

 $A = m \times n$

 $\mathbf{B} = \mathbf{m} \times \mathbf{n}$

;

Note : A, B & C are of the same type.

 $A = m \times n$

POSITIVE INTEGRAL POWERS OF A SQUARE MATRIX :

For a square matrix A, $A^2 A = (AA) A = A (AA) = A^3$.

Note that for a unit matrix I of any order , $I^m = I$ for all $m \in N$.

6. **MATRIX POLYNOMIAL:**

If $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n x^0$ then we define a matrix polynomial $f(A) = a_0 A^n + a_1 A^{n-1} + a_2 A^{n-2} + \dots + a_n^n I^n$

where A is the given square matrix. If f (A) is the null matrix then A is called the zero or root of the

Idempotent Matrix : A square matrix is idempotent provided $A^2 = A$.

Note that $A^n = A \forall n \ge 2$, $n \in N$.

- Nilpotent Matrix: A square matrix is said to be nilpotent matrix of order m, $m \in N$, if $A^m = \mathbf{O}, A^{m-1} \neq \mathbf{O}.$
- **b.** MATRIA POLITI If $f(x) = a_0 x^n + a_1$ $f(A) = a_0 A^n + a_1$ $f(A) = a_0 A^{n-1} + a_1$ **DEFINITIONS : DEFINITIONS : Note that A^n = A Note that A^n = A** (a) $(A^{m-1} \neq 0)$ (c) **Periodic Matrix :** is a periodic matrix **Note that period a %** (d) **Involutary Matrix Note that A = A^{-1} %** (d) **Involutary Matrix Note that A = A^{-1} %** (d) **Involutary Matrix Note that A = A^{-1} %** (d) **Involutary Matrix %** (d) **Involutary Matrix %** (d) **Involutary Matrix %** (d) **K %** (e) (A **%** (for (A') **Periodic Matrix :** A square matrix is which satisfies the relation $A^{K+1} = A$, for some positive integer K, is a periodic matrix. The period of the matrix is the least value of K for which this holds true. Note that period of an idempotent matrix is 1.

Involutary Matrix : If $A^2 = I$, the matrix is said to be an involutary matrix. Note that $A = A^{-1}$ for an involutary matrix.

- The Transpose Of A Matrix : (Changing rows & columns)
 - Let A be any matrix. Then, $A = a_{ij}$ of order $m \times n$

 A^{T} or $A' = [a_{ij}]$ for $1 \le i \le n \& 1 \le j \le m$ of order $n \times m$

Properties of Transpose : If $A^T & B^T$ denote the transpose of A and B,

 $(A \pm B)^{T} = A^{T} \pm B^{T}$; note that A & B have the same order.

 $(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$ A & B are conformable for matrix product AB.

- $(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}$
- $(\mathbf{k}\mathbf{A})^{\mathrm{T}} = \mathbf{k}\mathbf{A}^{\mathrm{T}}$ k is a scalar.

 $(A_1, A_2, \dots, A_n)^T = A_n^T, \dots, A_2^T, A_1^T$ (reversal law for transpose) Symmetric & Skew Symmetric Matrix :

A square matrix $A = [a_{ij}]$ is said to be,

(conjugate elements are equal) (Note $\mathbf{A} = \mathbf{A}^{T}$) $a_{ij} = a_{ij} \quad \forall i \& j$

Note: Max. number of distinct entries in a symmetric matrix of order n is $\frac{n(n+1)}{2}$

and skew symmetric if,

 $a_{ij} = -a_{ji} \quad \forall i \& j \text{ (the pair of conjugate elements are additive inverse of each other)}$

Hence If A is skew symmetric, then

$$a_{ij} = -a_{ij} \implies a_{ij} = 0 \quad \forall i$$

Thus the digaonal elements of a skew symmetric matrix are all zero, but not the converse. Properties Of Symmetric & Skew Matrix : $A^{T} = A$

A is skew symmetric if $A^{T} = -A$

P-2 A + A^T is a symmetric matrix

 $A - A^{T}$ is a skew symmetric matrix .

Consider
$$(A + A^{T})^{T} = A^{T} + (A^{T})^{T} = A^{T} + A = A + A^{T}$$

 $A + A^{T}$ is symmetric. Similarly we can prove that $A - A^{T}$ is skew symmetric.

The sum of two symmetric matrix is a symmetric matrix and

the sum of two skew symmetric matrix is a skew symmetric matrix.

 $A^{T} = A$; $B^{T} = B$ where A & B have the same order.

> $(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A} + \mathbf{B}$ Similarly we can prove the other

P-4 If A & B are symmetric matrices then,

$$A = \frac{1}{2} (A + A^{T}) + \frac{1}{2} (A - A^{T})$$

$$P \qquad Q$$

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
P-4 If A& B are symmetric matrix
(a) AB = BA is a skew symmetric matrix
(b) AB = C is a skew symmetric matrix

$$A = \frac{1}{2} \left((A + A^{2}) + \frac{1}{2} \left((A - A^{2}) - \frac{1}{2} \right) \right)$$
Symmetric Skew Symmetric
Symmetric Skew Symmetric
9. Adjoint Of A Square Matrix:
Let $A = \begin{bmatrix} a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ be a square matrix and let the matrix formed by the
for factors of $[a_{11}]$ in determinant $|A|$ is $= \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{33} & C_{32} & C_{33} \end{bmatrix}$.
W. Imp. Theorem: $A(A) = [a(A) = (A + A) = (A +$

$$Ij A) = A^{-1} |A| I_n \qquad \therefore \qquad A^{-1} = \frac{(adj A)}{|A|}$$

Note :(i) If A be an invertible matrix, then
$$A^T$$
 is also invertible & $(A^T)^{-1} = (A^{-1})^T$.

$$x + y + z = c$$

x - y + z = 2

 $\begin{pmatrix} x+y+z \\ x-y+z \\ 2x+y-z \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \\ 1 \end{pmatrix}$ or $\begin{aligned} & \begin{array}{l} \begin{array}{l} \begin{array}{l} \left(\begin{array}{c} 2x + y - z \end{array} \right) = \begin{pmatrix} 1 \\ 1 \end{array} \right) \\ \left(\begin{array}{c} 2x + y - z \end{array} \right) = \begin{pmatrix} 1 \\ 1 \end{array} \right) \\ \left(\begin{array}{c} x \\ y \\ z \end{array} \right) = \begin{pmatrix} 6 \\ 2 \\ 1 \end{array} \right) \\ & \begin{array}{c} AX = B \end{array} \xrightarrow{} \begin{array}{c} A^{-1} A X = A^{-1} B \\ & \begin{array}{c} X = A^{-1} B \end{array} \\ & \begin{array}{c} X = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} X = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} X = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} X = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} X = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} X = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} A X = B \end{array} \\ & \begin{array}{c} X = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A) B}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A)}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A)}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A)}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A)}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A)}{|A|} \end{array} \\ \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A)}{|A|} \end{array} \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A)}{|A|} \end{array} \\ & \begin{array}{c} Y = B^{-1} B = \frac{(adj, A)}{|A|} \end{array} \\ \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A)}{|A|} \end{array} \\ \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A)}{|A|} \end{array} \\ \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A)}{|A|} \end{array} \\ \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A)}{|A|} \end{array} \\ \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A)}{|A|} \end{array} \\ \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A)}{|A|} \end{array} \\ \\ & \begin{array}{c} Y = A^{-1} B = \frac{(adj, A)}{|A|} \end{array} \\ \\ & \begin{array}{c}$ Note :(1) matrix when $\theta \& \phi$ differ by an odd multiple of $\frac{\pi}{2}$.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com We determine the set of the polynomial $f(x) = x^{1} - 6x^{2} + 7x + 2$. We have that the maxtrix A is a root of the polynomial $f(x) = x^{1} - 6x^{2} + 7x + 2$. We have that the maxtrix A is a root of the polynomial $f(x) = x^{1} - 6x^{2} + 7x + 2$. We have that the maxtrix A is a root of the polynomial $f(x) = x^{1} - 6x^{2} + 7x + 2$. We have that the maxtrix A is a root of the polynomial $f(x) = x^{1} - 6x^{2} + 7x + 2$. We have that the maxtrix A is a root of the polynomial $f(x) = x^{1} - 6x^{2} + 7x + 2$. We have that the maxtrix A is a root of the polynomial $f(x) = x^{1} - 6x^{2} + 7x + 2$. We have that the mathematic of $2x^{2}$ and x^{2} . We have that the mathematic of $2x^{2}$ and x^{2} . We have that the mathematic of $2x^{2}$ and x^{2} is $x^{2} = 2^{2}$; (iii) $a_{11} a_{21} + a_{12} a_{22} = 0$. We have that $(AB)^{2} \equiv B^{2} \cdot A^{2}$, where $A \otimes B$ are conformable for the product AB. Also verify the result for the matrices $A = \left[\frac{1}{2} - \frac{2}{3}\right]$ and $B = \left[\frac{2}{1} - \frac{3}{2} - \frac{5}{3}\right]$. We have that $(AB)^{2} \equiv B^{2} - A^{2}$, where $A \otimes B$ are conformable for the product AB. Also verify the result for the matrices $A = \left[\frac{1}{2} - \frac{2}{3}\right]$ and $B = \left[\frac{2}{1} - \frac{3}{2} - \frac{5}{3}\right]$. We have that the inverse of the matrix: We have that $(AB)^{2} \equiv B^{2} - \frac{6}{3} - \frac{1}{3}$ are assumed a low certain quatermatrix & an upper triangular matrix with zero in its leading diacomal. Also Express the matrix as a sum of a symmetric a also symmetric matrix. We have a summer triangular matrix is $a^{2} = a^{2} - a^{2} -$ Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

(i)
$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix};$$
 (ii) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & w & w^2 \\ 1 & w^2 & w \end{bmatrix}$ where w is the cube root of unity.
(iii) $A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & a \end{bmatrix}$

 $\mathbf{I} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}; \mathbf{O} = \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix}$

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySubag.com Q 8. If $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$, is it possible to find a non-zero square matrix X of order 2 such that AX = 0. Is XA = 0. If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$; $B = \begin{bmatrix} \cos 2\beta & \sin 2\beta \\ \sin 2\beta & -\cos 2\beta \end{bmatrix}$ Where $0 < \beta < \frac{\pi}{2}$ then prove that BAB = A⁻¹. Also find the least positive value of α for which B A⁺ B = A⁺¹. Q 10. If $\begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$ is an idempotent matrix. Find the value of f(a), where $f(x) = x - x^2$, when $b \in -1/4$. Hence otherwise evaluate a. Q 10. If $\begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$ is an idempotent matrix and 1 + A is non singular, then prove that the matrix B = $(1 - \Lambda)(1 + \Lambda)^{-1}$ is an orthogonal matrix. Use this to find a matrix B given $A = \begin{bmatrix} 0 & 5 \\ -5 & 0 \end{bmatrix}$. Q 12. If $F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ 0 & 0 \end{bmatrix}$ then show that F(x). F(y) = F(x + y)Hence prove that $[F(x)]^{-1} = F(-x)$. Q 13. If $A = \begin{bmatrix} A^{-2} & 3 \\ -3 \end{bmatrix} + B = \begin{bmatrix} 7 & 1 \\ 0 \end{bmatrix} = C = \begin{bmatrix} 1 & 2 \\ -4 \end{bmatrix}$ and $X = \begin{bmatrix} x & -x \\ x_x & x_4 \end{bmatrix}$ then solve the following matrix: cipation (a) $AX = \beta - 1$ (b) $(\beta - 1)X = 1C$ (c) CX = A(i) has a unique solution s(ii) has no solution and (iii) has infinitely many solutions Q 14. Determine the values of a and b for which the system $\begin{bmatrix} 3 & -2 & -9 \\ 2 & -9 & -9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ z \\ -1 \end{bmatrix}$ (i) has a unique solution s(ii) has no solution and (iii) has infinitely many solutions Q 15. Let X be the solution set of the equation $A^x = I$, where $A = \begin{bmatrix} 0 & 1 & -1 \\ 3 & -3 & 4 \end{bmatrix}$ and I is the corresponding unit matrix and $x \subseteq N$ then find the minimum value of $\sum (\cos^x A + \sin^x A)$, $\theta \in \mathbb{R}$. Q (16. Determine the matrices B and C with integral element such that $A = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} = B^3 + C^3$ Q (18. If $A = \begin{bmatrix} x & m \\ A & n \\ T & n \end{bmatrix}$ and $n \neq m$; then show that $A^2 - (k + n)A + (kn - lm) I = O$. Hence find A^{-1} . Q (19. Evaluate $\lim_{k \to \infty} \begin{bmatrix} x & n \\ x & 1 \end{bmatrix}$ B an orthogonal matrix, find the values of α , β , γ . Q (19. Evaluate $\lim_{k \to \infty} \begin{bmatrix} 1 & \frac{x}{n} \\ x & 1 \end{bmatrix}$ Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com Successful People Replane the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

EXERCISE-5

