Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 DETERMINANTS \& MATRICES PART6 OF 6

Some questions (Assertion-Reason type) are given below. Each question contains Statement - 1 (Assertion) and Statement - 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. So select the correct choice :Choices are :
(A)Statement $\mathbf{- 1}$ is True, Statement $\mathbf{- 2}$ is True; Statement $\mathbf{- 2}$ is a correct explanation for Statement $\mathbf{- 1}$.
(B)Statement $\mathbf{- 1}$ is True, Statmnt $\mathbf{- 2}$ is True; Statement $\mathbf{- 2}$ is NOT a correct explanation for Statement $\mathbf{- 1}$.
(C) Statement - $\mathbf{1}$ is True, Statement $\mathbf{- 2}$ is False.
(D) Statement - 1 is False, Statement - 2 is True.
491. Statement $-\mathbf{1}: \Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ \left(2^{x}+2^{-x}\right)^{2} & \left(3^{x}+3^{-x}\right)^{2} & \left(5^{x}+5^{-x}\right)^{2} \\ \left(2^{x}-2^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & \left(5^{x}-5^{-x}\right)^{2}\end{array}\right|=0$

Statement-2 : $\Delta=4\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ \left(2^{x}-2^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & \left(5^{x}-5^{-x}\right)^{2}\end{array}\right|=0$
492. Let $f(x)=\left|\begin{array}{ccc}1 & x & x+1 \\ 2 x & x(x-1) & x(x+1) \\ 3 x(x-1) & x(x-1)(x-2) & x\left(x^{2}-1\right)\end{array}\right|$

Statement-1: $\mathrm{f}(100)+\mathrm{f}(99)+\mathrm{f}(98)+\ldots+\mathrm{f}(1)=\frac{100(101)}{2}$
Statement-2: $\mathrm{f}(\mathrm{x})=0$
493. Let $\mathrm{A}=\left[\begin{array}{ccc}0 & -4 & 1 \\ 2 & \lambda & -3 \\ 1 & 2 & -1\end{array}\right]$

Statement-1 : Inverse of A exists for all $\lambda \in R$
Statement-2 : Inverse of A exists if $\lambda \in R-\{8\}$
494. Let $\mathrm{A}=\left[\begin{array}{ccc}\sin \alpha & -\cos \alpha & 1 \\ \cos \alpha & \sin \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$

Statement-1 : $\mathrm{A}^{-1}=\operatorname{adj}(\mathrm{A})$

Statement-2 : $|\mathrm{A}|=1$

495. Statement-1 : If $A=\left[\begin{array}{ccc}0 & -4 & 1 \\ 2 & \lambda & -3 \\ 1 & 2 & -1\end{array}\right]$ then A^{-1} exist if $\lambda \neq 8$.

Statement-2 : A^{-1} exists if $|\mathrm{A}|=0$.
496. Let there be a system of equations
$6 x+5 y+\lambda z=0$
$3 x-y+4 z=0$
$x+2 y-3 z=0$
Statement-1 : System of equations has infinite number of nontrivial solution for $\lambda \neq-5$.
Statement-2 : It will have non trivial solution is $\left|\begin{array}{ccc}6 & 5 & \lambda \\ 3 & -1 & 4 \\ 1 & 2 & -3\end{array}\right|=0$.
497. Let α, β, γ be the roots of the equation $x^{3}+a x+b=0 ; a, b \in R$.

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 DETERMINANTS \& MATRICES PART6 OF 6

Statement-1 : $\left|\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right|=0$
Statement-2 : Any cubic equation over reals has at least one real root.
498. Let A be a square matrix of order 3 satisfying $\mathrm{AA}^{\prime}=\mathrm{I}$.

Statement-1 : $\mathrm{A}^{\prime} \mathrm{A}=\mathrm{I}$
Statement-2 : $(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}$
499. Statement-1 : The determinant of a matrix $\left[\begin{array}{ccc}0 & p-q & p-r \\ q-p & 0 & q-r \\ r-p & r-q & 0\end{array}\right]$ is zero.

Statement-2 : The determinant of a skew symmetric matrix of odd order is zero.
500. Statement-1 : If $A_{r}=\left[\begin{array}{cc}r & r-1 \\ r-1 & r\end{array}\right]$, where r is a natural number, then $\left|\mathrm{A}_{1}\right|+\left|\mathrm{A}_{2}\right|+\ldots\left|\mathrm{A}_{2006}\right|=(2006)^{2}$
Statement-2 : If A is a matrix of order 3 and $|A|=2$, then $|\operatorname{adj} A|=2^{2}$.
501. Statement-1 : If matrix $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0\end{array}\right]$ then $A^{3}-3 A^{2}-I=0$

Statement-2 : If B is a symmetric matrix then B^{-1} will also be symmetric.
502 Statement-1 : Adjoint of a diagonal matrix is diagonal matrix
Statement-2 : If $|\mathrm{A}|=0$ then $(\operatorname{adj} \mathrm{A}) \mathrm{A}=\mathrm{A}(\operatorname{adj} \mathrm{A})=0$
503. Statement-1: The inverse of the matrix $\left[\begin{array}{ccc}1 & 3 & 5 \\ 2 & 6 & 10 \\ 9 & 8 & 7\end{array}\right]$ does not exist.

Statement-2: The matrix $\left[\begin{array}{ccc}1 & 3 & 5 \\ 2 & 6 & 10 \\ 9 & 8 & 7\end{array}\right]$ is singular.
504. Statement-1: If $A=\left[\begin{array}{ccc}\mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c}\end{array}\right]$, then $\mathrm{A}^{-1}=\left[\begin{array}{ccc}1 / \mathrm{a} & 0 & 0 \\ 0 & 1 / \mathrm{b} & 0 \\ 0 & 0 & 1 / \mathrm{k}\end{array}\right]$

Statement-2 : The inverse of a diagonal matrix is a diagonal matrix.
505. Statement-1: The inverse of the matrix $A=\left[\begin{array}{ccc}0 & -2 & 3 \\ 2 & 0 & 4 \\ -3 & -4 & 0\end{array}\right]$ does not exist.

Statement-2: The determinant of a skew-symmetric matrix is zero.
506. Consider the following matrix $\mathrm{A}=\left[\begin{array}{ccc}-5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1\end{array}\right]$

Statement-1: A is involutory matrix
Statement-2: $\mathrm{A}^{2}=\mathrm{I}$ (identity matrix)
507. Consider the following system of equation

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 DETERMINANTS \& MATRICES PART6 OF 6

$a x+y+z=0, x+b y+z=0, x+y+c z=0$
Statement-1: Above system of equation will have infinitely many solution if $\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=2$
Statement-2: Above system of equation will have infinitely many solution if $D=\left|\begin{array}{lll}\mathrm{a} & 1 & 1 \\ 1 & \mathrm{~b} & 1 \\ 1 & 1 & \mathrm{c}\end{array}\right|=0$
508. Statement-1: If A is a skew symmetric of order 3 then its determinant should be zero

Statement-2: If A is square matrix than $\operatorname{det} \mathrm{A}=\operatorname{det} \mathrm{A}^{\prime}=\operatorname{det}\left(-\mathrm{A}^{\prime}\right)$.
509. Statement-1: If A and B are two matrices such that $A B=B, B A=A$ then $A^{2}+B^{2}=A+B$

Statement-2: A and B are idempotent matrices
510. Statement-1: The possible dimensions of a matrix containing 32 elements is 6 .

Statement-2: The number of ways of expressing 32 as a product of two positive integers is 6 .
511. Statement-1: The determinants of a matrix $\left[\begin{array}{ccc}0 & a-b & a-c \\ b-a & 0 & b-c \\ c-a & c-b & 0\end{array}\right]$ is zero.

Statement-2: The determinant of a skew symmetric matrix of odd order is zero.
512. Statement-1: Every square matrix can be uniquely expressed as the sum of a symmetric matrix and a skew symmetric matrix.
Statement-2: The elements on the main diagonal of a skew symmetric matrix are all different.
513. Statement-1: $\Delta=\left|\begin{array}{ccc}1+\mathrm{a}^{2}-\mathrm{b}^{2} & 2 \mathrm{ab} & -2 \mathrm{~b} \\ 2 a b & 1-\mathrm{a}^{2}+\mathrm{b}^{2} & 2 \mathrm{a} \\ 2 b & -2 a & 1-\mathrm{a}^{2}-\mathrm{b}^{2}\end{array}\right| \geq 27 \mathrm{a}^{2} \mathrm{~b}^{2}$

Statement-2: A.M. \geq G.M.
514. Statement-1: The value of $\Delta=\left|\begin{array}{ccc}2 & -3 & 5 \\ 3 & 7 & 0 \\ 4 & 1 & 8\end{array}\right|$ is 59

Statement-2: The sum of products of elements of a row (column) is zero.
515. Statement-1: The system of linear equations $x+y+z=6, x+2 y-3 z=14$ and $2 x+5 y-\lambda z=9(\lambda \in R)$ half unique solution. If $\lambda \neq 8$.
Statement-2: A homogenous system is always is consistent for homogenous system, $x=y=z=0$ is a always a solution where determinant $\neq 0$ i.e., $\Delta \neq 0$.
516. Statement-1: If ω is a cube root of unity and $A=\left[\begin{array}{ll}\omega & 0 \\ 0 & \omega\end{array}\right]$, then A^{100} is equal to A

Statement-2: If A, and B are idempotent matrices, then $A B$ is idempotent if A and B commute
517. Statement-1: If $A=\left[a_{i j}\right]$ is a scalar matrix then trace of A is $\sum_{\mathrm{i}}^{\mathrm{n}} \mathrm{a}_{\mathrm{ii}}$

Statement-2: If $\left[\begin{array}{cc}x+y & 8 \\ 0 & x-y\end{array}\right]=\left[\begin{array}{cc}2 & 3 \\ -1 & 5\end{array}\right]+\left[\begin{array}{cc}3 & 5 \\ 1 & -2\end{array}\right]$ the value of $x=y ; y=1$

Answer

491. A	492. D	493. D	494. A	495. C	496. D	497. B
498. B	499. A	500. B	501. B	502. B	503. A	504. B
505. A	506. A	507. A	508. C	509. A	510. C	511. A
512. C	513. A	514. B	515. A	516. B	517. A	518. A
519. A	520. D	521. C	522. C	523. C	524. D	525. A
526. A	527. D	528. C	529. C	530. D	531. B	532. A
533. B	534. A	535. A	536. C	537. A	538. A	539. A
540. A	541. D	542. A	543. C	544. A	545. A	546. A
547. A	548. A	549. A	550. B	551. B	552. B	553. D
554. D	555. B	556. B	557. C	558. D	559. D	560. D
561. A	562. A	563. A	564. D	565. D	566. D	567. D
568. A	569. C	570. C	571. A			

For 39 Years Que. of IIT-JEE (Advanced) \& 15 Years Que. of AIEEE (JEE Main)
we have already distributed a book

