DEEPAAWALI ASSIGNMENT

CLASS 11 FOR TARGET IIT JEE 2012

IMAGE OF SHRI GANESH LAXMI SARASWATI

Wishing You & Your Family A Very Happy & Prosperous Deepawali

Time Limit : 6 Sitting Each of 75 Minutes duration approx.

NOTE: This assignment will be discussed on the very first day after Deepawali Vacation, hence come prepared.

www.tekoclasses.com, Bhopal, Ph.: (0755) 32 00 000, Deepawali Assignment [1] of 16
Q.1 If \(\log(x + z) + \log(x - 2y + z) = 2 \log(x - z) \) then \(x, y, z \) are in
(A) A.P. (B) G.P. (C) H.P. (D) A.G.P.

Q.2 If \(x \in \mathbb{R} \) and \(b < c \), then \(\frac{x^2 - bc}{2x - b - c} \) has no values.
(A) in \((-\infty, b)\) (B) in \((c, \infty)\) (C) between \(b\) and \(c\) (D) between \(-c\) and \(-b\)

Q.3 The ends of a quadrant of a circle have the coordinates \((1, 3)\) and \((3, 1)\) then the centre of the such a circle is
(A) \((1, 1)\) (B) \((2, 2)\) (C) \((2, 6)\) (D) \((4, 4)\)

Q.4 ABCD is a rhombus. If \(A = (-1, 1) \) and \(C = (5, 3) \), the equation of BD is
(A) \(2x - 3y + 4 = 0\) (B) \(2x - y + 3 = 0\) (C) \(3x + y - 8 = 0\) (D) \(x + 2y - 1 = 0\)

Q.5 Let \(ABC \) be a triangle with \(\angle A = 45^\circ \). Let \(P \) be a point on the side \(BC \) with \(PB = 3 \) and \(PC = 5 \). If 'O' is the circumcentre of the triangle \(ABC \) then the length \(OP \) is equal to
(A) \(\sqrt{15}\) (B) \(\sqrt{17}\) (C) \(\sqrt{18}\) (D) \(\sqrt{19}\)

Q.6 If the sides of a right angled triangle are in A.P., then \(\frac{R}{r} = \)
(A) \(\frac{5}{2}\) (B) \(\frac{7}{3}\) (C) \(\frac{9}{4}\) (D) \(\frac{8}{3}\)

Q.7 \(\ldots \ldots \ldots \) \(x^2 + y^2 = 1 \). The line \(l \) intersects \(C \) at the point \((-1, 0)\) and the point \(P \). Suppose that the slope of the line \(l \) is a rational number \(m \). Number of choices for \(m \) for which both the coordinates of \(P \) are rational, is
(A) 3 (B) 4 (C) 5 (D) infinitely many

Q.8 One side of a rectangle lies along the line \(4x + 7y + 5 = 0 \), two of its vertices are \((-3, 1)\) and \((1, 1)\). Which of the following may be an equation of one of the other three straight lines?
(A) \(7x - 4y = 3\) (B) \(7x - 4y + 3 = 0\) (C) \(y + 1 = 0\) (D) \(4x + 7y = 3\)

Q.9 Three concentric circles of which the biggest is \(x^2 + y^2 = 1 \), have their radii in A.P. If the line \(y = x + 1 \) cuts all the circles in real and distinct points. The interval in which the common difference of the A.P. will lie is
(A) \(\left(0, \frac{1}{4}\right)\) (B) \(\left(0, \frac{1}{2\sqrt{2}}\right)\) (C) \(\left(0, \frac{2 - \sqrt{2}}{4}\right)\) (D) none

[COMPREHENSION TYPE] [3 \times 3 = 9]

Paragraph for question nos. 10 to 12
Let \(A, B, C \) be three sets of real numbers \((x, y)\) defined as
\[A = \{(x, y): y \geq 1\} \]
\[B = \{(x, y): x^2 + y^2 - 4x - 2y - 4 = 0\} \]
\[C = \{(x, y): x + y = \sqrt{2}\} \]
Q.10 Number of elements in the \(A \cap B \cap C \) is
(A) 0 (B) 1 (C) 2 (D) infinite
Q.11 \((x + 1)^2 + (y - 1)^2 + (x - 5)^2 + (y - 1)^2\) has the value equal to
(A) 16 (B) 25 (C) 36 (D) 49

Q.12 If the locus of the point of intersection of the pair of perpendicular tangents to the circle B is the curve S then the area enclosed between B and S is
(A) \(6\pi\) (B) \(8\pi\) (C) \(9\pi\) (D) \(18\pi\)

[MULTIPLE OBJECTIVE TYPE]
\(2 \times 4 = 8\)

Q.13 A circle passes through the points \((-1, 1), (0, 6)\) and \((5, 5)\). The point(s) on this circle, the tangent(s) at which is/are parallel to the straight line joining the origin to its centre is/are:
(A) \((1, -5)\) (B) \((5, 1)\) (C) \((-5, -1)\) (D) \((-1, 5)\)

Q.14 If \(a^2 - bm^2 + 2dl + 1 = 0\), where \(a, b, d\) are fixed real numbers such that \(a + b = d^2\) then the line \(lx + my + 1 = 0\) touches a fixed circle:
(A) which cuts the x-axis orthogonally
(B) with radius equal to \(b\)
(C) on which the length of the tangent from the origin is \(\sqrt{d^2 - b}\)
(D) none of these.

[MATCH THE COLUMN]
\((3+3+3+3)\times 2 = 24\)

Q.15

<table>
<thead>
<tr>
<th>Column-I</th>
<th>Column-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(P) 8/3</td>
</tr>
<tr>
<td>(B)</td>
<td>(Q) 9/4</td>
</tr>
<tr>
<td>(C)</td>
<td>(R) 5/4</td>
</tr>
<tr>
<td>(D)</td>
<td>(S) 8/5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column-I</th>
<th>Column-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(P) A.P.</td>
</tr>
<tr>
<td>(B)</td>
<td>(Q) G.P.</td>
</tr>
<tr>
<td>(C)</td>
<td>(R) H.P.</td>
</tr>
<tr>
<td>(D)</td>
<td>(S) neither A.P. nor G.P. nor H.P.</td>
</tr>
</tbody>
</table>

[SUBJECTIVE TYPE]

Q.17 Find the sum of the series \(\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \ldots\) upto 16 terms.

Q.18 Find the number of circles that touch all the three lines \(2x - y = 5, x + y = 3, 4x - 2y = 7\).
[STRAIGHT OBJECTIVE TYPE]

Q.1 If the sum of m consecutive odd integers is m^4, then the first integer is

(A) $m^3 + m + 1$
(B) $m^3 + m - 1$
(C) $m^3 - m - 1$
(D) $m^3 - m + 1$

Q.2 The values of x for which the inequalities $x^2 + 6x - 27 > 0$ and $-x^2 + 3x + 4 > 0$ hold simultaneously lie in

(A) $(-1, 4)$
(B) $(-\infty, -9) \cup (3, \infty)$
(C) $(-9, -1)$
(D) $(3, 4)$

Q.3 The diagonals of the quadrilateral whose sides are $lx + my + n = 0$, $mx + ly + n = 0$, $lx + my + n_1 = 0$, $mx + ly + n_1 = 0$ include an angle

(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{2}$
(C) $\tan^{-1}\left(\frac{l^2 - m^2}{l^2 + m^2}\right)$
(D) $\tan^{-1}\left(\frac{2lm}{l^2 + m^2}\right)$

Q.4 In the xy-plane, the length of the shortest path from $(0, 0)$ to $(12, 16)$ that does not go inside the circle $(x - 6)^2 + (y - 8)^2 = 25$ is

(A) $10\sqrt{3}$
(B) $10\sqrt{5}$
(C) $10\sqrt{3} + \frac{5\pi}{3}$
(D) $10 + 5\pi$

Q.5 If a_1, a_2, \ldots, a_n are in A.P. where $a_i > 0$ for all i,

then $\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \ldots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}}$ equals

(A) $\frac{1}{\sqrt{a_1} + \sqrt{a_n}}$
(B) $\frac{n}{\sqrt{a_1} + \sqrt{a_n}}$
(C) $\frac{n + 1}{\sqrt{a_1} + \sqrt{a_n}}$
(D) $\frac{n - 1}{\sqrt{a_1} + \sqrt{a_n}}$

Q.6 The equation of a line inclined at an angle $\frac{\pi}{4}$ to the axis X, such that the two circles $x^2 + y^2 = 4$, $x^2 + y^2 - 10x - 14y + 65 = 0$ intercept equal lengths on it, is

(A) $2x - 2y - 3 = 0$
(B) $2x - 2y + 3 = 0$
(C) $x - y + 6 = 0$
(D) $x - y - 6 = 0$

Q.7 If the straight line $y = mx$ is outside the circle $x^2 + y^2 - 20y + 90 = 0$, then

(A) $m > 3$
(B) $m < 3$
(C) $|m| > 3$
(D) $|m| < 3$

Q.8 A line with gradient 2 intersects a line with gradient 6 at the point $(40, 30)$. The distance between x-intercepts of these lines, is

(A) 6
(B) 8
(C) 10
(D) 12

[COMPREHENSION TYPE]

Paragraph for question nos. 9 to 11

Consider a circle $x^2 + y^2 = 4$ and a point P(4, 2). θ denotes the angle enclosed by the tangents from P on the circle and A, B are the points of contact of the tangents from P on the circle.

Q.9 The value of θ lies in the interval

(A) $(0, 15^o)$
(B) $(15^o, 30^o)$
(C) $(30^o, 45^o)$
(D) $(45^o, 60^o)$

Q.10 The intercept made by a tangent on the x-axis is

(A) $9/4$
(B) $10/4$
(C) $11/4$
(D) $12/4$
Q.11 Locus of the middle points of the portion of the tangent to the circle terminated by the coordinate axes is
(A) $x^2 + y^2 = 1^2$ (B) $x^2 + y^2 = 2^2$ (C) $x^2 + y^2 = 3^2$ (D) $x^2 - y^2 = 4^2$

[REASONING TYPE] [1 × 3 = 3]

Q.12 Statement-1: The circle $C_1: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 8x - 6y + 23 = 0$. because
Statement-2: Centre of the circle C_1 lies on the circumference of C_2.
(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
(C) Statement-1 is true, statement-2 is false.
(D) Statement-1 is false, statement-2 is true.

[MULTIPLE OBJECTIVE TYPE] [2 × 4 = 8]

Q.13 Which of the following lines have the intercepts of equal lengths on the circle, $x^2 + y^2 - 2x + 4y = 0$?
(A) $3x - y = 0$ (B) $x + 3y = 0$ (C) $x + 3y + 10 = 0$ (D) $3x - y - 10 = 0$

Q.14 Three distinct lines are drawn in a plane. Suppose there exist exactly n circles in the plane tangent to all the three lines, then the possible values of n is/are
(A) 0 (B) 1 (C) 2 (D) 4

[MATCH THE COLUMN] [(3+3+3+3)×2=24]

Q.15 Consider the line $Ax + By + C = 0$. Match the nature of intercept of the line given in column-I with their corresponding conditions in column-II. The mapping is one to one only.

<table>
<thead>
<tr>
<th>Column-I</th>
<th>Column-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) x intercept is finite and y intercept is infinite</td>
<td>(P) $A = 0, B, C \neq 0$</td>
</tr>
<tr>
<td>(B) x intercept is infinite and y intercept is finite</td>
<td>(Q) $C = 0, A, B \neq 0$</td>
</tr>
<tr>
<td>(C) both x and y intercepts are zero</td>
<td>(R) $A, B = 0$ and $C \neq 0$</td>
</tr>
<tr>
<td>(D) both x and y intercepts are infinite</td>
<td>(S) $B = 0, A, C \neq 0$</td>
</tr>
</tbody>
</table>

Q.16

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) If the lines $ax + 2y + 1 = 0$, $bx + 3y + 1 = 0$ and $cx + 4y + 1 = 0$ passes through the same point, then a, b, c are in A.P.</td>
<td>(P) A.P.</td>
</tr>
<tr>
<td>(B) Let a, b, c be distinct non-negative numbers. If the lines $ax + ay + c = 0$, $x + 1 = 0$ and $cx + cy + b = 0$ passes through the same point, then a, b, c are in</td>
<td>(Q) G.P.</td>
</tr>
<tr>
<td>(C) If the lines $ax + amy + 1 = 0$, $bx + (m + 1)by + 1 = 0$ and $cx + (m + 2)cy + 1 = 0$, where $m \neq 0$ are concurrent then a, b, c are in H.P.</td>
<td>(R) H.P.</td>
</tr>
<tr>
<td>(D) If the roots of the equation $x^2 - 2(a + b)x + a(a + 2b + c) = 0$ be equal then a, b, c are in</td>
<td>(S) None</td>
</tr>
</tbody>
</table>

[SUBJECTIVE TYPE]

Q.17 If S_1, S_2, S_3 are the sum of n, $2n$, $3n$ terms respectively of an A.P. then find the value of $\frac{S_3}{(S_2 - S_1)}$. [6]

Q.18 Find the distance of the centre of the circle $x^2 + y^2 = 2x$ from the common chord of the circles $x^2 + y^2 + 5x - 8y + 1 = 0$ and $x^2 + y^2 - 3x + 7y + 25 = 0$. [6]
Q.1 Suppose that two circles C_1 and C_2 in a plane have no points in common. Then
(A) there is no line tangent to both C_1 and C_2.
(B) there are exactly four lines tangent to both C_1 and C_2.
(C) there are no lines tangent to both C_1 and C_2 or there are exactly two lines tangent to both C_1 and C_2.
(D) there are no lines tangent to both C_1 and C_2 or there are exactly four lines tangent to both C_1 and C_2.

Q.2 If $\cos(x - y), \cos x, \cos (x + y)$ are in H.P., then the value of $\cos x \sec^2\frac{y}{2}$ is
(A) ± 1
(B) $\pm \frac{1}{\sqrt{2}}$
(C) ± 2
(D) $\pm \sqrt{3}$

Q.3 The shortest distance from the line $3x + 4y = 25$ to the circle $x^2 + y^2 = 6x - 8y$ is equal to
(A) $\frac{7}{5}$
(B) $\frac{9}{5}$
(C) $\frac{11}{5}$
(D) $\frac{32}{5}$

Q.4 The expression $a(x^2 - y^2) - bxy$ admits of two linear factors for
(A) $a + b = 0$
(B) $a = b$
(C) $4a = b^2$
(D) all a and b.

Q.5 The points $(x_1, y_1), (x_2, y_2), (x_1, y_2)$ and (x_2, y_1) are always:
(A) collinear
(B) concyclic
(C) vertices of a square
(D) vertices of a rhombus

Q.6 If $x = \sum_{n=0}^{\infty} a^n, y = \sum_{n=0}^{\infty} b^n, z = \sum_{n=0}^{\infty} c^n$
where a, b, c are in A.P. and $|a| < 1, |b| < 1, |c| < 1$, then x, y, z are in
(A) A.P.
(B) G.P.
(C) H.P.
(D) A.G.P.

Q.7 Tangents are drawn from any point on the circle $x^2 + y^2 = R^2$ to the circle $x^2 + y^2 = r^2$. If the line joining the points of intersection of these tangents with the first circle also touch the second, then R equals
(A) $\sqrt{2}r$
(B) $2r$
(C) $\frac{2r}{2 - \sqrt{3}}$
(D) $\frac{4r}{3 - \sqrt{5}}$

Q.8 The greatest slope along the graph represented by the equation $4x^2 - y^2 + 2y - 1 = 0$, is
(A) -3
(B) -2
(C) 2
(D) 3

Q.9 The locus of the center of the circles such that the point $(2, 3)$ is the mid point of the chord $5x + 2y = 16$ is
(A) $2x - 5y + 11 = 0$
(B) $2x + 5y - 11 = 0$
(C) $2x + 5y + 11 = 0$
(D) none

Q.10 The number of distinct real values of λ, for which the determinant
$$\begin{vmatrix} -\lambda^2 & 1 & 1 \\ 1 & -\lambda^2 & 1 \\ 1 & 1 & -\lambda^2 \end{vmatrix}$$
vanishes, is
(A) 0
(B) 1
(C) 2
(D) 3
Consider the two quadratic polynomials
\[C_a : y = \frac{x^2}{4} - ax + a^2 + a - 2 \quad \text{and} \quad C : y = 2 - \frac{x^2}{4} \]

Q.11 If the origin lies between the zeroes of the polynomial \(C_a \), then the number of integral value(s) of \(a \) is
(A) 1 \hspace{1cm} (B) 2 \hspace{1cm} (C) 3 \hspace{1cm} (D) more than 3

Q.12 If \(a \) varies then the equation of the locus of the vertex of \(C_a \), is
(A) \(x - 2y - 4 = 0 \) \hspace{1cm} (B) \(2x - y - 4 = 0 \) \hspace{1cm} (C) \(x - 2y + 4 = 0 \) \hspace{1cm} (D) \(2x + y - 4 = 0 \)

Q.13 For \(a = 3 \), if the lines \(y = m_1x + c_1 \) and \(y = m_2x + c_2 \) are common tangents to the graph of \(C_a \) and \(C \) then the value of \((m_1 + m_2) \) is equal to
(A) \(-6\) \hspace{1cm} (B) \(-3\) \hspace{1cm} (C) \(1/2\) \hspace{1cm} (D) none

Q.14 Statement-1: Angle between the tangents drawn from the point \(P(13, 6) \) to the circle \(S : x^2 + y^2 - 6x + 8y - 75 = 0 \) is 90°. because
Statement-2: Point \(P \) lies on the director circle of \(S \).
(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
(C) Statement-1 is true, statement-2 is false.
(D) Statement-1 is false, statement-2 is true.

Q.15 The fourth term of the A.G.P. 6, 8, 8,, is
(A) 0 \hspace{1cm} (B) 12 \hspace{1cm} (C) \(\frac{32}{3}\) \hspace{1cm} (D) \(\frac{64}{9}\)

Q.16 \(\frac{8x^2 + 16x - 51}{(2x - 3)(x + 4)} > 3 \) if
(A) \(x < -4 \) \hspace{1cm} (B) \(x > \frac{5}{2} \) \hspace{1cm} (C) \(-1 < x < 1 \) \hspace{1cm} (D) \(-3 < x < \frac{3}{2} \)

Q.17
\[\text{Column-I} \quad \text{Column-II} \]
(A) The lines \(y = 0; y = 1; x - 6y + 4 = 0 \) and \(x + 6y - 9 = 0 \) constitute a figure which is \((P) \) a cyclic quadrilateral
(B) The points \(A(a, 0), B(0, b), C(c, 0) \) and \(D(0, d) \) are such that \(ac = bd \) and \(a, b, c, d \) are all non-zero. The points \(A, B, C \) and \(D \) always constitute \((Q) \) a rhombus
(C) The figure formed by the four lines \(ax \pm by \pm c = 0 \) (\(a \neq b \), is \((R) \) a square
(D) The line pairs \(x^2 - 8x + 12 = 0 \) and \(y^2 - 14y + 45 = 0 \) constitute a figure which is \((S) \) a trapezium

Q.18 If the variable line \(3x - 4y + k = 0 \) lies between the circles \(x^2 + y^2 - 2x - 2y + 1 = 0 \) and \(x^2 + y^2 - 16x - 2y + 61 = 0 \) without intersecting or touching either circle, then the range of \(k \) is \((a, b) \) where \(a, b \in \mathbb{I} \). Find the value of \((b - a) \). \[6\]
Q.1 If the product of n positive number is unity, then their sum is
(A) a positive (B) divisible by n (C) \(n + \frac{1}{n} \) (D) never less than n

Q.2 If the angle between the tangents drawn from P to the circle \(x^2 + y^2 + 4x - 6y + 9 \sin^2 \alpha + 13 \cos^2 \alpha = 0 \) is \(2\alpha \), then the locus of P is
(A) \(x^2 + y^2 + 4x - 6y + 14 = 0 \) (B) \(x^2 + y^2 + 4x - 6y - 9 = 0 \) (C) \(x^2 + y^2 + 4x - 6y - 4 = 0 \) (D) \(x^2 + y^2 + 4x - 6y + 9 = 0 \)

Q.3 A point P(x, y) moves such that the sum of its distances from the line 2x + y = 1 and x + 2y = 1 is 1. The locus of P is
(A) a rectangle (B) square (C) parallelogram (D) rhombus

Q.4 Let the H.M. and G.M. of two positive numbers a and b in the ratio 4 : 5 then a : b is
(A) 1 : 2 (B) 2 : 3 (C) 3 : 4 (D) 1 : 4

Q.5 If a, b, c are odd integers, then the equation \(ax^2 + bx + c = 0 \) cannot have
(A) imaginary roots (B) real root (C) irrational root (D) rational root

Q.6 If two distinct chords, drawn from the point (p, q) on the circle \(x^2 + y^2 = px + qy \), where \(pq \neq 0 \), are bisected by the x-axis, then
(A) \(p^2 = q^2 \) (B) \(p^2 = 8q^2 \) (C) \(p^2 < 9q^2 \) (D) \(p^2 > 8q^2 \)

Q.7 Locus of the middle points of a system of parallel chords with slope 2, of the circle \(x^2 + y^2 - 4x - 2y - 4 = 0 \), has the equation
(A) \(x + 2y - 4 = 0 \) (B) \(x - 2y = 0 \) (C) \(2x - y - 3 = 0 \) (D) \(2x + y - 5 = 0 \)

Q.8 A(1, 2), B(–1, 5) are two vertices of a triangle whose area is 5 units. If the third vertex C lies on the line 2x + y = 1, then C is
(A) (0, 1) or (1, 21) (B) (5, –9) or (–15, 31) (C) (2, –3) or (3, –5) (D) (7, –13) or (–7, 15)

Q.9 The distance of the point \((x_1, y_1)\) from each of the two straight lines through the origin is d. The equation of the two straight lines is
(A) \((xy_1 - yx_1)^2 = d^2(x^2 + y^2) \) (B) \(d^2(xy_1 - yx_1)^2 = x^2 + y^2 \) (C) \(d^2(xy_1 + yx_1)^2 = x^2 + y^2 \) (D) \((xy_1 + yx_1)^2 = d^2(x^2 + y^2) \)

Q.10 Area of the triangle formed by the line \(x + y = 3 \) and the angle bisectors of the line pair \(x^2 - y^2 + 4y - 4 = 0 \) is
(A) 1/2 (B) 1 (C) 3/2 (D) 2

[COMPREHENSION TYPE]

Paragraph for Question Nos. 11 to 13

Consider a general equation of degree 2, as
\(\lambda x^2 - 10xy + 12y^2 + 5x - 16y - 3 = 0 \)

Q.11 The value of \(\lambda \) for which the line pair represents a pair of straight lines is
(A) 1 (B) 2 (C) 3/2 (D) 3

Q.12 For the value of \(\lambda \) obtained in above question, if \(L_1 = 0 \) and \(L_2 = 0 \) are the lines denoted by the given line pair then the product of the abscissa and ordinate of their point of intersection is
(A) 18 (B) 28 (C) 35 (D) 25
Q.13 If θ is the acute angle between $L_1 = 0$ and $L_2 = 0$ then θ lies in the interval
(A) $(45^\circ, 60^\circ)$ (B) $(30^\circ, 45^\circ)$ (C) $(15^\circ, 30^\circ)$ (D) $(0, 15^\circ)$

[REASONING TYPE] $[1 \times 3 = 3]$

Q.14 A circle is circumscribed about an equilateral triangle ABC and a point P on the minor arc joining A and B, is chosen. Let $x = PA$, $y = PB$ and $z = PC$. (z is larger than both x and y.)

Statement-1: Each of the possibilities ($x + y$) greater than z, equal to z or less than z is possible for some P. because

Statement-2: In a triangle ABC, sum of the two sides of a triangle is greater than the third and the third side is greater than the difference of the two.

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
(C) Statement-1 is true, statement-2 is false.
(D) Statement-1 is false, statement-2 is true.

[MATCH THE COLUMN] $[(3+3+3+3)\times2=24]$

Q.15 Set of family of lines are described in column-I and their mathematical equation are given in column-II. Match the entry of column-I with suitable entry of column-II. (m and a are parameters)

<table>
<thead>
<tr>
<th>Column-I</th>
<th>Column-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) having gradient 3</td>
<td>(P) $mx - y + 3 - 2m = 0$</td>
</tr>
<tr>
<td>(B) having y intercept three times the x-intercept</td>
<td>(Q) $mx - y + 3m = 0$</td>
</tr>
<tr>
<td>(C) having x intercept (-3)</td>
<td>(R) $3x + y = 3a$</td>
</tr>
<tr>
<td>(D) concurrent at $(2, 3)$</td>
<td>(S) $3x - y + a = 0$</td>
</tr>
</tbody>
</table>

Q.16

<table>
<thead>
<tr>
<th>Column-I</th>
<th>Column-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Let ‘P’ be a point inside the triangle ABC and is equidistant from its sides. DEF is a triangle obtained by the intersection of the external angle bisectors of the angles of the ΔABC. With respect to the triangle DEF point P is its</td>
<td>(P) centroid</td>
</tr>
<tr>
<td>(B) Let ‘Q’ be a point inside the triangle ABC</td>
<td>(Q) orthocentre</td>
</tr>
<tr>
<td>$\frac{A}{2} = (BQ)\sin \frac{B}{2} = (CQ)\sin \frac{C}{2}$ then with respect to the triangle ABC, Q is its</td>
<td></td>
</tr>
<tr>
<td>(C) Let ‘S’ be a point in the plane of the triangle ABC. If the point is such that infinite normals can be drawn from it on the circle passing through A, B and C then with respect to the triangle ABC, S is its</td>
<td>(R) incentre</td>
</tr>
<tr>
<td>(D) Let ABC be a triangle. D is some point on the side BC such that the line segments parallel to BC with their extremities on AB and AC get bisected by AD. Point E and F are similarly obtained on CA and AB. If segments AD, BE and CF are concurrent at a point R then with respect to the triangle ABC, R is its</td>
<td>(S) circumcentre</td>
</tr>
</tbody>
</table>

[SUBJECTIVE TYPE]

Q.17 If a, b, c are positive, then find the minimum value of $(a + b + c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$. $[6]$

Q.18 Find the number of straight lines parallel to the line $3x + 6y + 7 = 0$ and have intercept of length 10 between the coordinate axes. $[6]$
Q.1 A square is inscribed in the circle \(x^2 + y^2 - 2x + 4y + 33 = 0 \). Its sides are parallel to the coordinate axes. Then one vertex of the square is

(A) \((1 + \sqrt{2}, -2)\)
(B) \((1 - \sqrt{2}, -2)\)
(C) \((1, -2 + \sqrt{2})\)
(D) None

Q.2 If \(4^3 = 8^{1+\cos x+\cos^2 x+\ldots} \), then the number of values of \(x \) in \([0, 2\pi]\), is

(A) 1
(B) 2
(C) 3
(D) 4

Q.3 A(1, 2), B(−1, 5) are two vertices of a triangle ABC whose third vertex C lies on the line \(2x + y = 2 \). The locus of the centroid of the triangle is

(A) \(2x + y = 3\)
(B) \(x + 2y = 3\)
(C) \(2x - y = 3\)
(D) \(-2x - y = 3\)

Q.4 If \(a, b, c, d \) and \(p \) are distinct real numbers such that \((a^2 + b^2 + c^2)p^2 - 2(ab + bc + cd)p + b^2 + c^2 + d^2 \leq 0\). Then \(a, b, c, d \) are

(A) in A.P.
(B) in G.P.
(C) in H.P.
(D) satisfy \(ab = cd \)

Q.5 A root of the equation \((a + b)(ax + b)(a - bx) = (a^2x - b)(a + bx)\) is

(A) \(\frac{a + 2b}{2a + b}\)
(B) \(\frac{2a + b}{a + 2b}\)
(C) \(\frac{a - 2b}{2a - b}\)
(D) \(\frac{a + 2b}{2a + b}\)

Q.6 A rhombus is inscribed in the region common to the two circles \(x^2 + y^2 - 4x - 12 = 0 \) and \(x^2 + y^2 + 4x - 12 = 0 \) with two of its vertices on the line joining the centres of the circles. The area of the rhombous is :

(A) \(8\sqrt{3}\) sq.units
(B) \(4\sqrt{3}\) sq.units
(C) \(16\sqrt{3}\) sq.units
(D) none

Q.7 The locus of the centre of circle which touches externally the circle \(x^2 + y^2 - 6x - 6y + 14 = 0 \) and also touches the y-axis is

(A) \(x^2 - 6x - 10y + 14 = 0\)
(B) \(x^2 - 10x - 6y + 14 = 0\)
(C) \(y^2 - 6x - 10y + 14 = 0\)
(D) \(y^2 - 10x - 6y + 14 = 0\)

Q.8 The coordinates axes are rotated about the origin 'O' in the counter clockwise direction through an angle of \(\pi/6\). If \(a\) and \(b\) are intercepts made on the new axes by a straight line whose equation referred to the old axes is \(x + y = 1\) then the value of \(\frac{1}{a^2} + \frac{1}{b^2}\) is equal to

(A) 1
(B) 2
(C) 4
(D) \(\frac{1}{2}\)

Q.9 A(1, 0) and B(0, 1) and two fixed points on the circle \(x^2 + y^2 = 1 \). C is a variable point on this circle. As C moves, the locus of the orthocentre of the triangle ABC is

(A) \(x^2 + y^2 - 2x - 2y + 1 = 0\)
(B) \(x^2 + y^2 - x - y = 0\)
(C) \(x^2 + y^2 = 4\)
(D) \(x^2 + y^2 + 2x - 2y + 1 = 0\)
[COMPREHENSION TYPE]

Paragraph for question nos. 25 to 27

Consider 3 circles

- $S_1: x^2 + y^2 + 2x - 3 = 0$
- $S_2: x^2 + y^2 - 1 = 0$
- $S_3: x^2 + y^2 + 2y - 3 = 0$

Q.10 The radius of the circle which bisect the circumferences of the circles $S_1 = 0; S_2 = 0; S_3 = 0$ is

(A) 2
(B) $2\sqrt{2}$
(C) 3
(D) $\sqrt{10}$

Q.11 If the circle $S = 0$ is orthogonal to $S_1 = 0; S_2 = 0$ and $S_3 = 0$ and has its centre at (a, b) and radius equals to r then the value of $(a + b + r)$ equals

(A) 0
(B) 1
(C) 2
(D) 3

Q.12 The radius of the circle touching $S_1 = 0$ and $S_2 = 0$ at $(1, 0)$ and passing through $(3, 2)$ is

(A) 1
(B) $\sqrt{12}$
(C) 2
(D) $2\sqrt{2}$

[REASONING TYPE]

Q.13 Consider the circle $C: x^2 + y^2 - 2x - 2y - 23 = 0$ and a point $P(3, 4)$.

- **Statement-1:** No normal can be drawn to the circle C, passing through $(3, 4)$.
- **Statement-2:** Point P lies inside the given circle, C.

Because

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.

(C) Statement-1 is true, statement-2 is false.

(D) Statement-1 is false, statement-2 is true.

[MULTIPLE OBJECTIVE TYPE]

Q.14 Let L_1 be a line passing through the origin and L_2 be the line $x + y = 1$. If the intercepts made by the circle $x^2 + y^2 - x + 3y = 0$

(A) $x + y = 0$
(B) $x - y = 0$
(C) $x + 7y = 0$
(D) $x - 7y = 0$

[MATCH THE COLUMN]

<table>
<thead>
<tr>
<th>Column-I</th>
<th>Column-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) The sum $\sum_{r=1}^{100} r^2 \tan \left(\frac{2r-1}{4} \pi \right)$ is equal to</td>
<td>(P) -5151</td>
</tr>
<tr>
<td>(B) Solution of the equation $\cos^4 x = \cos 2x$ which lie in the interval $[0, 3\pi]$ is $k\pi$ where k equals</td>
<td>(Q) -5050</td>
</tr>
<tr>
<td>(C) Sum of the integral solutions of the inequality $\log_{\sqrt{3}}\left(6^{x+1} - 36^x\right) \geq -2$ which lie in the interval $[-101, 0]$</td>
<td>(R) 5049</td>
</tr>
<tr>
<td>(D) Let $P(n) = \log_2 3 \cdot \log_3 4 \cdot \log_4 5 \cdots \log_{n-1}(n)$ then the value of $\sum_{k=2}^{100} P(2^k)$ equals</td>
<td>(S) 4950</td>
</tr>
</tbody>
</table>

www.tekoclasses.com, Bhopal, Ph.: (0755) 32 00 000, Deepawali Assignment [11] of 16
Q.16

<table>
<thead>
<tr>
<th>Column-I</th>
<th>Column-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Two intersecting circles</td>
<td>(P) have a common tangent</td>
</tr>
<tr>
<td>(B) Two circles touching each other</td>
<td>(Q) have a common normal</td>
</tr>
<tr>
<td>(C) Two non concentric circles, one strictly inside the other</td>
<td>(R) do not have a common normal</td>
</tr>
<tr>
<td>(D) Two concentric circles of different radii</td>
<td>(S) do not have a radical axis.</td>
</tr>
</tbody>
</table>

[SUBJECTIVE]

Q.17 A(0, 1) and B(0, –1) are 2 points if a variable point P moves such that sum of its distance from A and B is 4. Then the locus of P is the equation of the form of \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \). Find the value of \((a^2 + b^2) \) is . [6]

Q.18 Find the product of all the values of x satisfying the equation \((5 + 2\sqrt{6})^{x^2-3} + (5 - 2\sqrt{6})^{x^2-3} = 10 \). [6]
[STRAIGHT OBJECTIVE TYPE] [12 x 3 = 36]

Q.1 The sum of the infinite series \(1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \ldots\) is

- (A) \(\frac{7}{4}\)
- (B) 2
- (C) \(\frac{8}{3}\)
- (D) \(\frac{9}{4}\)

Q.2 For real values of \(x\), the function \(\frac{\sin x \cos 3x}{\sin 3x \cos x}\) does not take values

- (A) between – 1 and 1
- (B) between 0 and 2
- (C) between \(\frac{1}{3}\) and 3
- (D) between 0 and \(\frac{1}{3}\)

Q.3 \(AB\) is a diameter of a circle and \(C\) is any point on the circumference of the circle. Then

- (A) Area of \(\triangle ABC\) is maximum when it is isosceles.
- (B) Area of \(\triangle ABC\) is minimum when it is isosceles.
- (C) Perimeter of \(\triangle ABC\) is minimum when it is isosceles.
- (D) None

Q.4 The sides of a right angled triangle are in G.P. The ratio of the longest side to the shortest side is

- (A) \(\frac{\sqrt{3} + 1}{2}\)
- (B) \(\sqrt{3}\)
- (C) \(\frac{\sqrt{5} - 1}{2}\)
- (D) \(\frac{\sqrt{5} + 1}{2}\)

Q.5 In a right triangle \(ABC\), right angled at \(A\), on the leg \(AC\) as diameter, a semicircle is described. The chord joining \(A\) with the point of intersection \(D\) of the hypotenuse and the semicircle, then the length \(AC\) equals to

- (A) \(\frac{AB \cdot AD}{\sqrt{AB^2 + AD^2}}\)
- (B) \(\frac{AB \cdot AD}{AB + AD}\)
- (C) \(\sqrt{AB \cdot AD}\)
- (D) \(\frac{AB \cdot AD}{\sqrt{AB^2 - AD^2}}\)

Q.6 \(ABC\) is an isosceles triangle with \(AB = AC\). The equation of the sides \(AB\) and \(AC\) are \(2x + y = 1\) and \(x + 2y = 2\). The sides \(BC\) passes through the point \((1, 2)\) and makes positive intercept on the x-axis. The equation of \(BC\) is

- (A) \(x - y + 1 = 0\)
- (B) \(x + y - 3 = 0\)
- (C) \(2x + y - 4 = 0\)
- (D) \(x - 2y + 3 = 0\)

Q.7 The number of tangents that can be drawn from the point \(\left(\frac{5}{2}, 1\right)\) to the circle passing through the points \((1, \sqrt{3}), (1, -\sqrt{3})\) and \((3, -\sqrt{3})\) is

- (A) 1
- (B) 0
- (C) 2
- (D) None
Q.8 The image of the line \(x + 2y = 5 \) in the line \(x - y = 2 \), is
(A) \(2x + y = 7 \) \hspace{1cm} (B) \(x + 2y = 5 \) \hspace{1cm} (C) \(2x + 3y = 9 \) \hspace{1cm} (D) \(2x - 3y = 3 \)

Q.9 The area of the quadrilateral formed by the lines \(\sqrt{3} x + y = 0 \), \(\sqrt{3} y + x = 0 \), \(\sqrt{3} x + y = 1 \), \(\sqrt{3} y + x = 1 \) is
(A) \(1 \) \hspace{1cm} (B) \(\frac{1}{2} \) \hspace{1cm} (C) \(\sqrt{2} \) \hspace{1cm} (D) \(2 \)

Q.10 B and C are fixed points having co–ordinates \((3, 0)\) and \((-3, 0)\) respectively. If the vertical angle \(BAC \) is \(90^\circ\), then the locus of the centroid of the \(\Delta ABC \) has the equation:
(A) \(x^2 + y^2 = 1 \) \hspace{1cm} (B) \(x^2 + y^2 = 2 \) \hspace{1cm} (C) \(9(x^2 + y^2) = 1 \) \hspace{1cm} (D) \(9(x^2 + y^2) = 4 \)

Q.11 Let a, b, c three numbers between 2 and 18 such that their sum is 25. If 2, a, b are in A.P. and b, c, 18 are in G.P., then 'c' equal
(A) 10 \hspace{1cm} (B) 12 \hspace{1cm} (C) 14 \hspace{1cm} (D) 16

Q.12 If the roots of \(x^2 + px + q = 0 \) are \(\tan 30^\circ \) and \(\tan 15^\circ \), then \(2 + q – p \) equals
(A) 0 \hspace{1cm} (B) 1 \hspace{1cm} (C) 2 \hspace{1cm} (D) 3

[REASONING TYPE] \hspace{1cm} [1 \times 3 = 3]

Q.13 Consider the lines
\[L : (k + 7)x – (k – 1)y – 4(k – 5) = 0 \] where \(k \) is a parameter
and the circle
\[C : x^2 + y^2 + 4x + 12y – 60 = 0 \]
Statement-1: Each member of L intersects the circle 'C' at an angle of \(90^\circ\)
because
Statement-2: Every member of L is tangent to the circle C.
(A) Statement-1 is true, statement-2 is true; statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement-2 is true; statement-2 is NOT the correct explanation for statement-1.
(C) Statement-1 is true, statement-2 is false.
(D) Statement-1 is false, statement-2 is true.

[MULTIPLE OBJECTIVE TYPE] \hspace{1cm} [2 \times 4 = 8]

Q.14 Consider the points O (0, 0), A (0, 1) and B (1, 1) in the x-y plane. Suppose that points C (x, 1) and D (1, y) are chosen such that \(0 < x < 1\) and such that O, C and D are collinear. Let sum of the area of triangles OAC and BCD be denoted by 'S' then which of the following is/are correct?
(A) Minimum value of S is irrational lying in \((1/3, 1/2)\)
(B) Minimum value of S is irrational in \((2/3, 1)\)
(C) The value of x for minimum value of S lies in \((2/3, 1)\)
(D) The value of x for minimum values of S lies in \((1/3, 1/2)\)

Q.15 If \(5x - y, 2x + y, x + 2y \) are in A.P. and \((x - 1)^2, (xy + 1), (y + 1)^2 \) are in G.P., \(x \neq 0, \) then \(x + y \) equals
(A) \(\frac{3}{4} \) \hspace{1cm} (B) 3 \hspace{1cm} (C) – 5 \hspace{1cm} (D) – 6
Q.16

<table>
<thead>
<tr>
<th>Column-I</th>
<th>Column-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) The four lines $3x - 4y + 11 = 0; 3x - 4y - 9 = 0; 4x + 3y + 3 = 0$ and $4x + 3y - 17 = 0$ enclose a figure which is</td>
<td>a quadrilateral which is neither a parallelogram nor a trapezium nor a kite.</td>
</tr>
<tr>
<td>(B) The lines $2x + y = 1, x + 2y = 1, 2x + y = 3$ for forming a figure which is</td>
<td>a parallelogram which is neither a rectangle nor a rhombus.</td>
</tr>
<tr>
<td>(C) If 'O' is the origin, P is the intersection of the lines $x^2 - 7xy + 3y^2 + 5x + 10y - 25 = 0$, A and B are the points in which these lines are cut by the line $x + 2y - 5 = 0$, then the points O, A, P, B (in some order) are the vertices of</td>
<td>a square.</td>
</tr>
</tbody>
</table>

Q.17

<table>
<thead>
<tr>
<th>Column-I</th>
<th>Column-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) If the straight line $y = kx \forall K \in I$ touches or passes outside the circle $x^2 + y^2 - 20y + 90 = 0$ then $</td>
<td>k</td>
</tr>
<tr>
<td>(B) Two circles $x^2 + y^2 + px + py - 7 = 0$ and $x^2 + y^2 - 10x + 2py + 1 = 0$ intersect each other orthogonally then the value of p is</td>
<td>2</td>
</tr>
<tr>
<td>(C) If the equation $x^2 + y^2 + 2\lambda x + 4 = 0$ and $x^2 + y^2 - 4\lambda y + 8 = 0$ represent real circles then the value of λ can be</td>
<td>3</td>
</tr>
<tr>
<td>(D) Each side of a square is of length 4. The centre of the square is (3, 7). One diagonal of the square is parallel to $y = x$. The possible abscissae of the vertices of the square can be</td>
<td>5</td>
</tr>
</tbody>
</table>

[SUBJECTIVE]

Q.18 Find the area of the pentagon whose vertices taken in order are (0, 4), (3, 0), (6, 1), (7, 5) and (4, 9). [6]
ANSWER KEY

PRACTICE TEST-1
Q.1 C Q.2 C Q.3 A Q.4 C Q.5 B Q.6 A Q.7 D
Q.15 (A) Q; (B) S; (C) P; (D) R Q.16 (A) R; (B) S; (C) P; (D) Q
Q.17 446 Q.18 4

PRACTICE TEST-2
Q.1 D Q.2 D Q.3 B Q.4 C Q.5 D Q.6 A Q.7 D
Q.8 C Q.9 D Q.10 B Q.11 A Q.12 B Q.13 A, B, C, D
Q.14 A, C, D Q.15 (A) S; (B) P; (C) Q; (D) R
Q.16 (A) P; (B) S; (C) R; (D) Q Q.17 3 Q.18 2

PRACTICE TEST-3
Q.1 D Q.2 C Q.3 A Q.4 D Q.5 B Q.6 C Q.7 B
Q.8 C Q.9 A Q.10 C Q.11 B Q.12 A Q.13 B Q.14 A
Q.15 A, D Q.16 A, B, D Q.17 (A) P, S; (B) P; (C) Q; (D) P, Q, R Q.18 6

PRACTICE TEST-4
Q.1 D Q.2 D Q.3 A Q.4 D Q.5 D Q.6 D Q.7 A
Q.8 B Q.9 A Q.10 A Q.11 B Q.12 C Q.13 D Q.14 D
Q.15 (A) S; (B) R; (C) Q; (D) P Q.16 (A) Q; (B) R; (C) S; (D) P
Q.17 9 Q.18 2

PRACTICE TEST-5
Q.1 D Q.2 D Q.3 A Q.4 B Q.5 D Q.6 A Q.7 D
Q.15 (A) Q; (B) S; (C) P; (D) R Q.16 (A) P, Q; (B) P, Q; (C) Q; (D) Q, S
Q.17 7 Q.18 8

PRACTICE TEST-6
Q.1 D Q.2 C Q.3 A Q.4 D Q.5 D Q.6 B Q.7 B
Q.8 A Q.9 B Q.10 A Q.11 B Q.12 D Q.13 C Q.14 A, C
Q.15 A, D Q.16 (A) S; (B) R; (C) Q Q.17 (A) P, Q, R; (B) Q, R; (C) Q, R, S; (D) P, S
Q.18 36.5