विध्न विचारत भीरु जन, नहीं आरम्भे काम, विपति देख छोड़े तुरंत मध्यम मन कर श्याम। पुरुष सिंह संकल्प कर, सहते विपति अनेक, 'बना' न छोड़े ध्येय को, रघुबर राखे टेक।। रिक्तः मानव धर्म प्रणेता

सर्गुरः श्री रणछोड़वासजी महाराज

Subject: CHEMISTRY

Available Online: www.MathsBySuhag.com

Electrophilic Aromatic Substitution ORGANIC CHEMISTRY

Wishing You & Your Family A Very Happy & Prosperous Deepawali

DEEPAWALI ASSIGNMENT

Address: Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal : 0 903 903 7779, 98930 58881, WhatsApp 9009 260 559

www.TekoClasses.com

www.MathsBySuhag.com

- Q.3 Give the structures & names of the products from the reaction of furfural, 2-furancarboxaldehyde with
- (a) conc. aq. NaOH

- CH₃-C-CH₃ / NaOEt (b)
- FREE Download Study Package from website:www.TekoClasses.com & www.MathsBySuhag.com $(CH_3CH_2CO)_2O + ACO^-Na^+$ (c)
 - (d) PhCH₂CN / OH-
 - (e) cyclopentadiene / OH⁻. Identify each reaction.
 - Q.4 From 2-methyl pyridine and any acyclic compound prepare: 2-PyCOCH₃ (Py indicates pyridine)
 - Q.5 From furfural prepare:
 - Ethyl-5-bromo-2-furoate (a)
 - (b) 1, 2, 5 tribromopentane.
 - Q.6 Give structures of the products from the following condensation:

(a)
$$P-CH_3C_6H_4CHO + (CH_3CH_2-C)_2O - \frac{CH_3CH_2COO^-Na^+}{CH_3CH_2COO^-Na^+}$$

- Cyclohexanone + CH₃CH₂NO₂ + OH⁻ (b)
- $C_6H_5CHO + PhCH_2C \equiv N$ (c)
- (d) Benzophenone + cyclopentadiene
- Q.7 Shows steps in the synthesis of:

(a)
$$P - NO_2C_6H_4CH_2OC_2H_5$$

 OCH_3

- PhCH₂CH CH₃ (b)
- $2, 4-(NO_2), C_6H_3-OC_3H_7$ (c)

Available starting materials are Ph – H, Ph – CH₃ & any alcohol of three or fewer carbon atoms.

Q.8 How can we convert

(i)

(ii)

(iii)

$$\begin{array}{ccc}
O \\
\parallel \\
PhCH = CH - C - CH_3 & to & PhCH = CHCO_2H
\end{array}$$

$$\begin{array}{ccc}
O & OH \\
\parallel & \parallel \\
PhCH = CH - C - CH_3 \longrightarrow PhCH = CHCH - CH_3
\end{array}$$

$$\begin{array}{ccc}
O & O \\
\parallel & \parallel \\
PhCH = CH - C - CH_3 \longrightarrow PhCH_2CH_2 - C - CH_3
\end{array}$$

(iv)
$$PhCH = CH - C - CH_3 \longrightarrow Ph - (CH_2)_3 CH_3$$

Q.10 Give the product of the rearrangement of the cyclopentyl glycol E,

– CH₃, and show how it is formed.

Suggest a mechanism for the free radical oxidation of benzaldehyde, by atomspheric \mathbf{O}_2 . The reaction is Q.11 initiated by a radical R° _____

- Compound X, $C_9H_{10}O$ is inert to Br_2 in CCl_4 vigorous oxidation with hot alkaline permanganate yields benzoic acid. X gives a precipitate with semicarbazide hydrochloride & with 2,4 dinitrophenyl hydrozine Q.12 (DNPH). Write all possible structures for X.
- Give the structures of A, B & C in ICH_2CH_2-CI $\frac{(i)AgBF_4}{(ii)Ph_2S}$ A $\frac{NaH}{Acetone}$ B $\frac{KOH}{Acetone}$ C is 8 known as spiranyl epoxide.

 SynthesiseP-D-acetophenone (G) from benzene, aliphatic compounds & D₂O. The given sequence is, explain the mechanism & write the products: $Ph H \xrightarrow{B_2/F_6} A \xrightarrow{AC_2O/AICI_3} B \xrightarrow{McOH} C \xrightarrow{(ii)Mg/Bi_2O} D \xrightarrow{H_2O^{\oplus}} E$ Synthesise: $Ph H \xrightarrow{D} P NO_2 C_6H_4 CO_2H$ $Ph H \xrightarrow{D} 2$ -benzene tricarboxylic acid $Ph H \xrightarrow{D} 2$ -bromo-4-nitrobenzoic acid Prepare adipic acid & succinic acid from THF.Prepare 6-oxo-6-phenyl hexanoic acid from cyclohexanol & C₆H₆.

 Account for the fact that maleic acid is a stronger acid than furmaric acid but maleate, monoanion is a weaker acid than furmarate monioanion
 & Phthalic acid is stronger than either isophthalic or for phthalic acids but phthalate monoanion is weaker than isophthalate & terphthalate monoanions.

 Synthesise: $PhCH_2 CH_2 CO_2H \text{ from Ph } CH_2 CH_2 \text{ Br with in 2 step.}$ With the acid of simple chemical tests differentiate among 2-chloropropanoic acid, pyruvic acid, acrylic acid & propanoic acid. Give the structures of A, B & C in $ICH_2CH_2CH_2 - Cl \xrightarrow{(i) AgBF_4} A \xrightarrow{NaH} B$ Q.13
- Q.14

$$Ph - H \xrightarrow{Br_2/Fe} A \xrightarrow{AC_2O/AlCl_3} B \xrightarrow{MeOH} C \xrightarrow{(i)Mg/Et_2O} D \xrightarrow{H_3O^{\oplus}} E$$

- Q.15
- (a)
- (b)
- Q.16
- (a)
- (b)
- (c)
- (d)
- Q.17
- Q.18
- Q.19
- Q.20
- (a)
- (b)
- Q.21
- (a)
- FREE Download Study Package from website:www.TekoClasses.com & www.MathsBySuhag.com (b) acid & propanoic acid.
 - Prepare benzilic acid(1-hydroxy-1, 1-diphenyl ethanoic acid) from either cis-or trans-stilbene within 3 Q.22 steps.

- Q.23 Use Ph − H, Ph Me, Xeylenes, NaPH & DEM to prepare : [Nap →
- (a) Ph CH₂ CH₂ CH₂ COOH
- P HOOC $C_6 \tilde{H}_4 C \tilde{H}_2 C H_2 COOH$
- (c) $P HOOC CH_2CH_2CH_4 CH_2CH_2COOH$
- (d) $\alpha \text{Nap} \text{CH}_2 \text{ CH}_2 \text{ COOH}$
- (e) $\beta \text{Nap CH}_2 \text{CH}_2 \text{COOH}$
- Q.24 Convert DEM to 2-oxobutanoic acid
- Q.25 Give the structures of the products from the following condensations:

(a)
$$O + N = C - CH_2 - C - O - CH_3 \xrightarrow{CH_3 - C - O^- NH_4}$$

- (b) Benzophenone + cyclopentadiene $\xrightarrow{\bar{O}H}$
- (c) Outline the steps in the base catalysed self condensation of a typical nitrile CH₃ CH₂ CN.

0 98930 58881.

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779,

- Q.26 Convert Ph H and any aliphatic compound to 2–(2, 4-dinitrophenyl) propanoic acid (D).
- Q.27 Provide structures for the products of the reaction of Ph N_2 with
- (a) PhNMe₂
- (b) 2-naphthol
- (c) $Ph CH_3$
- Q.28 Prepare sodium P-dimethylaminoazobenzene sulphate, methylorange (a), from appropriate amines.
- (b) Explain, with structures, why methylorange is an acid-base indicators.
- Q.29 In the vilsmeier reaction, an aromatic 3° amine (ArNR₂) undergoes electrophilic substitution with Me₂NCHO (-dimethyl- formamide) & POCl₃.
- (a) Give the product of the reaction with PhNMe₂.
- (b) Outline the steps in the reaction in (a) showing the electrophile.
- Q.30 Synthesise from NaPH, & any other reagent
- (a) β -NpNH₂ by three methods.
- (b) $2\text{-NPCH}_2^{-}\text{NH}_2$
- (c) Naphthionic acid (4-amino-1-naphthalene sulfonic acid)
- (d) 1, 2-dinitronaphthalene.
- Q.31 $CHCl_3 + EtO^- Na^+ \longrightarrow A \xrightarrow{EtOH} B \xrightarrow{2EtO^-} C \xrightarrow{excess of CH_3MgBr} D \xrightarrow{H_2CrO_4} E.The colour of the solution becomes green.$ 'C' is known as "ethylortho formate".

Q.32 Devise a synthesis of
$$Ph - C - CH_3$$
 from $Ph - C - Cl \& DEM$. You have available O

- (i) NaH/THF
- (ii) H_2O/H_2SO_4

Can this synthesis be a general method for preparing methyl Ketone.

Q.33 Prepane $(n - C_4H_9)_3$ C – CO_2H from 1-bromopentane & 1- bromobutane.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com Identify A to E in the following reactions & explain the mechanism.

$$Ph - SO_2Cl + EtNH_2 \longrightarrow A \xrightarrow{NaOH} B \xrightarrow{EtBr} C \xrightarrow{H_3O^{\oplus}} D + E.$$

- An aromatic hydrocarbon (A) of the formula C₈H₁₀ on oxidation with acidified KMnO₄ produced a dicarboxylic acid (B) having C = 57.8% and H = 3.6%. The silver salt of the acid contains 56.8% Ag. The acid does not form anhydride on heating, but on nitration with conc. HNO₃ and conc. H₂SO₄ gave only one mononitro derivative (C). The acid (B) on heating with soda-lime gives benzene. What are (A), w (B) and (C)?
- Q.36 An organic compound (A), C_8H_{10} , yields on oxidation a dibasic acid (B), $C_8H_6O_4$, which on heating produces an anhydride (C), C₈H₄O₃. Acid (B) on nitration produces two mononitro derivatives (D) and (E), both on heating with soda-lime produced nitrobenzene, while acid (B) on distillation with soda-lime produced benzene. What are (A) to (E)?
- Compound (A), C_8H_9Cl , on treatment with aqueous KOH gives (B), $C_8H_{10}O$, which gives a red colour with ceric ammonium nitrate and evolve H_2 on reaction with N_2 Compound (B) in the second of the sec catalytic hydrogenation in presence of copper gives (C), which forms an oxime and cyanohydrin and catalytic hydrogenation in presence of copper gives (C), which forms an oxime and cyanohydrin and catalytic hydrogenation in presence of copper gives (C), which forms an oxime and cyanohydrin and catalytic hydrogenation in presence of copper gives (C), which forms an oxime and cyanohydrin and catalytic hydrogenation in presence of copper gives (C), which forms an oxime and cyanohydrin and catalytic hydrogenation in presence of copper gives (C), which forms an oxime and cyanohydrin and catalytic hydrogenation in presence of copper gives (C), which forms an oxime and cyanohydrin and catalytic hydrogenation in presence of copper gives (C), which forms an oxime and cyanohydrin and catalytic hydrogenation in presence of copper gives (C), which forms an oxime and cyanohydrin and catalytic hydrogenation in presence of copper gives (C), which forms an oxime and cyanohydrin and catalytic hydrogenation in presence of copper gives (C), which forms an oxime and cyanohydrin and catalytic hydrogenation in presence of copper gives (C), which forms are catalytic hydrogenation in presence of copper gives (C), which forms are catalytic hydrogenation in presence of copper gives (C), which forms are catalytic hydrogenation (C), and a copper give hydrogenation (C), and a copper giv write down all the possible isomers of (A).

903

- An organic compound (A), $C_9H_{10}Br_2$ gives (B), $C_9H_{11}OBr$ on reaction with hot alcoholic KOH solution. Compound (B) is resistant to further action of alkali. (B) on heating with conc. H₂SO₄ undergoes dehydration to give (C), which on ozonolysis gives ethanal and another compound (D). Compound (D) forms a phenyl hydrazone with $C_6H_5NHNH_2$ and gives positive Tollen's test, but does not give red ppt. with Fehling's reagent. It on heating with acetic anhydride and sodium acetate produced o-bromocinnamic acid. What are compound (A) to (D)? Explain all the reactions involved.
- Bhopal Q.39 An anomatic hydrocvarbon (A), C₇H₈ on reaction with Cl₂ in the presence of halogen carrier at low temp. give two compounds (B) and (C) of formula C_7H_7Cl . Both the compounds on treatment with Cl_2 $\overline{\overleftarrow{b}}$ in absence of catalyst produced two compounds of the formula, $C_7H_6Cl_2$, i.e. (D) and (E). Both (D) and \checkmark (E) on treatment with KCN followed by hydrolysis produced two acids (F) and (G) of formula, acids (E) and (E) are followed by hydrolysis produced two acids (F) and (G) of formula, acids (E) are followed by hydrolysis produced two acids (E) and (E) are followed by hydrolysis produced two acids (E) and (E) are followed by hydrolysis produced two acids (E) and (E) are followed by hydrolysis produced two acids (E) and (E) are followed by hydrolysis produced two acids (E) and (E) are followed by hydrolysis produced two acids (E) and (E) are followed by hydrolysis produced two acids (E) and (E) are followed by hydrolysis produced two acids (E) and (E) are followed by hydrolysis produced two acids (E) and (E) are followed by hydrolysis produced two acids (E) and (E) are followed by hydrolysis produced two acids (E) and (E) are followed by hydrolysis produced two acids (E) are followed by hydrolysis produced two acids (E) and (E) are followed by hydrolysis produced two acids (E) are follow C₈H₇O₅Cl. Both the acids on heating with dilute HNO₃ get oxidised into two acids (H) and (I) of σ formula, C₇H₅O₂Cl. Both these acids on heating with soda-lime produced a single compound chlorobenzene. What are compounds (A) to (I)? Give balanced equations for the reactions.
- (A) and (B) are two isomers of molecular formula C_8H_{10} . Both on oxidation gave a monobasic and a dibasic acid respectively. The latter compound on heating eliminates one mole of H₂O to give cyclic anhydride, while the former on treatment with LiAlH₄ gave (C), which on heating with Cu at 300°C produced (D), which gave positive test with Schiff's reagent and Tollen's reagent. It on heating with acetic anhydride and sodium acetate givs cinnamic acid. What are compounds (A) to (D)? Explain the reactions giving equations.
- A hydrocarbon (A), C_9H_{10} , adds one mol of Br_2 to give (B), $C_9H_{10}Br_2$. Hydrolysis of (B) gives (C), $C_9H_{12}O_2$. Oxidation of (C) gave two acids identified as benzoic acid and acetic acids. Ozonization of $C_9H_{12}O_2$. Explain these reactions. Are (B) and (C) optically active, if so, how many isomers of each are possible? $\stackrel{\bigcirc}{\vdash}$

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

- Q.42 An organic compound (A), C_9H_{12} gave (B), $C_8H_6O_4$ on oxidation by alkaline KMnO₄. (B) on heating does not form anhydride. Also (B) reacts with Br₂in presence of Fe to give only one monobromo derivative (C), $C_8H_5BrO_4$. What are (A), (B) and (C)?
- Q.43 The compound C_8H_9Cl , (A), on treatment with KCN followed by hydrolysis gives $C_9H_{10}O_2$ (B). Ammonium salt of (B) on dry distillation yields (C), which reacts with alkaline solution of bromine to give $C_8H_{11}N$. (D). Another compound (E),($C_8H_{10}O$) is obtained by the action of HNO $_2$ on (D) or by the action of aqueous potash on (A). (E), on oxidation gives (F) ($C_8H_6O_4$), which gives the inner anhydride (G) on heating. Deduce the structures of (A) to (G) giving the reactions involved.
- Q.44 An aromatic hydrocarbon (A) containing 91.35% carbon gives on chlorination three isomeric monochloro derivatives 'X', 'Y' and 'Z'. % of chlorine in each one of these is 28%. On oxidation with $KMnO_4$ all the three give one monobasic acid. Acid obtained from'X' gives benzene on distillation with soda-lime. Acids obtained from Y and Z on similar treatment give monochloro benzene. Determine the structural formula of varius compounds and explain the reactions involved.

page

- Q.45 An aromatic hydrocarbon (A) has vapour density 46. On oxidation with chromyl chloride in CCl₄ it gives compound (B), which on reaction with conc. NaOH solution produced an aromatic acid (C) and an alcohol (D). Acid (C) can also be obtained by the oxidation of (A) with alkaline KMnO₄. Compound (D) is obtained when (B) is reduced with Na Hg and an acid. (D) can also be obtained by the reduction of acid (C) by means of LiAlH₄. Explain the reactions involved and the structural formulae of (A), (B), (C) and (D)?
- Q.46 An organic compound containing C, H and O exists in two isomeric forms (A) and (B). 0.108 g of an isomer gives on combustion 0.308 g of CO₂ and 0.072 g of H₂O. (A) is insoluble in NaOH and NaHCO₃, while (B) is soluble in NaOH. A reacts with conc. HI to give compound (C) and (D). (C) can be separated from (D) by the ethanolic AgNO₃ solution and (D) is soluble in NaOH. (B) reacts readily with bromine to give compound (E) of formula, C₇H₅OBr₃. Identify (A) to (E).
- Q.47 A mixture of two aromatic compounds (A) and (B) was separated by dissolving in CHCl₃ followed by extraction with aq. KOH solution. The organic layer containing compound (A), when heated with alcoholic solution of KOH produced a compound (C), C₇H₅N associated with an unpleasent odour. The alkaline aqueous layer onthe other hand, when heated with CHCl₃ and then acidified gave a mixture of two isomeric compounds (D) and (E) of molecular formula C₇H₆O₂. Identify the compounds (A) to (E).
- An organic compound (A) contains 69.42 % C, 5.78 % H and 11.57 % N. Its vapour density is 60.50. $\stackrel{\smile}{\square}$ It evolves NH₃ when boiled with KOH. On heating with P₂O₅, it gives a compound (B) containing $\stackrel{\smile}{\square}$ 81.55 % C, 4.85 % H and 13.59 % N. On reduction with Na and C₂H₅OH (B) gives a base, which reacts with HNO₂ giving off N₂ and yielding an alcohol (C), which can be oxidised to benzoic acid. What are (A) to (C)? Explain the reactions involved.
- Q.49 An organic compound has 76.6 % carbon and 6.38% hydrogen. Its V.D. is 47. It gives characteristic colour with FeCl₃ solution. The compound (A) when treated with CO₂ and NaOH at 140°C under pressure gives (B), which on acidification gives (C). The compound (C) reacts with acetyl chloride to give (D), which is a well known pain killer. Identify (A), (B), (C) and (D) and explain the reactions involved.
- give (D), which is a well known pain killer. Identify (A), (B), (C) and (D) and explain the reactions involved.

 Q.50 On ozonolysis (X), C₁₈H₂₀O, gives C₁₀H₁₂O (A) and C₈H₈O₂ (B). Compound (A) gives the iodoform test and with NH₂OH gives the oxime C₁₀H₁₃ON (C). The oxime undergoes rearrangement to give an amide when treated with PCl₅ in dry ether. The amide on hydrolysis gives CH₃COOH and a compound C₈H₁₁N (D). Compound (D) with HNO₂ at 0°C gives an aromatic alocohol C₈H₁₀O, oxidation of which gives phthalic acid. (B) on mild oxidation gives a carboxylic acid, C₈H₈O₃, which is degraded by HI to CH₃I and p-hydroxy benzoic acid. Identify the compound (X) and give the reactions involved.