9.6 \mathrm{~cm}$
5. 10 cm
6. $\quad 13.29 \mathrm{~cm}$
7. $4 \sqrt{6} \mathrm{~cm}$
(Objective DPP \# 15.1)

Qus.	1	2	3	4	5	6	7	8	9	10
Ans.	A	A	C	C	C	B	C	B	A	B
A	11	12	13	14	15					
Ans.	A	B	C	A	B					

(Subjective DPP \# 15.2)

1. $\mathrm{b}=90^{\circ}, \mathrm{a}=45^{\circ}$
2. $\mathrm{a}=5^{0}, \mathrm{~b}=170^{0}$
3. $\mathrm{a}=140^{\circ}, \mathrm{b}=70^{\circ}$
4. $\mathrm{a}=40^{\circ}, \mathrm{b}=90^{\circ}$
5. $x=40, y=60$
6. $\mathrm{a}=40^{\circ}, \mathrm{b}=80^{\circ}$
7. $a=108^{0}$
8. $\mathrm{p}=90^{\circ}-\frac{\mathrm{x}}{2}, \mathrm{q}=\frac{\mathrm{x}}{2}$, and $\mathrm{r}=90-\frac{\mathrm{x}}{2}$
