

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com <u>SPARKLES</u>

www.iekoulasses.com & www.iviainsbyounag.com	Q.1	NO ₂ is involved in the formation of smog and of NO ₂ is O ₃ (g) + NO(g) 1 O ₂ (g) + NO ₂ (contained 1 × 10 ⁻⁶ M O ₃ , 1×10 ⁻⁵ M NO, 2. conclude? (A) There will be a tendency to form more 1 (B) There will be a tendency to form more 1 (C) There will be a tendency to form more 1 (D) There will be no tendency for change b	g) $K_c = 6 \times 10^{34}$, 5 ×10 ⁻⁴ M NO ₂ and 8 NO and O ₃ NO ₂ and O ₂ NO ₂ and O ₃	if the air over Bansal Classes $.2 \times 10^{-3} \text{ M O}_2$, what can we	page 2
OTT & WWW.IVIAI	Q.2	The standard enthalpy of formation of gased 373 K given the following values of the mo Molar heat capacity of $H_2O(g) = 33.5 \text{ JK}^{-1}$ Molar heat capacity of $H_2(g) = 28.8 \text{ JK}^{-1}$ m Molar heat capacity of $O_2(g) = 29.4 \text{ JK}^{-1}$ m Assume that the heat capacities are independent (A) 508 kJmol ⁻¹ (B) – 242 kJmol ⁻¹	lar heat capacities at co mol ⁻¹ 10 ¹⁻¹ 10 ¹⁻¹	onstant pressure), 0 98930 58881.
S S	Q.3	A reaction takes place in three steps. The rat	te constant are $K_1, K_2 \&$	K_3 . The overall rate constant	77
koulasses		$K = \frac{K_1 \times K_3}{K_2}$. If energy of activation are 20, (A) 10 (B) 15	15 and 10 kJ/mole, the (C) 20	(D) $\frac{40}{2}$;06 0 :
Φ	Q.4	At 200°C PCl ₅ dissociates as follows:		5	Phone
Š	2.1	$PCl_{r}(g) \perp PCl_{r}(g) + Cl_{r}(g)$			
≩	\leq	It was found that the equilibrium vapours	are 62 times as heavy	as hydrogen. The degree of	pal
vepsite:	Q.5	It was found that the equilibrium vapours dissociation of PCl ₅ at 200°C is: (A) 10% (B) 42% For the reaction $C = U_{1}(x) + C = U_{1}(x)$	(C) 50%	(D) 68%	K. Sir), Bhc
$K_{\rm P}$ is 0.05 at 900 K. If an initial mixture comprising 20 mol of $C_2 H_6$ and 80 mol of in					
ge		(A) 4.3 (B) 9.67	(C) 8.76	(D) 72.5	Kariya
Кa	Q.6	A certain radio isotope ${}^{A}_{Z}X$ (t _{1/2} =10 days) d			
угас		sealed vessel, how much He will accumulat (A) 16.8 litre (B) 22.4 litre	e in 20 days at STP? (C) 33.6 litre	(D) None	: : Suha
- НЕЕ ПОМПЮАО ЭШОУ РАСКАВЕ ПОП	Q.7	For the transformation $H_2O(l, 1 \text{ atm})$ to $H_2O(g, 0.1 \text{ atm})$; $\Delta H_{vap.}$ The change in entropy $(Jk^{-1} \text{ mol}^{-1})$ is			asses, Maths : Suhag
Ö		(A) 19.14 (B) 89.89	(C) 109.03		
Nou	Q.8	When sulphur in the form of S_8 is heated at equilibrium. This is because of conversion of this reaction is	f some S_8 to S_2 . The val	sure of 1 atm falls by 30% at lue of equilibrium constant for	Ö
Ц		(A) 2.96 (B) 2.05	(C) 0.39	(D) 3.9	
Г Г Г	Q.9	A solution of 0.4 g sample of H_2O_2 reacted y The percentage purity of the sample of H_2O_2 (A) 95% (B) 85%	-	in presence of sulphuric acid. (D) none of these	
	-				

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

Q.10For the reaction (1) and (2) A 1 B + C D 1 2EGiven $K_{P_1}: K_{P_2} = 9:1$ If the degree of dissociation of A and D be same then the total pressure at equilibrium (1) and are in the ratio. (A) 3:1(A) 3:1(B) 36:1(C) 1:1(D) 0.5:1Q.11A 0.518 g sample of lime stone is dissolved in HCl and then the calcium is precipitated as CaC2 After filtering and washing the precipitate, it requires 40.0 mL of 0.250 N KMnO4, solut acidified with H2SO4 to titrate it as, $MnO_4^- + H^+ + C_2O_4^2 \longrightarrow Mn^{2+} + CO_2 + 2H_2O$ The percentage of CaO in the sample is: (A) 54.0% (B) 27.1% (C) 42% (D) 84%Q.12The time of decay for a nuclear reaction is given by t = 4t _{1/2} . The relation between the mean (T) and time of decay (t) is given by(A) 2T ln 2(B) 4T ln 2(C) 2T ⁴ ln 2(D) $\frac{1}{T^2} ln 2$	03 7779, 0 98930 58881. page 3					
D 1 2E Given $K_{P_1}: K_{P_2} = 9:1$ If the degree of dissociation of A and D be same then the total pressure at equilibrium (1) and are in the ratio. (A) 3:1 (B) 36:1 (C) 1:1 (D) 0.5:1 Q.11 A 0.518 g sample of lime stone is dissolved in HCl and then the calcium is precipitated as CaC ₂ After filtering and washing the precipitate, it requires 40.0 mL of 0.250 N KMnO ₄ , solut acidified with H ₂ SO ₄ to titrate it as, MnO ₄ ⁻ + H ⁺ + C ₂ O ₄ ²⁻ \longrightarrow Mn ²⁺ + CO ₂ + 2H ₂ O The percentage of CaO in the sample is: (A) 54.0% (B) 27.1% (C) 42% (D) 84% Q.12 The time of decay for a nuclear reaction is given by t = 4t _{1/2} . The relation between the mean (T) and time of decay (t) is given by (A) 2T ln 2 (B) 4T ln 2 (C) 2T ⁴ ln 2 (D) $\frac{1}{T^2} \ln 2$	03 7779, 0 98930 58881. page 3					
Given $K_{P_1}: K_{P_2} = 9: 1$ If the degree of dissociation of A and D be same then the total pressure at equilibrium (1) and are in the ratio. (A) $3: 1$ (B) $36: 1$ (C) $1: 1$ (D) $0.5: 1$ Q.11A 0.518 g sample of lime stone is dissolved in HCl and then the calcium is precipitated as CaC2 After filtering and washing the precipitate, it requires 40.0 mL of 0.250 N KMnO4, solut acidified with H_2SO_4 to titrate it as, $MnO_4^- + H^+ + C_2O_4^{2-} \longrightarrow Mn^{2+} + CO_2 + 2H_2O$ The percentage of CaO in the sample is: (A) 54.0% (B) 27.1% (C) 42% (D) 84%Q.12The time of decay for a nuclear reaction is given by $t = 4t_{1/2}$. The relation between the mean (T) and time of decay (t) is given by(A) 2T ln 2(B) 4T ln 2(C) 2T^4 ln 2(D) $\frac{1}{T^2} ln 2$	03 7779, 0 98930 58881. page 3					
If the degree of dissociation of A and D be same then the total pressure at equilibrium (1) and are in the ratio. (A) 3 : 1 (B) 36 : 1 (C) 1 : 1 (D) 0.5 : 1 Q.11 A 0.518 g sample of lime stone is dissolved in HCl and then the calcium is precipitated as CaC ₂ After filtering and washing the precipitate, it requires 40.0 mL of 0.250 N KMnO ₄ , solut acidified with H ₂ SO ₄ to titrate it as, $MnO_4^- + H^+ + C_2O_4^{2-} \longrightarrow Mn^{2+} + CO_2 + 2H_2O$ The percentage of CaO in the sample is: (A) 54.0% (B) 27.1% (C) 42% (D) 84% Q.12 The time of decay for a nuclear reaction is given by t = 4t _{1/2} . The relation between the mean (T) and time of decay (t) is given by (A) 2T ln 2 (B) 4T ln 2 (C) 2T ⁴ ln 2 (D) $\frac{1}{T^2} \ln 2$	03 7779, 0 98930 58881. page 3					
are in the ratio. (A) 3 : 1 (B) 36 : 1 (C) 1 : 1 (D) 0.5 : 1 Q.11 A 0.518 g sample of lime stone is dissolved in HCl and then the calcium is precipitated as CaC ₂ After filtering and washing the precipitate, it requires 40.0 mL of 0.250 N KMnO ₄ , solut acidified with H ₂ SO ₄ to titrate it as, $MnO_4^- + H^+ + C_2O_4^{2-} \longrightarrow Mn^{2+} + CO_2 + 2H_2O$ The percentage of CaO in the sample is: (A) 54.0% (B) 27.1% (C) 42% (D) 84% Q.12 The time of decay for a nuclear reaction is given by t = 4t _{1/2} . The relation between the mean (T) and time of decay (t) is given by (A) 2T ln 2 (B) 4T ln 2 (C) 2T ⁴ ln 2 (D) $\frac{1}{T^2} \ln 2$	03 7779, 0 98930 58881. page 3					
(A) $3:1$ (B) $36:1$ (C) $1:1$ (D) $0.5:1$ Q.11 A 0.518 g sample of lime stone is dissolved in HCl and then the calcium is precipitated as CaC ₂ After filtering and washing the precipitate, it requires 40.0 mL of 0.250 N KMnO ₄ , solut acidified with H ₂ SO ₄ to titrate it as, $MnO_4^- + H^+ + C_2O_4^{2-} \longrightarrow Mn^{2+} + CO_2 + 2H_2O$ The percentage of CaO in the sample is: (A) 54.0% (B) 27.1% (C) 42% (D) 84% Q.12 The time of decay for a nuclear reaction is given by $t = 4t_{1/2}$. The relation between the mean (T) and time of decay (t) is given by (A) 2T ln 2 (B) 4T ln 2 (C) 2T ⁴ ln 2 (D) $\frac{1}{T^2} \ln 2$	03 7779, 0 98930 58881.					
acidified with H_2SO_4 to titrate it as, $MnO_4^- + H^+ + C_2O_4^{2-} \longrightarrow Mn^{2+} + CO_2 + 2H_2O$ The percentage of CaO in the sample is: (A) 54.0% (B) 27.1% (C) 42% (D) 84% Q.12 The time of decay for a nuclear reaction is given by $t = 4t_{1/2}$. The relation between the mean (T) and time of decay (t) is given by (A) 2T ln 2 (B) 4T ln 2 (C) 2T ⁴ ln 2 (D) $\frac{1}{T^2} \ln 2$	03 7779, 0 98930 58881.					
acidified with H_2SO_4 to titrate it as, $MnO_4^- + H^+ + C_2O_4^{2-} \longrightarrow Mn^{2+} + CO_2 + 2H_2O$ The percentage of CaO in the sample is: (A) 54.0% (B) 27.1% (C) 42% (D) 84% Q.12 The time of decay for a nuclear reaction is given by $t = 4t_{1/2}$. The relation between the mean (T) and time of decay (t) is given by (A) 2T ln 2 (B) 4T ln 2 (C) 2T ⁴ ln 2 (D) $\frac{1}{T^2} \ln 2$	03 7779, 0 98930 58881.					
acidified with H_2SO_4 to titrate it as, $MnO_4^- + H^+ + C_2O_4^{2-} \longrightarrow Mn^{2+} + CO_2 + 2H_2O$ The percentage of CaO in the sample is: (A) 54.0% (B) 27.1% (C) 42% (D) 84% Q.12 The time of decay for a nuclear reaction is given by $t = 4t_{1/2}$. The relation between the mean (T) and time of decay (t) is given by (A) 2T ln 2 (B) 4T ln 2 (C) 2T ⁴ ln 2 (D) $\frac{1}{T^2} \ln 2$)3 7779, 0 98930 58881.					
The percentage of CaO in the sample is: (A) 54.0% (B) 27.1% (C) 42% (D) 84% Q.12 The time of decay for a nuclear reaction is given by $t = 4t_{1/2}$. The relation between the mean (T) and time of decay (t) is given by (A) 2T ln 2 (B) 4T ln 2 (C) 2T ⁴ ln 2 (D) $\frac{1}{T^2}$ ln 2	life 0 ⁶ / ₆ / ₂ / ₂ 80					
(A) 54.0% (B) 27.1% (C) 42% (D) 84% Q.12 The time of decay for a nuclear reaction is given by $t = 4t_{1/2}$. The relation between the mean (T) and time of decay (t) is given by (A) $2T \ln 2$ (B) $4T \ln 2$ (C) $2T^4 \ln 2$ (D) $\frac{1}{T^2} \ln 2$	life 0 ⁶ / ₆ / ₂ / ₂ 80					
Q.12 The time of decay for a nuclear reaction is given by $t = 4t_{1/2}$. The relation between the mean (T) and time of decay (t) is given by (A) 2T ln 2 (B) 4T ln 2 (C) 2T ⁴ ln 2 (D) $\frac{1}{T^2}$ ln 2	life 0 ⁶ / ₆ / ₂ / ₂ 80					
(T) and time of decay (t) is given by (A) 2T ln 2 (B) 4T ln 2 (C) $2T^4 \ln 2$ (D) $\frac{1}{T^2} \ln 2$	33 7779 ,					
(A) 2T ln 2 (B) 4T ln 2 (C) 2T ⁴ ln 2 (D) $\frac{1}{T^2}$ ln 2	03 903 7779					
	03 903 7					
	03 90					
	ö					
Q.13 0.3 g of an oxalate salt was dissolved in 100 mL solution. The solution required 90 mL of N	/20 Ō					
$KMnO_4$ for complete oxidation. The % of oxalalte ion in salt is:	 е					
(A) 33% (B) 66% (C) 70% (D) 40%	hon					
Q.14 For the reaction	_ 					
$2\text{NOCl}(g) \perp 2\text{NO}(g) + \text{Cl}_2(g)$	edou					
the values of ΔH° and ΔS° at 298 K are 77.2 kJ mol ⁻¹ and 122 JK ⁻¹ mol ⁻¹ respectively.	0.3 g of an oxalate salt was dissolved in 100 mL solution. The solution required 90 mL of N/20 KMnO ₄ for complete oxidation. The % of oxalalte ion in salt is: (A) 33% (B) 66% (C) 70% (D) 40% For the reaction $2NOCI(g) \perp 2NO(g) + Cl_2(g)$ the values of ΔH° and ΔS° at 298 K are 77.2 kJ mol ⁻¹ and 122 JK ⁻¹ mol ⁻¹ respectively. The standard equilibrium constant at the same temperature is					
(A) 0.695×10^{-8} (B) 6.95×10^{-8} (C) 69.5×10^{-8} (D) 695×10^{-8}	Sir),					
Q.15 An element A in a compound AB has oxidation number A ⁿ⁻ . It is oxidised by $Cr_2O_7^{2-}$ in action	نح نہ idic					
medium. In the experiment 1.68×10^{-3} mole of K ₂ Cr ₂ O ₇ were used for 3.26×10^{-3} mole of AB. σ						
The new oxidation number of A after oxidation is:						
(A) 3 (B) $3 - n$ (C) $n - 3$ (D) $+ n$	Kari					
Q.16 Ethylene is produced by	с.					
$C_4H_8 \xrightarrow{\Delta} 2C_2H_4$	Ihag					
Cyclobutane	S:					
The rate constant is 2.48×10^{-4} sec ⁻¹ . In what time will the molar ratio of the ethylene to cyclobut	ane <u>s</u>					
in reaction mixture attain the value 1? (A) 27.25 minute (B) 28.25 minute (C) 25 minute (D) 20 minute	Ма					
(A) 27.25 minute (B) 28.25 minute (C) 25 minute (D) 20 minute	ee Teko Classes, Maths : Suhag R. Kariya					
Q.17 Rate of formation of SO_3 in the following reaction	Clas					
$2SO_2 + O_2 \longrightarrow 2SO_3$	ko (
is 100 kg min ⁻¹ . Hence rate of disappearance of SO ₂ will be: (A) 100 kg min ⁻¹ (B) 80 kg min ⁻¹ (C) 64 kg min ⁻¹ (D) 32 kg min ⁻¹	Те					

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

Q.18 The hydrolysis of an ester was carried out separately with 0.05 N HCl and 0.05 N H_2SO_4 . Which of the following will be true?

	(A) $k_{HCl} > k_{H_2SO_4}$	(B) $k_{HCl} < k_{H_2SO_4}$	(C) $k_{HCl} = k_{H_2SO_4}$	(D) $k_{H_2SO_4} = 2k_{HCl}$	
Q.19		small amount, \mathbf{N}_2 is in		. The order of reactions when red to O_2 and both N_2 and O_2	4
	-		(C) 2, 1 and 0	(D) 1, 1 and 0	page
Q.20	I. NO + NO 1 N II. N ₂ O ₂ + H ₂ — III. N ₂ O + H ₂ — The rate constant of s	N_2O_2 (fast) $\rightarrow N_2O + H_2O$ (slow) $\rightarrow N_2 + H_2O$ (fast) step II is 1.2×10^{-4} m is rate of reaction when h^{-1} min ⁻¹	ole ⁻¹ L min ⁻¹ while equ	$^{-1} \min^{-1}$	///a, 0 98930 58881.
Q.21	energy of activation o	of the reaction is approx	of the total number o c. (C) 12.8 K cal mol ⁻¹	f collisions are effective. The good (D) zero	: 0 203 203
Q.22				what temperature the rate of action in presence of catalyst. (D) none of these	
Q.23	$1.8 \times 10^{-3} \text{ mol}^{-1/2} \text{ L}^{1/2}$	² min ⁻¹ at a given temp	perature. How would -	ut <u>></u>	_
	(A) will increase by 2	.828 times	(B) will increase by 1(D) will increase by 4	1.313 times	туа (ъ. н.
Q.24	If an aqueous solution (A) 6.699	n at 25 °C has twice as (B) 7.307	many OH ⁻ as pure wa (C) 7	ter its pOH will be (D) 6.98	ад н. ма
Q.25	α -particles at a given	i instant, emits at rate	10.000 α -particles per	ived species B. Both emitting r minute. 10 minutes later, it cies are 10 min and 100 hours re was (D) none ling it, a 1.00 ml sample of an	
Q.26	aqueous solution cont has an activity of 1.8 completely mixed wit withdrawn from ani	taining tritium is injected $\times 10^6$ cps (counts per th the animal blood du	ed into the animal blood second). After sufficient to normal blood circ of the blood sample	ling it, a 1.00 ml sample of an d d stream. The sample injected g ent time for the sample to be sulation, 2.00 ml of blood are withdrawn is found to be (D) 400 ml	8

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

A radioactive isotope is being produced at a constant rate x. Half-life of the radioactive substance O.27 is y. After sometimes number of radioactive nuclei becomes constant, the value of this constant is

(A)
$$\frac{xy}{\ln 2}$$
 (B) xy (C) $(\ln 2)xy$ (D) x/y

Q.28 A vessel contains $H_2(g)$ at 2 atm pressure, when $H_2S(g)$ at a pressure of 4 atm is introduced into the vessel. Where reaction

 $8H_2S(g) \perp 8H_2 + S_8(s)$

Occurs at a temperature of 1000 K. It is found that

$$\left[\frac{n(H_2)}{n(H_2S)}\right]_{\text{at equilibrium}} = \left[\frac{n(H_2S)}{n(H_2)}\right]_{\text{at t=0}}, \text{ then}$$

(A) maximum weight of solid formed is 32 gm

(B) maximum weight of solid formed is 0.32 gm

(C) $K_{p} = K_{c}RT$

(D) $K_c^P = 256$

Q.29 At a certain temperature the following equilibrium is established

 $CO(g) + NO_2(g) \perp CO_2(g) + NO(g)$ One mole of each of the four gases is mixed in one litre container and the reaction is allowed to \bigotimes^{1}_{1} reach equilibrium state. When excess of baryta water is added to the equilibrium mixture, the o weight of white precipitate obtained is 236.4 gm. The equilibrium constant K_c of the following reaction is (B) 2.25

(C) 2.1

(D) 3.6

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

Q.30

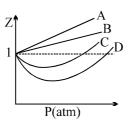
Rate of disappearance of the reactant A at two different temperatures is given by A 1 B

$$\frac{-d[A]}{dt} = 2 \times 10^{-2} \sec^{-1} [A] - 4 \times 10^{-3} \sec^{-1} [B] \text{ at } 300 \text{ K}$$

$$\frac{-d[A]}{dt} = 4 \times 10^{-2} \text{ sec}^{-1} [A] - 16 \times 10^{-4} \text{ sec}^{-1} [B] \text{ at } 400 \text{ K}$$

heat of reaction in the given temperature range, when equilibrium is set up is

(A)
$$\frac{2.303 \times 2 \times 300 \times 400}{100}$$
 log 50 Cal (B) $\frac{2.303 \times 2 \times 300 \times 400}{100}$ log 250 Cal

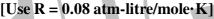

(C)
$$\frac{2.303 \times 2 \times 300 \times 400}{100}$$
 log 5 Cal (D) None

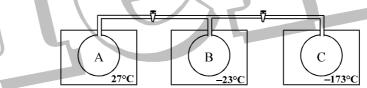
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com <u>BOMB</u>

			<u>MD</u>		
3	Q.1	For the reaction,			
Ö		2 SO ₃ (g) $\perp 2$ SO ₂ (g) + O ₂ (g)	ΔH_1^o = standard enthalpy change of reaction		
<u>.</u>			ΔS_1^o = standard entropy at temperature T		
Ц		$2NO_{3}(g) \perp 2NO_{2}(g) + O_{2}(g)$	ΔH_2^o = standard enthalpy at temperature T		
S C			ΔS_2^{o} = standard entropy at temperature T	9	
≥ n		Find out the equilibrium constant for the rea	2	page	
ns I		$SO_{2}(g) + NO_{3}(g) \perp SO_{3}(g) + NO_{2}(g)$ at the	ne same temperature in terms of above parameter.	ра	
at	Q.2	iven the sub shells 1s, 2s, 2p, 3p and 3d. Identify those meet the following descriptions			
≥.		(a) Has $l(azimuthal quantum no.) = 2$			
Ş		(b) Can have m (magnetic quantum no.) = -1			
Ś		(c) Is empty in a nitrogen atom(d) Is full in a carbon atom			
× Z		(e) Can contain two electrons, both with spin $m_s = +1/2$			
C O		(f) Contains the outermost shell electrons in oxygen atom			
0.0	Q.3	Rate of diffusion of ozonized oxygen is 0.4_{10}	$\sqrt{5}$ times that of pure oxygen. Find	7779	
ő	(a)	Percentage by mass of ozone in the ozonized		903 7	
a S S S S S	(b)	Degree of dissociation of oxygen assuming pure O_2 in the sample initially.			
www.lekoClasses.com & www.MathsbySuhag.com	Q.4	A 250 ml flask and 100 ml flask are separate	ed by a stop cock. At 350 K, the nitric oxide in the	0 903	
X 0	C		d the smaller one contains oxygen at 0.86 atm. The		
<u>–</u> .		gases are mixed by opening the stop cock. T	he reaction occuring are	Phone :	
≷		$2NO + O_2 \longrightarrow$	$> 2NO_2 \perp N_2O_4$		
≶	\leq		ond one is at equilibrium. Assuming all the gases to brium reaction if the final total pressure is 0.37 atm		
 ന	Q.5		lroxy benzoic acid is titrated with NaOH (aq); the	5	
website:	Q.J		200 M NaOH had been added and $pH = 7.02$ after		
Ô			bint). Use these data to determine Ka_1 and Ka_2 for		
Š		p-hydroxy benzoic acid.		с.	
E		$HOC_6H_4COOH + H_2O \perp H_3O^+ + HOC_6H_4COOH + H_2O \perp H_3O^+ + HOC_6H_4COO^- + H_2O \perp H_3O^+ + HOC_6H_4COO^-$	COO^- , Ka ₁	S.	
Ĭ	Q ($HOC_6H_4COO + H_2O + H_3O + OC_6H_5CC$	COO ⁻ , Ka ₁ DO ⁻ , Ka ₂ n initially is filled with air further isothermally and	iriya	
0 O	Q.6	A balloon containing air at 27° C and 1 atm reversibly till the pressure is 4 atm. If the initial	ial diameter of the balloon is 1 m and the pressure a	1 00 1 00	
Х а		each state is proportional to diameter of the			
ac	Q.7		cinic acid (DBSA) taking place according to the	Suhag	
- HEE Download Study Package from	Q.1	following aquation shave first order kinetic			
nq		CH(Br)COOH CHCOOH		aths	
Т Л			+ HBr	Ë	
ad				ses	
		CH(Br)COOH CHCOOH CHCOOH CHCOOH CHCOOH CHCOOH CHCOOH CH(Br)COOH C(Br)COH			
$\overline{\geq}$		respectively, a and $a - x$ be the concentration	The best of the three at 2010 $^{-1}$ time and at any time t, repectively	, <u>v</u>	
ĭ		show that		Те	
H		T_0	<u>a</u>		
ŗ		$\frac{T_0}{3T_0 - 2T_t}$	- a - x		
L	$(\mathbf{l}_{\mathbf{r}})$	If the metric of a manufacture density 0.00 to	100C hy what faster would the notic in the set	-	

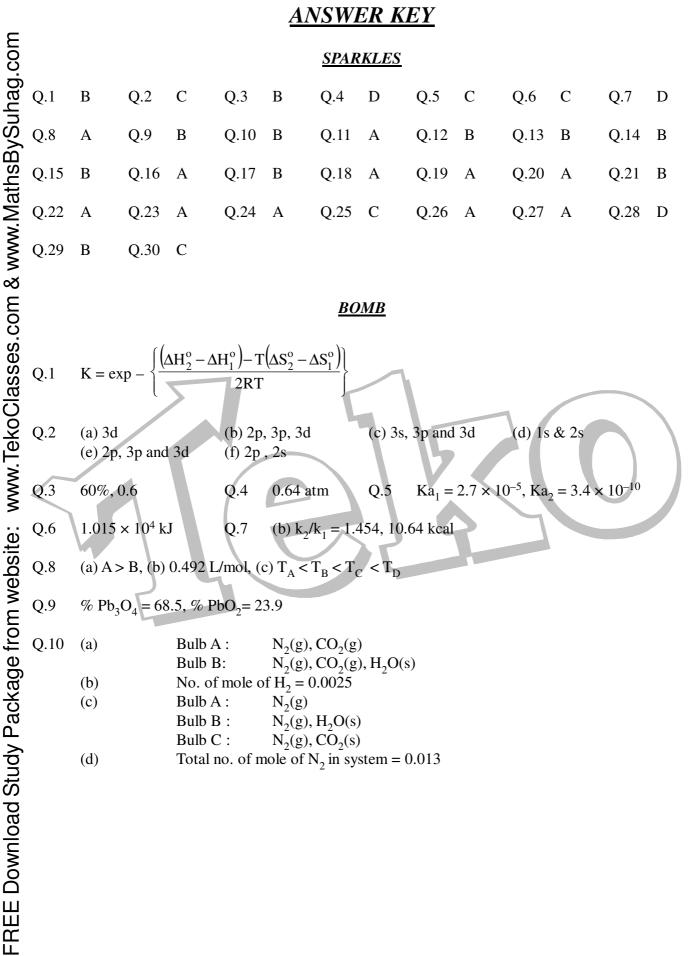
(b) If the rate of a reaction doubles from 0°C to 10°C by what factor would the ratio increase when the temperature increases from 100°C to 110°C and what is the activation energy?

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.


- Out of gases A and B whose molecules are larger? Justify. (a)
- If slope of curve for B is 0.02 atm⁻¹, calculate Van der Waals constant b for gas B. (b)
- Arrange Boyle temperatures (T) for gases A, B, C & D in increasing order. (c)
- A 5.0 gm sample containing Pb_3O_4 , PbO_2 and some inert impurity is dissolved in 250 ml dil. Q.9 HNO_3 solution and 2.7 g of $Na_2C_2O_4$ was added so that all lead converted into Pb^{2+} . A 10 ml \otimes portion of this solution required 8.0 ml, 0.02 M KMnO₄ for titration of excess of oxalate. In an another experiment, 25 ml of solution was taken and excess oxalate was removed by extraction, this required 10 ml of a permanganate solution for oxidation of Pb²⁺ to Pb⁴⁺. 10 ml of this permanganate solution is equivalent to 4.48 ml, **5V** H_2O_2 solution. Calculate mass % of PbO₂ & Pb₃O₄ in the original sample. [At. wt. of Pb = 207] 903


page

с.


The apparatus shown consists of three temperature jacketed 1 litre bulbs connected by stop cocks. Bulb A contains a mixture of $H_2O(g)$, $CO_2(g)$ and $N_2(g)$ at 27°C and a total pressure of 547.2 mm Q.10 0 Hg. Bulb B is empty and is held at a temperature -23° C. Bulb C is also empty and is held at a temperature of -173°C. The stopcocks are closed and the volumes of lines connecting the bulbs is K. Sir), Bhopal Phone zero.

Given: $CO_2(g)$ converted into $CO_2(s)$ at -78° , $N_2(g)$ converted into $N_2(s)$ at $-196^\circ C \& H_2O(g)$ converted into $H_2O(s)$ at 0°C.

- <u>()</u> (a)
- (b)
- The stopcock between A & B is opened and the system is allowed to come to equilibrium. The pressure in A & B is now 228 mmHg. What do bulbs A & B contain? How many moles of H_2O are in system? Both stopcocks are opened and the system is again allowed to equilibrium. The pressure throughout the system is 45.6 mmHg. What do bulbs A, B and C contain? How many moles of N_2 are in the system? (c)
- (d)

