1. Definition : Rectangular array of $m n$ numbers. Unlike determinants it has no value.

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots \ldots . & a_{1 n} \\
a_{21} & a_{22} & \ldots \ldots . & a_{2 n} \\
: & \vdots & : & : \\
a_{m 1} & a_{m 2} & \ldots \ldots & a_{m n}
\end{array}\right] \quad \text { or } \quad\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots \ldots . & a_{1 n} \\
a_{21} & a_{22} & \ldots \ldots . & a_{2 n} \\
\vdots & \vdots & : & \vdots \\
a_{m 1} & a_{m 2} & \ldots \ldots & a_{m n}
\end{array}\right)
$$

Abbreviated as : $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] 1 \leq \mathrm{i} \leq \mathrm{m} ; 1 \leq \mathrm{j} \leq \mathrm{n}$, i denotes the row and j denotes the column is called a matrix of order $m \times n$.
2. Special Type Of Matrices :
$\begin{array}{ll}\text { (a) Row Matrix : } A=\left[a_{11}, a_{11}, a_{21} \ldots\right. & \left.a_{1 n}\right] \quad \text { having one row. }(1 \times n) \text { matrix.(or row vectors) } \\ \text { (b) Column Matrix : } \quad A= & \text { having one column. }(\mathrm{m} \times 1) \text { matrix (or column vectors) }\end{array}$
(c) Zero or Null Matrix : $\left(A=\dot{O}_{m \times n}\right)$

An $\mathrm{m} \times \mathrm{n}$ matrix all whose entrides are zero .
$A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$ is a 3×2 null matrix $\left.\& B=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\right]$ is 3×3 null matrix
(d) Horizontal Matrix : A matrix of order $\mathrm{m} \times \mathrm{n}$ is a horizontal matrix if $\mathrm{n}>\mathrm{m}$.
(e) Verical Matrix : A matrix of order $m \times n$ is a vertical matrix if $m>n$.
(f) Square Matrix : (Order \mathbf{n}) If number of row $=$ number of column $3^{3} \Rightarrow 6$ a square matrix.

Note (i) In a square matrix the pair of elements $\mathrm{a}_{\mathrm{ij}} \& \mathrm{a}_{\mathrm{j} \mathrm{i}}$ are called Conjugate Elements .
(ii) The elements $\mathrm{a}_{11}, \mathrm{a}_{22}, \mathrm{a}_{33}, \ldots \ldots . \mathrm{a}_{\mathrm{n} \mathrm{n}}$ are called Diagonal Elements . The line along which
the diagonal elements lie is called " Principal or Leading" diagonal.
The qty $\quad \sum \mathrm{a}_{\mathrm{i} \mathrm{i}}=$ trace of the matrice written as, i.e. $\mathrm{t}_{\mathrm{r}} \mathrm{A}$

$$
\text { e.g. }\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

Square Matrix
Triangular Matrix
Diagonal Matrix denote as
$\mathrm{d}_{\text {dia }}\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots . ., \mathrm{d}_{\mathrm{n}}\right)$ all elements except the leading diagonal are zero diagonal Matrix Unit or Identity Matrix
Note: Min. number of zeros in a diagonal matrix of order $\mathrm{n}=\mathrm{n}(\mathrm{n}-1)$
"It is to be noted that with square matrix there is a corresponding determinant formed by the elements of A in the same order."
3. Equality Of Matrices:

Let $A=\left[a_{i j}\right] \& B=\left[b_{i j}\right]$ are equal if,
(i) both have the same order.
(ii) $\mathrm{a}_{\mathrm{ij}}=\mathrm{b}_{\mathrm{ij}}$ for each pair of $\mathrm{i} \& \mathrm{j}$.
4. Algebra Of Matrices:

Addition : $A+B=\left[a_{i j}+b_{i j}\right]$ where $A \& B$ are of the same type. (same order)

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
(a) Addition of matrices is commutative.
i.e. $\quad \mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$

$$
\mathrm{A}=\mathrm{m} \times \mathrm{n} \quad ; \quad \mathrm{B}=\mathrm{m} \times \mathrm{n}
$$

(b) Matrix addition is associative.

$$
(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})
$$

(c) Additive inverse.

$$
\text { If } \mathrm{A}+\mathrm{B}=\mathbf{O}=\mathrm{B}+\mathrm{A}
$$

5. Multiplication Of A Matrix By A Scalar :

$$
\text { If } \quad \mathrm{A}=\left[\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~b} & \mathrm{c} & \mathrm{a} \\
\mathrm{c} & \mathrm{a} & \mathrm{~b}
\end{array}\right] \quad ; \quad \mathrm{kA}=\left[\begin{array}{lll}
\mathrm{ka} & \mathrm{~kb} & \mathrm{kc} \\
\mathrm{~kb} & \mathrm{kc} & \mathrm{ka} \\
\mathrm{kc} & \mathrm{ka} & \mathrm{~kb}
\end{array}\right]
$$

$$
\mathrm{A}=\mathrm{m} \times \mathrm{n}
$$

Note: A, B \& C are of the same type.
6. Multiplication Of Matrices: (Row by Column)
AB exists if,

$$
\begin{array}{rlr}
\mathrm{A}=\mathrm{m} \times \mathrm{n} \\
2 \times 3
\end{array} \quad \& \quad \mathrm{~B}=\mathrm{n} \times \mathrm{p}, \begin{aligned}
& 3 \times 3
\end{aligned}
$$

$A B$ exists, but $B A$ does not $\Rightarrow A B \neq B A$
Note : In the product $A B, \quad\left\{\begin{array}{l}A=\text { prefactor } \\ B=\text { post factor }\end{array}\right.$

Note: If A and B are two non- zero matrices such that $A B=\mathbf{O}$ then A and B are called the divisors of zero. Also if $[\mathrm{AB}]=\mathbf{O} \Rightarrow|\mathrm{AB}| \Rightarrow|\mathrm{A}||\mathrm{B}|=0 \Rightarrow|\mathrm{~A}|=0$ or $|\mathrm{B}|=0$ but not the converse.
If A and B are two matrices such that
(i) $\mathrm{AB}=\mathrm{BA} \Rightarrow \mathrm{A}$ and B commute each other
(ii) $\mathrm{AB}=-\mathrm{BA} \Rightarrow \mathrm{A}$ and B anti commute each other

3. Matrix Multiplication Is Associative :

If $A, B \& C$ are conformable for the product $A B \& B C$, then

$$
(\mathrm{A} \cdot \mathrm{~B}) \cdot \mathrm{C}=\mathrm{A} \cdot(\mathrm{~B} \cdot \mathrm{C})
$$

4. Distributivity :
$\left.\begin{array}{l}A(B+C)=A B+A C \\ (A+B) C=A C+B C\end{array}\right]$ Provided A,B \& C are conformable for respective products
5. Positive Integral Powers Of A Square Matrix :

For a square matrix $\mathrm{A}, \mathrm{A}^{2} \mathrm{~A}=(\mathrm{AA}) \mathrm{A}=\mathrm{A}(\mathrm{AA})=\mathrm{A}^{3}$.
Note that for a unit matrix I of any order, $\mathrm{I}^{\mathrm{m}}=\mathrm{I}$ for all $\mathrm{m} \in \mathrm{N}$.
Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

If $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+$ \qquad $+a_{n} x^{0}$ then we define a matrix polynomial $f(A)=a_{0} A^{n}+a_{1} A^{n-1}+a_{2} A^{n-2}+$ \qquad $+a_{n}{ }^{\text {n }}$
where A is the given square matrix. If $f(A)$ is the null matrix then A is called the zero or root of the polynomial $\mathrm{f}(\mathrm{x})$.

DEFINITIONS :

(a) Idempotent Matrix : A square matrix is idempotent provided $\mathrm{A}^{2}=\mathrm{A}$.

Note that $\mathbf{A}^{\mathrm{n}}=\mathrm{A} \forall \mathbf{n} \geq \mathbf{2}, \mathbf{n} \in \mathbf{N}$.
(b) Nilpotent Matrix: A square matrix is said to be nilpotent matrix of order $\mathrm{m}, \mathrm{m} \in \mathrm{N}$, if $\mathrm{A}^{\mathrm{m}}=\mathbf{O}, \mathrm{A}^{\mathrm{m}-1} \neq \mathbf{O}$.
(c) Periodic Matrix : A square matrix is which satisfies the relation $\mathrm{A}^{\mathrm{K}+1}=\mathrm{A}$, for some positive integer $\mathrm{K}, \varnothing_{\infty}$ is a periodic matrix. The period of the matrix is the least value of K for which this holds true.
Note that period of an idempotent matrix is 1.
(d) Involutary Matrix : If $\mathrm{A}^{2}=\mathrm{I}$, the matrix is said to be an involutary matrix.

Note that $A=A^{-1}$ for an involutary matrix.
7. The Transpose Of A Matrix : (Changing rows \& columns)

Let A be any matrix. Then, $A=a_{i j}$ of order $m \times n$
$\Rightarrow \quad \mathrm{A}^{\mathrm{T}}$ or $\mathrm{A}^{\prime}=\left[\mathrm{a}_{\mathrm{ji}}\right]$ for $1 \leq \mathrm{i} \leq \mathrm{n} \quad \& \quad 1 \leq \mathrm{j} \leq \mathrm{m}$ of order $\mathrm{n} \times \mathrm{m}$
Properties of Transpose: If $A^{T} \& B^{T}$ denote the transpose of A and B,
(a) $(A \pm B)^{T}=A^{T} \pm B^{T}$; note that $A \& B$ have the same order.

IMP. (b) $\quad(A B)^{T}=B^{T} A^{T} \quad A \& B$ are conformable for matrix product $A B$.
(c) $\quad\left(A^{1}\right)^{T}=A$
(d) $\quad(\mathrm{kA})^{\mathrm{T}}=\mathrm{k} \mathrm{A}^{\mathrm{T}} \quad \mathrm{k}$ is a scalar .

General : $\quad\left(A_{1}, A_{2}, \ldots . . A_{n}\right)^{T}=A_{n}^{T}, \ldots \ldots . . A_{2}^{T}, A_{1}^{T} \quad$ (reversal law for transpose)
8. Symmetric \& Skew Symmetric Matrix :

A square matrix $A=\left[a_{i j}\right]$ is said to be,
symmetric if,
$\mathrm{a}_{\mathrm{i}, \mathrm{j}}=\mathrm{a}_{\mathrm{j} \mathrm{i}} \quad \forall \mathrm{i} \& \mathrm{j} \quad$ (conjugate elements are equal) (Note $\mathbf{A}=\mathbf{A}^{\mathrm{T}}$)
Note: Max. number of distinct entries in a symmetric matrix of order n is $\frac{n(n+1)}{2}$. and skew symmetric if,
$\mathrm{a}_{\mathrm{ij}}=-\mathrm{a}_{\mathrm{ji}} \quad \forall \mathrm{i} \& \mathrm{j}$ (the pair of conjugate elements are additive inverse of each other)
(Note $A=-A^{T}$)
Hence If A is skew symmetric, then

$$
\mathrm{a}_{\mathrm{i} \mathrm{i}}=-\mathrm{a}_{\mathrm{ii}} \Rightarrow \quad \mathrm{a}_{\mathrm{ii}}=0 \quad \forall \quad \mathrm{i}
$$

Thus the digaonal elements of a skew symmetric matrix are all zero, but not the converse .
Properties Of Symmetric \& Skew Matrix :
$\mathbf{P}-1 \quad \mathrm{~A}$ is symmetric if $\quad \mathrm{A}^{\mathrm{T}}=\mathrm{A}$
A is skew symmetric if $\quad A^{T}=-A$
$\mathbf{P}-2 \quad A+A^{T}$ is a symmetric matrix
$A-A^{T}$ is a skew symmetric matrix .
Consider $\left(A+A^{T}\right)^{T}=A^{T}+\left(A^{T}\right)^{T}=A^{T}+A=A+A^{T}$
$A+A^{T}$ is symmetric. Similarly we can prove that $A-A^{T}$ is skew symmetric .
$\mathbf{P}-3$ The sum of two symmetric matrix is a symmetric matrix and
the sum of two skew symmetric matrix is a skew symmetric matrix .
Let $\quad A^{T}=A ; \quad B^{T}=B$ where $A \& B$ have the same order .

$$
(\mathbf{A}+\mathbf{B})^{\mathrm{T}}=\mathbf{A}+\mathbf{B} \quad \text { Similarly we can prove the other }
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
P-4 If A\&B are symmetric matrices then,
(a) $\mathrm{AB}+\mathrm{BA}$ is a symmetric matrix
(b) $\mathrm{AB}-\mathrm{BA}$ is a skew symmetric matrix .

P - 5 Every square matrix can be uniquely expressed as a sum of a symmetric and a skew symmetric matrix.

$$
\mathrm{A}=\frac{1}{2} \underbrace{\left(\mathrm{~A}+\mathrm{A}^{\mathrm{T}}\right)}_{\mathrm{P}}+\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\mathrm{T}}\right)
$$

9. Adjoint Of A Square Matrix :

Let $A=\left[a_{i j}\right]=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$ be a square matrix and let the matrix formed by the
cofactors of $\left[\mathrm{a}_{\mathrm{ij}}\right]$ in determinant $|\mathrm{A}|$ is $=\left(\begin{array}{lll}\mathrm{C}_{11} & \mathrm{C}_{12} & \mathrm{C}_{13} \\ \mathrm{C}_{21} & \mathrm{C}_{22} & \mathrm{C}_{23} \\ \mathrm{C}_{31} & \mathrm{C}_{32} & \mathrm{C}_{33}\end{array}\right)$.
Then $(\operatorname{adj} A)=\left(\begin{array}{lll}C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33}\end{array}\right)$
V. Imp. Theorem. $A(\operatorname{adj} . A)=(\operatorname{adj} . A) \cdot A=|A| I_{n}$, If A be a square matrix of order n.

Note : If A and B are non singular square matrices of same order, then
(i)
$|\operatorname{adj} \mathrm{A}|=|A|^{\mathrm{n}-1}$
(ii) $\operatorname{adj}(A B)=(\operatorname{adj} B)(\operatorname{adj} A)$
(iii) $\operatorname{adj}(K A)=K^{n-1}(\operatorname{adj} A), K$ is a scalar

Inverse Of A Matrix (Reciprocal Matrix) :
A square matrix A said to be invertible (non singular) if there exists a matrix B such that,

$$
\mathrm{AB}=\mathrm{I}=\mathrm{BA}
$$

B is called the inverse (reciprocal) of A and is denoted by A^{-1}. Thus

$$
A^{-1}=B \Leftrightarrow A B=I=B A
$$

We have,

$$
\begin{aligned}
& \text { A. }(\operatorname{adj} A)=|A| I_{n} \\
& A^{-1} A(\operatorname{adj} A)=A^{-1} I_{n}|A| \\
& I_{n}(\operatorname{adj} A)=A^{-1} \quad|A| I_{n} \quad \therefore \quad A^{-1}=\frac{(\operatorname{adj} A)}{|A|}
\end{aligned}
$$

Note : The necessary and sufficient condition for a square matrix A to be invertible is that $|A| \neq 0$.
law for inverse.
Note:(i) If A be an invertible matrix, then A^{T} is also invertible \& $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

$$
2 x+y-z=1
$$

www.MathsBySuhag.com

(2) If $|\mathrm{A}| \neq 0 \&(\operatorname{adj} \mathrm{~A}) . \mathrm{B} \neq \mathbf{O}$ (Null matrix), system is consistent having unique non-trivial solution.

(3) If $|A| \neq 0 \&(\operatorname{adj} A) . B=\mathbf{O}$ (Null matrix), system is consistent having trivial solution.

(4) If $|A|=0$, matrix method fails

$$
\text { If }(\operatorname{adjA}) \cdot \mathrm{B}=\text { null matrix }=\mathbf{O} \quad \text { If }(\operatorname{adj} \mathrm{A}) \cdot \mathrm{B} \neq \mathbf{O}
$$

Consistent (Infinite solutions) Inconsistent (no solution)
Given that $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 2 & 3 \\ 1 & -1 & 3\end{array}\right], \mathrm{C}=\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1\end{array}\right], \mathrm{D}=\left[\begin{array}{c}10 \\ 13 \\ 9\end{array}\right]$ and that $\mathrm{Cb}=\mathrm{D}$. Solve the matrix equation
$\mathrm{Ax}=\mathrm{b}$.

$$
\begin{aligned}
& \left(\begin{array}{c}
\left.\begin{array}{c}
x+y+z \\
x-y+z \\
2 x+y-z
\end{array}\right) \\
=\left(\begin{array}{l}
6 \\
2 \\
1
\end{array}\right) \\
\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1 \\
2 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
6 \\
2 \\
1
\end{array}\right) \\
A X=B \quad \Rightarrow \quad A^{-1} A X=A^{-1} B \\
X=A^{-1} B=\frac{(\text { adj. A).B }}{|A|} .
\end{array} .\right.
\end{aligned}
$$

Note :(1) If $|A| \neq 0, \quad$ system is consistent having unique solution

Q2. Find the value of x and y that satisfy the equations.

$$
\left[\begin{array}{cc}
3 & -2 \\
3 & 0 \\
2 & 4
\end{array}\right]\left[\begin{array}{ll}
y & y \\
\mathrm{x} & \mathrm{x}
\end{array}\right]=\left[\begin{array}{cc}
3 & 3 \\
3 \mathrm{y} & 3 \mathrm{y} \\
10 & 10
\end{array}\right]
$$ If, $E=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$ and $F=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ calculate the matrix product $E F \& F E$ and show that $\mathrm{E}^{2} \mathrm{~F}+\mathrm{FE}^{2}=\mathrm{E}$.

Q 4. If A is an orthogonal matrix and $\mathrm{B}=\mathrm{AP}$ where P is a non singular matrix then show that the matrix PB^{-1} is also orthogonal.
Q 5. The matrix, $R(t)$ is defined by $R(t)=\left[\begin{array}{cc}\operatorname{cost} & \sin t \\ -\sin t & \operatorname{cost}\end{array}\right]$. Show that, $R(s) R(t) \equiv R(s+t)$.
Q 6. Prove that the product of two matrices, $\left[\begin{array}{cc}\cos ^{2} \theta & \sin \theta \cos \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right] \&\left[\begin{array}{cc}\cos ^{2} \phi & \sin \phi \cos \phi \\ \cos \phi \sin \phi & \sin ^{2} \phi\end{array}\right]$ is a null $\stackrel{\circ}{\varrho}$ matrix when $\theta \& \phi$ differ by an odd multiple of $\frac{\pi}{2}$.
$\underset{\sim}{\mathbb{O}} \mathrm{Q} .8$ For a non zero λ, use induction to prove that : (Only for XII CBSE)

(b) If, $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, then $(a I+b A)^{n}=a^{n} I+n a^{n-1} b A$, where I is a unit matrix of order $2, \forall n \in N$.
Q9. Find the number of 2×2 matrix satisfying
(i) a_{ij} is 1 or -1 ;
(ii) $a_{11}^{2}+a_{12}^{2}=a_{21}^{2}+a_{22}^{2}=2$;
(iii) $a_{11} a_{21}+a_{12} a_{22}=0$

Q 10. Prove that $(A B)^{T}=B^{T} . A^{T}$, where $A \& B$ are conformable for the product $A B$. Also verify the result
for the matrices, $\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ 2 & -3 \\ -1 & 2\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ccc}2 & -3 & 5 \\ 1 & 2 & 3\end{array}\right]$.

Find the inverse of the matrix:
(i) $A=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right] ; \quad$ (ii) $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & w & w^{2} \\ 1 & w^{2} & \mathrm{w}\end{array}\right]$ where w is the cube root of unity.
Find the inverse of the matrix:
(i) $A=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right] ; \quad$ (ii) $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & w & w^{2} \\ 1 & w^{2} & \mathrm{w}\end{array}\right]$ where w is the cube root of unity.
(iii) $\quad \mathrm{A}=\left[\begin{array}{lll}0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c}\end{array}\right]$
in its leading diagonal. Also Express the matrix as a sum of a symmetric \& a skew symmetric matrix.
Q 12. Find the inverse of the matrix:
Q. 16 If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then prove that value of fand g satisfying the maxtrix equation $A^{2}+f A+g I=\mathbf{O}$ are equal to $-t_{r}$ (A) and determinant of A respectively. Given a, b, c, d are non zero reals and $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] ; \mathrm{O}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

[^0]Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
E Q17. Matrices A and B satisfy $A B=B^{-1}$ where $B=\left[\begin{array}{cc}2 & -1 \\ 2 & 0\end{array}\right]$. Find
On (i) $_{\text {(i) }} \quad$ without finding B^{-1}, the value of K for which $K A-2 B^{-1}+I=0$

EXERCISE-5

Q1. Given $\mathrm{A}=\left[\begin{array}{ll}2 & 1 \\ 2 & 1\end{array}\right] ; \mathrm{B}=\left[\begin{array}{ll}9 & 3 \\ 3 & 1\end{array}\right]$. I is a unit matrix of order 2. Find all possible matrix X in the following cases.
(i)
$A X=A$
(ii) $\mathrm{XA}=\mathrm{I}$
(iii) $\mathrm{XB}=\mathbf{O}$ but $\mathrm{BX} \neq \mathrm{O}$.

Q 2. If $A \& B$ are square matrices of the same order \& A is symmetrical, show that $B^{\prime} A B$ is also symmetrical.

Q 3. Show that,
$\left[\begin{array}{cc}1 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 1\end{array}\right][$
Q. 4 If the matrices $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ not all simultaneously zero) commute, find the value of $\frac{\mathrm{d}-\mathrm{b}}{\mathrm{a}+\mathrm{c}-\mathrm{b}}$. Also show that the matrix which commutes with A is of the form $\left[\begin{array}{cc}\alpha-\beta & 2 \beta / 3 \\ \beta & \alpha\end{array}\right]$
Q 5. If the matrix A is involutary, show that $\frac{1}{2}(I+A)$ and $\frac{1}{2}(I-A)$ are idempotent and $\frac{1}{2}(\mathrm{I}+\mathrm{A}) \cdot \frac{1}{2}(\mathrm{I}-\mathrm{A})=\mathbf{O}$.

Q 6. Prove that (i) $|\operatorname{adj}(\operatorname{adj} A)|=|A|^{(n-1)^{2}}$, where A is a non-singular matrix of order ' n '.
(ii) $\quad \operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} . A$, where $|A|$ denotes the determinant of co-efficient matrix.

Q 7. Find the product of two matrices $A \& B$, where $A=\left[\begin{array}{ccc}-5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1\end{array}\right] \& B=\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3\end{array}\right]$ and use it to solve the following system of linear equations,

$$
x+y+2 z=1 ; 3 x+2 y+z=7 ; 2 x+y+3 z=2
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
 Hence prove that $[F(x)]^{-1}=F(-x)$.
Q 13. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}3 & 1 \\ 1 & 0\end{array}\right] ; C=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ and $X=\left[\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right]$ then solve the following matrix equation.
(a) $\mathrm{AX}=\mathrm{B}-\mathrm{I}$
(b) $(\mathrm{B}-\mathrm{I}) \mathrm{X}=\mathrm{IC}$
(c) $\mathrm{CX}=\mathrm{A}$

Q 14. Determine the values of a and b for which the system
$\left[\begin{array}{ccc}3 & -2 & 1 \\ 5 & -8 & 9 \\ 2 & 1 & a\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}b \\ 3 \\ -1\end{array}\right]$
(i) has a unique solution ; (ii) has no solution and (iii) has infinitely many solutions

$$
\mathrm{A}=\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right]=\mathrm{B}^{3}+\mathrm{C}^{3}
$$

If $A B$ is any chord which subtends right angle at V, find curve $f(x)$ and area bounded by chord $A B$ and curve $f(x)$.

EXERCISE-5

(i) $X=\left[\begin{array}{cc}a & b \\ 2-2 a & 1-2 b\end{array}\right]$ for $a, b \in R$; (ii) X does not exist. ;
(iii) $\mathrm{X}=\left[\begin{array}{ll}\mathrm{a} & -3 \mathrm{a} \\ \mathrm{c} & -3 \mathrm{c}\end{array}\right] \mathrm{a}, \mathrm{c} \in \mathrm{R}$ and $3 \mathrm{a}+\mathrm{c} \neq 0 ; \quad 3 \mathrm{~b}+\mathrm{d} \neq 0$
Q. $9 \frac{2 \pi}{3}$
Q. $7 \mathrm{x}=2, \mathrm{y}=1, \mathrm{z}=-1$
Q. $8 \mathrm{X}=\left[\begin{array}{cc}-2 \mathrm{c} & -2 \mathrm{~d} \\ \mathrm{c} & \mathrm{d}\end{array}\right]$, where $\mathrm{c}, \mathrm{d} \in \mathrm{R}-\{0\}$, NO
, (b) $X=\left[\begin{array}{cc}1 & 2 \\ -1 & -2\end{array}\right]$, (c) no solution
Q. 14 (i) $a \neq-3, b \in R$; (ii) $a=-3$ and $b \neq 1 / 3$; (iii) $a=-3, b=1 / 3$
www.TekoClasses
Q.13(a) $X=\left[\begin{array}{cc}-3 & -3 \\ \frac{5}{2} & 2\end{array}\right]$

E
0
$\dot{0}$
Q.

Q. $11 \frac{1}{13}\left[\begin{array}{cc}-12 & -5 \\ 5 & -12\end{array}\right]$
Q. $10 \mathrm{f}(\mathrm{a})=1 / 4, \mathrm{a}=1 / 2$
\rightarrow n Q. 152
Q. $16 \quad \mathrm{~B}=\left[\begin{array}{cc}0 & 1 \\ 0 & -1\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ Q. $18 \frac{1}{\mathrm{kn}-\operatorname{lm}}\left[\begin{array}{cc}\mathrm{n} & -\mathrm{m} \\ -\mathrm{l} & \mathrm{k}\end{array}\right]$
Q. $17 \quad \alpha= \pm \frac{1}{\sqrt{2}}, \beta= \pm \frac{1}{\sqrt{6}}, \gamma= \pm \frac{1}{\sqrt{3}}$

Q.20 $\left(-\frac{4 \sqrt{2}}{3}, \frac{2}{3}, 2 \sqrt{2}\right),\left(\frac{4 \sqrt{2}}{3}, \frac{2}{3},-2 \sqrt{2}\right),(3,3,-1)$ EXERCISE-6

Q7. $\frac{125}{3}$ sq. units \quad Q. $8 \quad \mathrm{~A}$ Q. $1 \quad 4$ Q. $2 \quad \mathrm{~A}$
Q. $5 \quad \mathrm{C}$
Q. 6 A Q9. B Q10. A

[^0]: Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

