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SHORT REVISION
1. Definition  : Rectangular array of m n  numbers . Unlike determinants it has no value.

A  =  

a a a
a a a

a a a

n

n

m m mn

11 12 1

21 22 2

1 2

......

......
: : : :

......





















          or           

a a a
a a a

a a a

n

n

m m mn

11 12 1

21 22 2

1 2

......

......
: : : :

......



















Abbreviated  as  : A  =   a i j 1    i    m ; 1    j    n, i denotes the row and
j denotes the column is called a matrix of order m × n.

2. Special  Type  Of  Matrices  :
(a) Row Matrix  :A  =  [ a11 , a12 , ...... a1n ] having one row . (1 × n) matrix.(or row vectors)
(b) Column Matrix  : A  =  

a
a

a m

11

21

1

:





















having one column. (m × 1) matrix (or column vectors)
(c) Zero or Null Matrix :    (A =  Om  n)

An  m   n  matrix all whose entries are zero .

A  =  
0 0
0 0
0 0

















   is  a  3    2    null matrix &   B  =  
0 0 0
0 0 0
0 0 0

















is   3    3  null matrix

(d) Horizontal Matrix : A matrix of order  m × n  is a horizontal matrix if n > m.









1152
4321

(e) Verical Matrix : A matrix of order m × n is a vertical matrix if m > n.  


















42
63
11
52

(f) Square  Matrix  :   (Order  n) If number of row  =  number of column      a square matrix.
Note (i) In a square matrix the pair of elements  aij & aj i are called Conjugate Elements .

e.g.
a a
a a

11 12

21 22









(ii) The elements  a11 ,  a22 ,  a33 , ...... ann are called Diagonal Elements . The line along which
the diagonal  elements lie is called " Principal  or  Leading "  diagonal.
The qty       ai i  =  trace of the matrice written as ,    i.e.  tr A

Square  Matrix
Triangular Matrix Diagonal Matrix denote as

ddia (d1 , d2 , ....., dn)  all elements
except the leading diagonal are zero

    diagonal Matrix Unit or Identity Matrix
Note:  Min. number of zeros in a diagonal matrix of order n = n(n – 1)
"It is to be noted that with square matrix there is a corresponding determinant formed by the elements of A in the
same order."
3. Equality Of  Matrices :

Let A  =  [a i j ]   &    B  =  [b i j ]  are equal if ,
(i) both have the same order . (ii) ai j  =  b i j  for each pair of  i & j.

4. Algebra Of  Matrices :

Addition  : A  +  B  =   a bi j i j    where  A & B are of the same type. (same order)
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(a) Addition of matrices is commutative.
i.e. A  +  B  =  B  +  A A = m  n ;       B = m  n

(b) Matrix  addition is associative .
(A + B) + C  =  A + (B + C)       Note :  A ,  B & C  are of the same type.

(c) Additive inverse.
If    A + B  =  O  =  B  +  A A  =  m  n

5. Multiplication  Of  A  Matrix  By  A  Scalar  :

   If A = 














bac
acb
cba

; k A = 














bkakck
akckbk
ckbkak

6. Multiplication  Of  Matrices : (Row by Column)
AB  exists  if ,       A =  m   n       &     B =  n  p

  2  3          3  3
AB  exists ,  but  BA  does not    AB    BA

Note :  In the product  AB ,    
A prefactor
B post factor








A  =  (a1 , a2 , ...... an) & B  =  



















n

2

1

b
:

b
b

1  n         n  1
A B  =  [a1 b1 + a2 b2 + ...... + an bn]

If  A  =  a i j   m  n   &   B  =  b i j    n   p  matrix , then        (A B)i j  =  
r

n




1
  ai r . br j

Properties  Of  Matrix  Multiplication  :
1. Matrix multiplication is not commutative .

A  =  





00
11    ; B  =  





00
01   ;AB  =  





00
01    ; BA  = 





00
11

   AB   BA  (in general)

2. AB  =  





22
11     








11
11

   =   





00
00

    AB  =  O       A   =  O   or   B  =  O

Note: If A and B are two non- zero matrices such that AB = O then A and B are called the divisors of
zero. Also if  [AB] = O  | AB |   | A | | B | = 0  | A | = 0  or | B | = 0 but not the converse.
If A and B are two matrices such that
(i) AB = BA     A and B commute each other
(ii) AB = – BA   A and B anti commute each other

3. Matrix  Multiplication  Is  Associative :
If  A , B & C  are conformable for the product  AB  &  BC,  then

(A . B) . C  =  A . (B . C)
4. Distributivity  :

A B C AB AC
A B C AC BC

( )
( )

  
  




  Provided A, B & C are conformable for respective products

5. POSITIVE  INTEGRAL  POWERS  OF  A  SQUARE  MATRIX  :
For a square matrix A , A2 A = (A A) A  = A (A A)  =  A

3 .
Note that for a unit matrix I of any order ,  Im  =  I  for  all  m    N.
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6. MATRIX POLYNOMIAL :
If    f (x) = a0x

n + a1x
n – 1 + a2x

n – 2 + ......... + anx
0  then we define a matrix polynomial

      f (A) = a0A
n + a1A

n–1 + a2A
n–2 + ..... + anI

n

where A is the given square matrix. If f (A) is the null matrix then A is called the zero or root of the
polynomial f (x).
DEFINITIONS :

(a) Idempotent Matrix : A square matrix is idempotent provided  A2 = A.
Note that An = A   n > 2 , n   N.

(b) Nilpotent Matrix: A square matrix is said to be nilpotent matrix of order m, m   N, if
Am = O , Am–1

   O.
(c) Periodic Matrix : A square matrix is which satisfies the relation AK+1 = A, for some positive integer K,

is a periodic matrix. The period of the matrix is the least value of K for which this holds true.
Note that period of an idempotent matrix is 1.

(d) Involutary Matrix : If A2 = I , the matrix is said to be an involutary matrix.
Note that A = A–1 for an involutary matrix.

7. The Transpose  Of  A  Matrix  :   (Changing rows & columns)
Let  A be any matrix . Then ,  A  =  ai j       of  order    m   n
 AT  or  A   =  [ aj i ]    for  1  i   n   &   1  j   m     of  order    n   m
Properties of Transpose :  If   AT  &  BT  denote the transpose of  A and B ,

(a) (A ± B)T  =  AT  ±  B
T ;  note that  A  &  B  have the same order.

IMP. (b) (A B)T  =  BT  AT A  &  B  are conformable for matrix product AB.
(c) (AT)T  =  A
(d) (k A)T  =  k A

T k  is a scalar .

General  : (A1 , A2 , ...... An)
T   =  An

T  , ....... , AT
2  , AT

1     (reversal law for transpose)
8. Symmetric  &  Skew  Symmetric  Matrix  :

A  square matrix  A  =   a i j   is said to be ,
symmetric if ,

ai j  =  aj i       i  &  j (conjugate  elements are equal) (Note A = AT)

Note: Max. number of distinct entries in a symmetric matrix of order  n  is 
2

)1n(n 
.

and  skew symmetric if ,
 ai j  =   aj i       i  &  j (the pair of conjugate elements are additive inverse of each other)
(Note A = –AT )
Hence   If  A  is  skew  symmetric,  then

ai i  =   ai i    ai i  =  0      i
Thus the digaonal elements of a skew symmetric matrix are all zero , but not the converse .

Properties  Of  Symmetric  &  Skew  Matrix  :
P  1 A  is symmetric  if AT  =  A

A is skew symmetric if AT  =   A
P  2 A  +  A

Tis a symmetric matrix
A    A

T is a skew symmetric matrix .
Consider  (A + AT)T  =  AT  +  (AT)T      =   A

T  +  A   =  A  +  A
T

A  +  A
T  is  symmetric . Similarly we can prove that   A    A

T    is skew symmetric .
P  3 The sum of two symmetric matrix is a symmetric matrix and

the sum of two skew symmetric matrix is a skew symmetric matrix .
Let AT  =  A   ; BT  =  Bwhere  A & B  have the same order .

(A + B)T  =  A + B Similarly we can prove the other
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P  4 If  A & B  are symmetric matrices then ,
(a) A B  +  B A  is a symmetric matrix
(b) AB  BA  is a skew symmetric matrix .

P  5 Every square matrix can be uniquely expressed as a sum of a symmetric and a skew symmetric matrix.

A  =  
1
2

  (A   +  A
T)  +  

1
2

 (A     A
T)

          

         P           Q
Symmetric Skew Symmetric

9. Adjoint  Of  A  Square  Matrix  :

  Let A  =   a i j   =  
















333231

232221

131211

aaa
aaa
aaa

   be a square  matrix  and let the matrix formed by  the

cofactors of [ai j ] in determinant  A    is =  
















333231

232221

131211

CCC
CCC
CCC

.

 Then (adj A)  =  
















332313

322212

312111

CCC
CCC
CCC

V. Imp. Theorem :  A (adj. A) = (adj. A).A = |A| In , If  A be a square matrix of order n.
Note : If  A  and B are non singular square matrices of same order, then
(i) | adj A | = | A |n – 1

(ii) adj (AB)   =   (adj B) (adj A)
(iii) adj(KA)    =   Kn–1 (adj A), K is a scalar
Inverse  Of  A  Matrix (Reciprocal Matrix) :

A  square matrix  A said to be invertible (non singular) if there exists a matrix B such that,
A B  =  I  =  B A

B  is called the inverse (reciprocal) of A and is denoted by  A 1 . Thus
A 1  =  B    A B  =  I  =  B A .

We have , A . (adj A)  =  A  In

A 1  A  (adj A)  =  A 1 In  

In  (adj A)  =  A 1   A  In  A 1  =  

( )
| |

adj A
A

Note : The necessary and sufficient condition for a square matrix A to be invertible is that A  0.
Imp. Theorem :  If A & B are invertible matrices ofthe same order , then  (AB) 1  =  B

 1  A
 1. This is reversal

law for inverse.
Note :(i) If  A  be an invertible matrix ,  then  AT  is also invertible   &   (A

T) 1  =  (A 1)T.
(ii) If  A  is invertible,   (a)     (A 1) 1  =  A  ;  (b)     (Ak) 1  =  (A 1)k = A–k, k    N
(iii) If A is an Orthogonal Matrix.     AAT = I = ATA

(iv) A square matrix is said to be orthogonal if ,  A 1  =  A
T . (v) | A–1 | = |A|

1

SYSTEM  OF  EQUATION  &  CRITERIAN  FOR  CONSISTENCY
GAUSS - JORDAN METHOD

x + y + z  =  6
x  y + z = 2
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2 x + y  z = 1

or 

















zyx2
zyx
zyx

  =  













1
2
6


















112
111
111

   













z
y
x

  =  













1
2
6

A X  =  B  A 1  A  X  =  A 1  B

X  =  A 1  B  =  |A|
B).A.adj(

.

Note  :(1) If  A  0, system is consistent having unique solution
(2) If  A  0   &  (adj A) .  B    O  (Null matrix) , system is consistent having unique non  trivial solution.
(3) If  A  0   &  (adj A) .  B  =  O    (Null matrix) ,system is consistent having trivial solution .
(4) If       A=  0  ,   matrix method fails

If   (adj A) . B  =  null matrix = O If  (adj A) . B    O

Consistent (Infinite solutions) Inconsistent (no solution)
EXERCISE-4

Q1. Given that  A = 












 311
322
221

,  C = 












111
122
112

,  D = 












9
13
10

 and that Cb = D. Solve the matrix equation

Ax = b.
Q2. Find the value of x and y that satisfy the equations.











 

42
03
23

  





xx
yy

 = 











1010
y3y3
33

Q 3. If,  E = 












000
100
010

  and  F = 












010
001
000

  calculate the matrix product EF & FE and show that

E2F + FE2 = E .
Q 4. If A is an orthogonal matrix and B = AP where P is a non singular matrix then show that the matrix

PB–1 is also orthogonal.

Q 5. The matrix,  R(t)  is defined by R(t) = 




 tcostsin

tsintcos . Show that,  R(s) R(t)  R(s + t) .

Q 6. Prove that the product of two matrices, 








2

2

sinsincos
cossincos

& 










2

2

sinsincos
cossincos

 is a null

matrix when  &  differ by an odd multiple of 2


.
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Q 7. If, A =












302
120
201

, then show that the maxtrix A is a root of the polynomial f (x) = x3 – 6x2 + 7x + 2.

Q.8 For a non zero ,  use induction to prove that : (Only for XII CBSE)

(a)

n

00
10
01

















 = 
































n
1nn

2n1nn

00
n0
2

)1n(nn

 ,  for every  n  N

(b) If,  A = 






00
10 ,  then  (aI + bA)n = anI + nan  1 b A,  where I is a unit matrix of order 2,   n  N.

Q9. Find the number of  2 × 2 matrix satisfying
(i)  aij is 1 or –1     ;      (ii)  2

11a  + 2
12a  = 2

21a  + 2
22a  = 2   ;   (iii) a11 a21 + a12 a22 = 0

Q 10. Prove that (AB)T = BT . AT ,  where A & B are conformable for the product AB . Also verify the result

for the matrices,  A = 













21
32

21
  and  B = 



 

321
532

 .

Q 11 Express the matrix 













401
632

521
 as a sum of a lower triangular matrix & an upper triangular matrix with zero

in its leading diagonal. Also Express the matrix as a sum of a symmetric & a skew symmetric matrix.
Q 12. Find the inverse of the matrix :

(i) A = 















100
0cossin
0sincos

; (ii) 













ww1
ww1
111

2

2
 where w is the cube root of unity..

(iii) A = 
















c00
0b0
00a

Q 13. Find the matrix A satisfying the matrix equation,  





23
12  . A . 





35
23  = 





13
42 .

Q 14. A is a square matrix of order n.
l  = maximum number of distinct entries if A is a triangular matrix
m = maximum number of distinct entries if A is a diagonal matrix
p = minimum number of zeroes if A is a triangular matrix
If  l + 5  =  p + 2m,  find the order of the matrix.

Q 15. If A is an idempotent matrix and I is an identity matrix of the same order, find the value of n, Nn ,
such that  ( A + I )n = I + 127 A.

Q.16 If A = 





dc
ba  then prove that value of f and g satisfying the maxtrix equation   A2 + f A + g I = O are

equal to – tr (A) and determinant of A respectively. Given a, b, c, d are non zero reals and

I = 





10
01  ; O = 





00
00 .
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Q17. Matrices A and B satisfy AB = B–1 where B = 



 

02
12 . Find

(i) without finding B–1, the value of K for which KA – 2B–1 + I = O
(ii) Without finding A–1, the matrix X satisfying A–1XA = B (iii) the matrix A, using A–1

Q18. For the matrix  A = 

















433
332

544
 find A–2.

Q19. Given  A  = 












132
142
111

  , B = 





43
32 . Find  P  such that   BPA  = 





010
101

Q 20. Use matrix to solve the following system of equations.

(i)  
6z9y4x
4z3y2x

3zyx





    (ii)  
1zyx2

2zyx
6zyx





    (iii)  
7z4y3x2

4z3y2x
3zyx





    (iv)  
9z4y3x2

4z3y2x
3zyx





EXERCISE-5
Q1. Given A = 





12
12  ; B = 





13
39 . I is a unit matrix of order 2. Find all possible matrix X in the following

cases.
(i) AX = A (ii) XA = I (iii) XB = O  but BX  O.

Q 2. If A & B are square matrices of the same order & A is symmetrical, show that B  AB is also symmetrical.

Q 3. Show that,  






 




1tan
tan1

2

2  
1

1tan
tan1

2

2










 



= 








cossin
sincos .

Q.4 If the matrices A = 





43
21    and  B = 





dc
ba

(a, b, c, d not all simultaneously zero) commute, find the value of bca
bd



. Also show that the

matrix which commutes with A is of the form 






 32

Q 5. If the matrix A is involutary, show that 2
1

(I + A) and 2
1

(I – A) are idempotent and

2
1

(I + A)· 2
1

(I – A)=O.

Q 6. Prove that (i) | adj (adj A) | = 
2)1n(|A|  , where A is a non-singular matrix of order 'n'.

(ii) adj (adj A) = A n2
. A,  where | A | denotes the determinant of co-efficient matrix.

Q 7. Find the product of two matrices  A & B, where  A = 


















111
517

315
 &  B = 













312
123
211

 and use it to

solve the following system of linear equations,
x + y + 2z = 1  ;   3x + 2y + z = 7  ;   2x + y + 3z = 2 .
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Q 8. If A = 





42
21  then, find a non-zero square matrix X of order 2 such that AX = O. Is XA = O.

If  A = 





32
21 ,  is it possible to find a square matrix  X  such that AX = O. Give reasons for it.

Q 9. If  A = 








cossin
sincos

 ; B= 







2cos2sin

2sin2cos
Where 2

0 
  then prove that BAB = A–1. Also

find the least positive value of  for which  B A4  B = A–1.

Q 10. If 





 a1c
ba  is an idempotent matrix. Find the value of f(a), where f(x) = x– x2, when

bc = 1/4. Hence otherwise evaluate a.
Q 11. If A is a skew symmetric matrix and I + A is non singular, then prove that the matrix

B = (I – A)(I + A)–1 is an orthogonal matrix. Use this to find a matrix B given A = 




 05

50 .

Q 12. If    F(x) = 










 

100
0xcosxsin
0xsinxcos

     then show that   F(x). F(y) = F(x + y)

Hence prove that [ F(x) ]–1 = F(– x).

Q 13. If A = 





43
21  ; B = 





01
13  ; C = 





42
21  and X = 






43

21
xx
xx

 then solve the following matrix

equation.
(a) AX = B – I (b) (B – I)X = IC (c) CX = A

Q 14. Determine the values of a and b for which the system 








































1
3
b

z
y
x

a12
985
123

(i) has a unique solution  ; (ii) has no solution  and  (iii)  has infinitely many solutions

Q 15. Let X be the solution set of the equation   Ax = I, where A = 

















433
434
110

 and I is the corresponding

unit matrix and x  N then find the minimum value of    )sin(cos xx ,    R.
Q16. Determine the matrices B and C with integral element such that

A = 










20

11
 = B3 + C3

Q17. If A = 













20

  is an orthogonal matrix, find the values of  ,  , .

Q18.If   A = 







n
mk

l  and mkn l  ; then show that   A2 – (k + n)A + (kn – lm) I = O.Hence find A–1.

Q19. Evaluate     

n

n 1
n
x

n
x1

Lim

















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Q.20 Given matrices A = 











3y1
y2x
1x1

 ; B = 

















13z
323

z33

Obtain x, y and z  if the matrix AB is symmetric.
EXERCISE-6

Q.1 If matrix  A = 
















bac
acb
cba

  where a, b, c are real positive numbers, abc = 1 and AATA = I, then find the

value of   a3 + b3 + c3 . [JEE 2003, Mains-2 out of 60]

Q.2 If A = 










2

2
  and    then  =

(A) 3 (B) 2 (C) 5 (D) 0[JEE 2004  (Screening)]
Q.3 If  M is a 3 × 3 matrix, where MTM = I and det (M) = 1, then prove that det (M – I) = 0.

Q.4 A = 
















bd1
bc1
10a

,  B = 
















hgf
cd0
11a

, U = 
















h
g
f

, V = 
















0
0

a2

.

If  there is vector matrix X, such that AX = U has infinitely many solution, then prove that BX = V cannot
have a unique solution. If afd  0, then prove that BX = V has no solution.

Q.5 A = 












 420
110
001

, I = 












100
010
001

 and A–1 = 



  )dIcAA(
6
1 2

, then the value of c and d are

(A) –6, –11 (B) 6, 11 (C) –6, 11 (D) 6, – 11

Q.6 If  P = 





















2
3

2
1

2
1

2
3

, A = 





10
11  and Q = PAPAPT and x = PTQ2005 P, then x is equal to

(A) 





10
20051 (B) 











3200542005

6015320054

(C) 










321

132
4
1

(D) 










200532

322005
4
1

Q7. If f(x) is a quadratic polynomial and a, b, c are three real and distinct numbers satisfying




































 

















c3c3
b3b3
a3a3

)2(f
)1(f
)1(f

1c4c4
1b4b4
1a4a4

2

2

2

2

2

2

. Given f(x) cuts the x-axis at A and V is the point of mixima.

If AB is any chord which subtends right angle at V, find curve f(x) and area bounded by chord AB and
curve f(x).
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
















123
012
001

A , if U1, U2 and U3 are columns matrices satisfying.

AU1 = 
















0
0
1

, AU2 = 
















0
3
2

, AU3 = 
















1
3
2

 and U is 3 x 3 matrix whose columns are U1, U2, U3 then answer the

following questions.
Q8. The value of |U| is [JEE 2006]

(A) 3 (B) -3 (C) 3/2 (D) 2
Q9. The sum of the elements of U-1 is [JEE 2006]

(A) -1 (B) 0 (C) 1 (D) 3

Q10. The value of  023 U
















0
3
2

is [JEE 2006]

(A) 5 (B) 5/2 (C) 4 (D) 3/2

ANSWER  SHEET
EXERCISE-4

Q.1 x1 = 1,  x2 = – 1,  x3 = 1 Q.2  x = 2
3

,  y = 2 Q.3  EF = 












000
010
001

 ,  FE = 












100
010
000

Q.9    8 Q.11 












 401
032
001

 + 











000
600

520
; 















432
332

221
 + 















033
300

300

Q.12 (i) 















100
0cossin
0sincos

, (ii)
1
3 














2

2

ww1
ww1
111

, (iii)  























c
100

0
b
10

00
a
1

Q.13  










4270
2548

19
1

Q.14 4 Q.15 n = 7 Q.16 f = – (a + d) ; g = ad – bc

Q.17 (i) K = 2, (ii) X = B, (iii) A = 







24
22

4
1

Q.18 

















25321
13010
19417

     Q.19  










553
774

Q.20 (i)  x = 2, y = 1, z = 0 ; (ii) x = 1,  y = 2,  z = 3  ;
(iii)  x = 2 + k,  y = 1  2k,  z = k   where  k  R ; (iv)  inconsistent, hence no solution
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EXERCISE-5
Q.1 (i) X = 





 b21a22
ba  for a, b  R ; (ii) X does not exist. ;

(iii) X = 








c3c
a3a a, c  R  and 3a + c  0 ;   3b + d  0

Q.4 1 Q.7 x = 2,  y = 1,  z =  1 Q.8  X = 



 

dc
d2c2 , where c, d  R – {0}, NO

Q.9  3
2

Q.10   f (a) = 1/4, a = 1/2 Q.11 







125
512

13
1

Q.13(a) X= 









 

2
2
5

33
, (b) X = 





 21
21 , (c) no solution

Q.14   (i) a   – 3 , b  R ;  (ii) a = – 3 and  b  1/3 ; (iii) a = –3 , b = 1/3

Q.15  2 Q.16 B = 





10
10  and  C = 








10
01

Q.17 2
1

   , 6
1

  , 3
1

 Q.18  










 k

mn
mkn

1
ll

Q.19 







 xcosxsin

xsinxcos

Q.20 







 22,

3
2,

3
24

, 







 22,

3
2,

3
24

, (3, 3, – 1)

EXERCISE-6

Q.1 4 Q.2 A Q.5 C Q.6 A Q7. 3
125

 sq. units Q.8 A

Q9. B Q10. A


