Download FREE Study Package from www.TekoClasses.com & Learn on Video www.MathsBySuhag.com Phone : 0 903 903 7779, 98930 58881 DETERMINANTS & MATRICES PART6 OF 6

Some questions (Assertion–Reason type) are given below. Each question contains Statement – 1 (Assertion) and Statement - 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. So select the correct choice : *Choices are* :

(A)Statement – 1 is True, Statement – 2 is True; Statement – 2 is a correct explanation for Statement – 1. (B)Statement – 1 is True, Statmnt – 2 is True; Statement – 2 is NOT a correct explanation for Statement – 1.

Statement – 1 is True, **Statement – 2** is False. (C) Statement – 1 is False, Statement – 2 is True. (D)

491. Statement-1:
$$\Delta = \begin{vmatrix} 1 & 1 & 1 & 1 \\ (2^{5} + 2^{-x})^{2} & (3^{x} + 3^{-x})^{2} & (5^{5} + 5^{-x})^{2} \end{vmatrix} = 0$$

Statement-2: $\Delta = 4 \begin{vmatrix} 1 & 1 & 1 & 1 \\ (2^{x} - 2^{-x})^{2} & (3^{x} - 3^{-x})^{2} & (5^{x} - 5^{-x})^{2} \end{vmatrix} = 0$
492. Let $f(x) = \begin{vmatrix} 1 & x & x+1 \\ 2x & x(x-1) & x(x+1) \\ 3x(x-1) & x(x-1)(x-2) & x(x^{2} - 1) \end{vmatrix}$
Statement-1: $f(100) + f(99) + f(98) + ... + f(1) = \frac{100(101)}{2}$ Statement-2: $f(x) = 0$
493. Let $A = \begin{bmatrix} 0 & -4 & 1 \\ 2 & \lambda & -3 \\ 1 & 2 & -1 \end{bmatrix}$
Statement-1: Inverse of A exists for all $\lambda \in \mathbb{R}$ Statement-2: Inverse of A exists if $\lambda \in \mathbb{R} - \{8\}$
494. Let $A = \begin{bmatrix} \sin \alpha & -\cos \alpha & 1 \\ \cos \alpha & \sin \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Statement-1: A^{-1} eadj (A) Statement-2: $|A| = 1$
495. Statement-1: A^{-1} eadj (A) Statement-2: $|A| = 1$
496. Let there be a system of equations $6x + 5y + \lambda z = 0$
 $3x - y + 4z = 0$
 $x + 2y - 3z = 0$
Statement-1: System of equations has infinite number of nontrivial solution for $\lambda \neq -5$.
Statement-1: System of equations has infinite number of nontrivial solution for $\lambda \neq -5$.

497. Let α , β , γ be the roots of the equation $x^3 + ax + b = 0$; $a, b \in \mathbb{R}$.

Download FREE Study Package from <u>www.TekoClasses.com</u> & Learn on Video <u>www.MathsBySuhag.com</u> Phone : 0 903 903 7779, 98930 58881 DETERMINANTS & MATRICES PART6 OF 6

Statement-1 :
$$\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix} = 0$$

Statement-2 : Any cubic equation over reals has at least one real root.

498. Let A be a square matrix of order 3 satisfying AA' = I.

Statement-1 : A'A = IStatement-2 : (AB)' = B'A'

499. Statement-1 : The determinant of a matrix $\begin{bmatrix} 0 & p-q & p-r \\ q-p & 0 & q-r \\ r-p & r-q & 0 \end{bmatrix}$ is zero.

Statement-2 : The determinant of a skew symmetric matrix of odd order is zero. $\begin{bmatrix} r & r-1 \end{bmatrix}$

500. Statement-1 : If
$$A_r = \begin{bmatrix} r & r-1 \\ r-1 & r \end{bmatrix}$$
, where r is a natural number, then

 $|\mathbf{A}_1| + |\mathbf{A}_2| + \dots |\mathbf{A}_{2006}| = (2006)^2$

Statement-2 : If A is a matrix of order 3 and |A| = 2, then $|adj A| = 2^2$.

501. Statement-1: If matrix
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}$$
 then $A^3 - 3A^2 - I = 0$

Statement-2: If B is a symmetric matrix then B^{-1} will also be symmetric.

- **502** Statement-1 : Adjoint of a diagonal matrix is diagonal matrix Statement-2 : If |A| = 0 then (adj A) A = A(adjA) = 0
- **503.** Statement-1: The inverse of the matrix $\begin{bmatrix} 1 & 3 & 5 \\ 2 & 6 & 10 \\ 9 & 8 & 7 \end{bmatrix}$ does not exist.

Statement-2: The matrix $\begin{bmatrix} 1 & 3 & 5 \\ 2 & 6 & 10 \\ 9 & 8 & 7 \end{bmatrix}$ is singular.

504. Statement-1: If
$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$
, then $A^{-1} = \begin{bmatrix} 1/a & 0 & 0 \\ 0 & 1/b & 0 \\ 0 & 0 & 1/k \end{bmatrix}$

Statement-2: The inverse of a diagonal matrix is a diagonal matrix.

505. Statement-1: The inverse of the matrix $A = \begin{bmatrix} 2 & 0 & 4 \\ -3 & -4 & 0 \end{bmatrix}$ does not exist.

Statement-2: The determinant of a skew-symmetric matrix is zero.

- **506.** Consider the following matrix $A = \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{bmatrix}$ **Statement-1:** A is involutory matrix **Statement-2:** $A^2 = I$ (identity matrix)
- **507.** Consider the following system of equation

Download FREE Study Package from <u>www.TekoClasses.com</u> & Learn on Video <u>www.MathsBySuhag.com</u> Phone : 0 903 903 7779, 98930 58881 DETERMINANTS & MATRICES PART6 OF 6

ax + y + z = 0, x + by + z = 0, x + y + cz = 0

Statement-1: Above system of equation will have infinitely many solution if $\frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} = 2$ Statement-2: Above system of equation will have infinitely many solution if $D = \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0$

- 508. Statement-1: If A is a skew symmetric of order 3 then its determinant should be zero
- **Statement-2:** If A is square matrix than detA = detA' = det(-A').

509. Statement-1: If A and B are two matrices such that AB = B, BA = A then $A^2 + B^2 = A + B$.

- **Statement-2:** A and B are idempotent matrices
- **510. Statement-1:** The possible dimensions of a matrix containing 32 elements is 6. **Statement-2:** The number of ways of expressing 32 as a product of two positive integers is 6.

511. Statement-1: The determinants of a matrix
$$\begin{bmatrix} 0 & a-b & a-c \\ b-a & 0 & b-c \\ c-a & c-b & 0 \end{bmatrix}$$
 is zero.

Statement-2: The determinant of a skew symmetric matrix of odd order is zero.

512. Statement-1: Every square matrix can be uniquely expressed as the sum of a symmetric matrix and a skew symmetric matrix.

Statement-2: The elements on the main diagonal of a skew symmetric matrix are all different.

513. Statement-1:
$$\Delta = \begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} \ge 27a^2b^2$$

Statement-2: $A.M. \ge G.M.$

514. Statement-1: The value of
$$\Delta = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 7 & 0 \\ 4 & 1 & 8 \end{bmatrix}$$
 is 59

Statement-2: The sum of products of elements of a row (column) is zero.

- **515.** Statement-1: The system of linear equations x + y + z = 6, x + 2y 3z = 14 and $2x + 5y \lambda z = 9(\lambda \in \mathbb{R})$ half unique solution. If $\lambda \neq 8$. Statement-2: A homogenous system is always is consistent for homogenous system, x = y = z = 0 is a always a solution where determinant $\neq 0$ i.e., $\Delta \neq 0$.
- **516.** Statement-1: If ω is a cube root of unity and $A = \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$, then A^{100} is equal to A

Statement-2: If A, and B are idempotent matrices, then AB is idempotent if A and B commute

517. Statement-1: If A =
$$[a_{ij}]$$
 is a scalar matrix then trace of A is $\sum_{i=1}^{n} a_{ii}$

Statement-2: If $\begin{bmatrix} x+y & 8\\ 0 & x-y \end{bmatrix} = \begin{bmatrix} 2 & 3\\ -1 & 5 \end{bmatrix} + \begin{bmatrix} 3 & 5\\ 1 & -2 \end{bmatrix}$ the value of x = y; y = 1

	Answer					
491. A	492. D	493. D	494. A	495. C	496. D	497. B
498. B	499. A	500. B	501. B	502. B	503. A	504. B
505. A	506. A	507. A	508. C	509. A	510. C	511. A
512. C	513. A	514. B	515. A	516. B	517. A	518. A
519. A	520. D	521. C	522. C	523. C	524. D	525. A
526. A	527. D	528. C	529. C	530. D	531. B	532. A
533. B	534. A	535. A	536. C	537. A	538. A	539. A
540. A	541. D	542. A	543. C	544. A	545. A	546. A
547. A	548. A	549. A	550. B	551. B	552. B	553. D
554. D	555. B	556. B	557. C	558. D	559. D	560. D
561. A	562. A	563. A	564. D	565. D	566. D	567. D
568. A	569. C	570. C	571. A			

For 39 Years Que. of IIT-JEE (Advanced) & 15 Years Que. of AIEEE (JEE Main) we have already distributed a book