
 jffrodro/leZ Ztak
I neff J hj. Manlt hegkt

STUDY PACKAGE Subject: Mathematics Topic: Probability

Available Online : www.MathsBySuhag.com

Index

1. Theory
2. Short Revision
3. Exercise (Ex. $1+5$ = 6)
4. Assertion \& Reason
5. Que. from Compt. Exams
6. 39 Yrs. Que. from IIT-J EE(Advanced)
7. 15 Yrs. Que. from AIEEE (J EE Main)

Address: Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal屈: 0903903 7779, 98930 58881, WhatsApp 9009260559 www.TekoClasses.com
www.MathsBySuhag.com

There are various phenomena in nature, leading to an outcome, which cannot be predicted apriorit e.g. in tossing of a coin, a head or a tail may result. Probability theory aims at measuring the uncertainties of such outcomes.

(I) Important terminology:

(i) Random Experiment :

It is a process which results in an outcome which is one of the various possible outcomes that are known to us before hand e.g. throwing of a die is a random experiment as it leads to fall of one of the outcome from $\{1,2,3,4,5,6\}$. Similarly taking a card from a pack of 52 cards is also a random ∞_{∞}^{∞} experiment.
(ii) Sample Space :

It is the set of all possible outcomes of a random experiment e.g. $\{\mathrm{H}, \mathrm{T}\}$ is the sample space associated with tossing of a coin.
In set notation it can be interpreted as the universal set.

Solved Example \# 1

Write the sample space of the experiment 'A coin is tossed and a die is thrown'.

Solution

The sample space $\mathrm{S}=\{\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6, \mathrm{~T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6\}$.
Solved Example \# 2
Write the sample space of the experiment 'A coin is tossed, if it shows head a coin tossed again else a die is thrown.

```
Solution
    The sample space S = {HH,HT,T1,T2,T3,T4,T5,T6}
```


Solved Example \# 3

Find the sample space associated with the experiment of rolling a pair of dice (plural of die) once. Also find the number of elements of the sample space.
Sol. Let one die be blue and the other be grey. Suppose '1' appears on blue die and ' 2 ' appears on grey die. We denote this outcome by an ordered pair (1,2). Similarly, if ' 3 ' appears on blue die and ' 5 ' appears on grey die, $\overline{\mathcal{C}}$ we denote this outcome by $(3,5)$ and so on. Thus, each outcome can be denoted by an ordered pair (x, y), where x is the number appeared on the first die (blue die) and y appeared on the second die (grey die). Thus, the sample space is given by
$S=\{(x, y) x$ is the number on blue die and y is the number on grey die $\}$
We now list all the possible outcomes (figure)

	1	2	3	4	5	6
	1	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$
	2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$
	3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$
	4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$

Figure
Number of elements (outcomes) of the above sample space is 6×6 i.e., 36

Self Practice Problems :

1. A coin is tossed twice, if the second throw results in head, a die is thrown.

Answer \{HT, TT, HH1, HH2, HH3, HH4, HH5, HH6, TH1, TH2, TH3, TH4, TH5, TH6\}.
2. An urn contains 3 red balls and 2 blue balls. Write sample space of the experiment 'Selection of a ball from the urn at random'.
Answer $\left\{\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{~B}_{1}, \mathrm{~B}_{2}\right\}$.
Note:-

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com balls as B_{1} and B_{2}.

(iii) Event :

It is subset of sample space. e.g. getting a head in tossing a coin or getting a prime number is throwing a die. In general if a sample space consists ' n ' elements, then a maximum of 2^{n} events can be associated with it.

(iv) Complement of event :

The complement of an event ' A ' with respect to a sample space S is the set of all elements of ' S ' which are not in A. It is usually denoted by $\mathrm{A}^{\prime}, \overline{\mathrm{A}}$ or A^{C}.
(v) Simple Event :

If an event covers only one point of sample space, then it is called a simple event e.g. getting a head followed by a tail in throwing of a coin 2 times is a simple event.
(vi) Compound Event:

When two or more than two events occur simultaneously, the event is said to be a compound event.
Symbolically $A \cap B$ or $A B$ represent the occurrence of both $A \& B$ simultaneously.
Note : "A $\cup \mathrm{B}$ " or $\mathrm{A}+\mathrm{B}$ represent the occurrence of either A or B.

Solved Example \# 4

Write down all the events of the experiment 'tossing of a coin'.
Solution
$S=\{H, T\}$
the events are $\phi,\{H\},\{T\},\{H, T\}$
Solved Example \# 5
A die is thrown. Let A be the event ' an odd number turns up' and B be the event 'a number divisible by 3 turns up'. Write the events $\begin{array}{lll}\text { (a) } A \text { or } B & \text { (b) } A \text { and } B\end{array}$
Solution

$$
\begin{aligned}
& A=\{1,3,5\}, B=\{3,6\} \\
& \therefore \quad A \text { or } B=A \cup B=\{1,3,5,6\} \\
& \therefore \quad A \text { and } B=A \cap B=\{3\}
\end{aligned}
$$

Self Practice Problems:

3. A coin is tossed and a die is thrown. Let A be the event ' H turns up on the coin and odd number turns up on the die' and B be the event ' T turns up on the coin and an even number turns up on the die'. Write the events (a) A or B (b) A and B.
Answer (a) $\{\mathrm{H} 1, \mathrm{H} 3, \mathrm{H} 5, \mathrm{~T} 2, \mathrm{~T} 4, \mathrm{~T} 6\}$ (b) ϕ

4. In tossing of two coins, let $A=\{H H, H T\}$ and $B=\{H T, T T\}$. Then write the events (a) A or B (b) A and B.
Answer
(a) $\{\mathrm{HH}, \mathrm{HT}, \mathrm{T} T\}$
(b) $\{\mathrm{HT}\}$
(vii) Equally likely Events:

If events have same chance of occurrence, then they are said to be equally likely.
e.g
(i) In a single toss of a fair coin, the events $\{\mathrm{H}\}$ and $\{\mathrm{T}\}$ are equally likely.
(ii) In a single throw of an unbiased die the events $\{1\},\{2\},\{3\}$ and $\{4\}$, are equally likely.
(iii) In tossing a biased coin the events $\{\mathrm{H}\}$ and $\{T\}$ are not equally likely.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com Self Practice Problems :

Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com We say that odds in favour of ' A ' are $m: n$, while odds against ' A ' are n : m.
Note that $P(\bar{A})$ or $P\left(A^{\prime}\right)$ or $P\left(A^{c}\right)$, i.e. probability of non-occurrence of $A=\frac{n}{m+n}=1-P(A)$ In the above we shall denote the number of out comes favourable to the event A by $n(A)$ and the total number of out comes in the sample space S by $n(S)$.
$\therefore \quad \mathrm{P}(\mathrm{A})=\frac{\mathrm{n}(\mathrm{A})}{\mathrm{n}(\mathrm{S})}$.
Solved Example \# 10
In throwing of a fair die find the probability of the event ' a number ≤ 4 turns up'.

Solution

Sample space $S=\{1,2,3,4,5,6\} ;$ event $A=\{1,2,3,4\}$

$$
\mathrm{n}(\mathrm{~A})=4 \text { and } \mathrm{n}(\mathrm{~S})=6
$$

$\therefore \quad P(A)=\frac{n(A)}{n(S)}=\frac{4}{6}=\frac{2}{3}$.

Solved Example \# 11

In throwing of a fair die, find the probability of turning up of an odd number ≥ 4.

Solution

$S=\{1,2,3,4,5,6\}$
$\propto \quad$ Let E be the event 'turning up of an odd number ≥ 4 ' then $E=\{5\}$
$\therefore \quad P(E)=\frac{n(E)}{n(S)}=\frac{1}{6}$.

Solved Example \# 12

In throwing a pair of fair dice, find the probability of getting a total of 8.
Solution.
When a pair of dice is thrown the sample space consists

Note that $(1,2)$ and $(2,1)$ are considered as separate points to make each outcome as equally likely.
To get a total of ' 8 ', favourable outcomes are, $(2,6)(3,5)(4,4)(5,3)$ and $(6,2)$.
Hence required probability $=\frac{5}{36}$

Solved Example \# 13
Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0903 9037779, 09893058881 . page 5 of 37
Each of these 96 numbers are equally likely \& mutually exclusive of each other.
Now, A number is divisible by 4 , if last two digits of the number is divisible by 4
Hence we can have

6 ways
4 ways
4 ways
6 ways
30 ways

first two places can be filled in $3 \times 2=6$ ways first two places can be filled in $2 \times 2=4$ ways

30 ways

Total 4 digit numbers formed

A four digit number is formed using the digits $0,1,2,3,4$ without repetition. Find the probability that it is divisible by 4

$$
\begin{aligned}
& \text { Total number of ways }
\end{aligned}
$$

Self Practice Problems :

9. A bag contains 4 white, 3 red and 2 blue balls. A ball is drawn at random. Find the probability of the event (a) the ball drawn is white or red (b) the ball drawn is white as well as red.
Answer
(a) $7 / 9$
(b) 0

Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

10. In throwing a pair of fair dice find the probability of the events ' a total of of less than or equal to 9"'.

Answer 5/36.

(III) Addition theorem of probability :

If ' A ' and ' B ' are any two events associated with an experiment, then
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$

De Morgan's Laws : If $A \& B$ are two subsets of a universal set U, then
(a) $\quad(A \cup B)^{c}=A^{c} \cap B^{c}$
(b) $\quad(A \cap B)^{c}=A^{c} \cup B^{c}$

Distributive Laws : (a) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
(b) $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

For any three events A, B and C we have the figure

Note : If three events A, B and C are pair wise mutually exclusive then they must be mutually exclusive,
i.e. $P(A \cap B)=P(B \cap C)=P(C \cap A)=0 \Rightarrow P(A \cap B \cap C)=0$.

However the converse of this is not true.
A bag contains 4 white, 3 red and 4 green balls. A ball is drawn at random. Find the probability of the event 'the ball drawn is white or green'.

Solution

$\begin{array}{ll}\text { (i) } & P(A \text { or } B \text { or } C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(C \cap A)+P(A \cap B \\ \text { (ii) } & P(\text { at least two of } A, B, C \text { occur })=P(B \cap C)+P(C \cap A)+P(A \cap B)-2 P(A \cap B \cap C)\end{array}$
(iii) $\quad P($ exactly two of A, B, C occur $)=P(B \cap C)+P(C \cap A)+P(A \cap B)-3 P(A \cap B \cap C)$
(iv) $\quad \mathrm{P}($ exactly one of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ occur) $=$
$P(A)+P(B)+P(C)-2 P(B \cap C)-2 P(C \cap A)-2 P(A \cap B)+3 P(A \cap B \cap C)$

Solved Example \# 14

Let A be the event 'the ball drawn is white' and B be the event 'the ball drawn is green'.
$P($ The ball drawn is white or green $)=P(A \cup B)=P(A)+P(B)-P(A \cap B)=\frac{8}{11}$
Solved Example \# 15
e,

In throwing of a die, let A be the event 'an odd number turns up', B be the event 'a number divisible by 3 turns up' and C be the event 'a number ≤ 4 turns up'. Then find the probability that exactly two of A, B and C occur.

Solution

Event $A=\{1,3,5\}$, event $B=\{3,6\}$ and event $C=\{1,2,3,4\}$
$\therefore \quad A \cap B=\{3\}$, $B \cap C=\{3\}, A \cap C=\{1,3\}$ and $A \cap B \cap C=\{3\}$.
Thus P (exactly two of A, B and C occur)
$=P(A \cap B)+P(B \cap C)+P(C \cap A)-3 P(A \cap B \cap C)$
$=\frac{1}{6}+\frac{1}{6}+\frac{2}{6}-3 \times \frac{1}{6}=\frac{1}{6}$

Self Practice Problems :

11. In throwing of a die, let A be the event 'an odd number turns up', B be the event 'a number divisible by 3 turns up' and C be the event 'a number ≤ 4 turns up'. Then find the probability that atleast two of A, B and C occur. Answer $\frac{1}{3}$
12. In the problem number 11, find the probability that exactly one of A, B and C occurs. Answer $\frac{2}{3}$

Conditional Probability

If A and B are two events, then $P(A / B)=\frac{P(A \cap B)}{P(B)}$.
Note that for mutually exclusive events $\mathrm{P}(\mathrm{A} / \mathrm{B})=0$.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

Solved Example \# 16

$$
\text { If } P(A / B)=0.2 \text { and } P(B)=0.5 \text { and } P(A)=0.2 \text {. Find } P(A \cap \bar{B}) \text {. }
$$

E Solution.

$P(A \cap \bar{B})=P(A)-P(A \cap B)$
Also $\quad P(A / B)=\frac{P(A \cap B)}{P(B)}$
$\Rightarrow \quad \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.1$
From given data,

$$
\mathrm{P}(\mathrm{~A} \cap \overline{\mathrm{~B}})=0.1
$$

Solved Example \# 17

If $P(A)=0.25, P(B)=0.5$ and $P(A \cap B)=0.14$, find probability that neither ' A ' nor ' B ' occurs. Also find
$P(A \cap \bar{B})$

Solution

We have to find $P(\bar{A} \cap \bar{B})=1-P(A \cup B) \quad$ (by De-Morgan's law)
Also, $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
putting data we get, $\mathrm{P}(\overline{\mathrm{A}} \cap \overline{\mathrm{B}})=0.39$
Hence $P(A \cap \bar{B})=P(A)-P(A \cap B)=0.11$
Self Practice Problem:-
13. If $P(\bar{A} / \bar{B})=0.2, P(A \cup B)=0.9$, then find $P(A \cap \bar{B})$?
Ans. 0.4
5. Independent and dependent events
If two events are such that occurence or non-occurence of one does not affect the chances of occurence
or non-occurence of the other event, then the events are said to be independent. Mathematically : if
$P(A \cap B)=P(A) P(B)$, then A and B are independent.
Note: (i) If A and B are independent, then (a) A^{\prime} and B^{\prime} are independent, (b) A and B^{\prime} are independent and (c) A^{\prime} and B are independent.
(ii) If A and B are independent, then $P(A / B)=P(A)$.
If events are not independent then they are said to be dependent.

Independency of three or more events

$P(B \cap C)=P(B) \cdot P(C)$
$P(A \cap B \cap C)=P(A) \cdot P(B) . P(C)$
$P(C \cap A)=P(C) . P(A) \quad ; \quad P(A \cap B \cap C)=P(A) . P(B) . P(C)$
i.e. they must be independent in pairs as well as mutually independent.
Similarly for n events $A_{1}, A_{2}, A_{3}, \ldots \ldots . A_{n}$ to be independent, the number of these conditions is equal to ${ }^{n} C_{2}+{ }^{n} C_{3}+\ldots \ldots .+{ }^{c} C_{n}=2^{n}-n-1$.

Solved Example \# 18

In drawing two balls from a box containing 6 red and 4 white balls without replacement, which of the following pairs is independent?
(a)
Red on first draw and red on second draw
(b) Red on first draw and white on second draw
Let E be the event 'Red on first draw', F be the event 'Red on second draw' and G be the event 'white on second draw'.
$P(E)=\frac{6}{10}, P(F)=\frac{6}{10}, P(G)=\frac{4}{10}$
(a) $\quad P(E \cap F)=\frac{{ }^{6} P_{2}}{{ }^{10} P_{2}}=\frac{1}{3}$
$P(E) . P(F)=\frac{3}{5} \times \frac{3}{5}=\frac{9}{25} \neq \frac{1}{3}$
$\therefore \quad E$ and F are not independent
(b)

$$
P(E) \cdot P(G)=\frac{6}{10} \times \frac{4}{10}=\frac{6}{25}
$$

Solved Example \# 19

If two switches S_{1} and S_{2} have respectively 90% and 80% chances of working. Find the probabilities that each of the following circuits will work.

Solution
Consider the following events :
A = Switch S_{1} works,
$B=$ Switch S_{2} works,
We have,
$P(A)=\frac{90}{100}=\frac{9}{10}$ and $P(B)=\frac{80}{100}=\frac{8}{10}$
(i) The circuit will work if the current flows in the circuit. This is possible only when both the switches work together. Therefore,

iii) The circouit will werk if the ourront flome ir
(ii) The circuit will work if the current flows in the circuit. This is possible only when at least one of the two
 switches $\mathrm{S}_{1}, \mathrm{~S}_{2}$ works. Therefore,
Required Probabbility
$=P(A \cup B) \quad[\because A$, Bare independent events $]$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Ans.
(i) $\frac{49}{121}$
(ii) $\frac{16}{121}$
(iii) $\frac{56}{121}$ solve the problem independently, find the probability that
(i) the problem is solved
(ii) exactly one of them solves the problem.
Ans.
(i) $\frac{2}{3}$
(ii) $\frac{1}{2}$

Solved Example \# 23
A box contains 5 bulbs of which two are defective. Test is carried on bulbs one by one untill the two defective bulbs are found out. Find the probability that the process stops after
Solution
(i) Second test
(ii) Third test
(i) Process will stop after second test. Only if the first and second bulb are both found to be defective probability $=\frac{2}{5} \times \frac{1}{4}=\frac{1}{10}$ (Obviously the bulbs drawn are not kept back.)
(ii) Process will stop after third test when either
(a) DND $\rightarrow \quad \frac{2}{5} \times \frac{3}{4} \times \frac{1}{3}=\frac{1}{10} \quad$ Here 'D' stands for defective
or (b) NDD $\rightarrow \quad \frac{3}{5} \times \frac{2}{4} \times \frac{1}{3}=\frac{1}{10} \quad$ and ' N ' is for not defective.
or (c) NNN $\rightarrow \quad \frac{3}{5} \times \frac{2}{4} \times \frac{1}{3}=\frac{1}{10}$
hence required probability $=\frac{3}{10}$

Solved Example \# 24

(i) E_{1} and E_{2} are independent
(ii) E_{1} and E_{2} are exhaustive
(iii) E_{1} and E_{2} are mutually exclusive
(iv) $\mathrm{E}_{1}^{1} \& \mathrm{E}_{2}$ are dependent

Also find $P\left(\frac{\vec{E}_{1}}{E_{2}}\right)$ and $\left(\frac{E_{2}}{E_{1}}\right)$
Since $\left(\frac{E_{2}}{E_{1}}\right)=P\left(E_{1}\right) \Rightarrow E_{1}$ and E_{2} are independent of each other
Also since $P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1}\right) . P\left(E_{2}\right) \neq 1$
Hence events are not exhaustive. Independent events can't be mutually exclusive.
Hence only (i) is correct
Further since $E_{1} \& E_{2}$ are independent; $E 1$ and \bar{E}_{2} or \bar{E}_{1}, E_{2} are \bar{E}_{1}, \bar{E}_{2} are also independent.
Hence $P\left(\frac{\bar{E}_{1}}{E_{2}}\right)=P\left(\bar{E}_{1}\right)=\frac{3}{4} \quad$ and $\quad P\left(\frac{E_{2}}{\bar{E}_{1}}\right)=P\left(E_{2}\right)=\frac{1}{2}$

Solved Example \# 25

If cards are drawn one by one from a well shuffled pack of 52 cards without replacement, until an ace appears, find the probability that the fourth card is the first ace to appear.

Solution

Probability of selecting 3 non-Ace and 1 Ace out of 52 cards is equal to $\frac{{ }^{48} \mathrm{C}_{3} \times 4 \mathrm{C}_{1}}{{ }^{52} \mathrm{C}_{4}}$
Since we want 4th card to be first ace, we will also have to consider the arrangement, Now 4 cards in sample space can be arranged in 4 ! ways and, favorable they can be arranged in 3 ! ways as we want 4th position to be occupied by ace
Hence required probability $=\frac{{ }^{48} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{1}}{{ }^{52} \mathrm{C}_{4}} \times \frac{3!}{4!}$
Aliter : 'NNNA' is the arrangement than we desire in taking out cards, one by one
Hence required chance is $\frac{48}{52} \times \frac{47}{51} \times \frac{46}{50} \times \frac{4}{49}$
Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com Self Practice Problems :

16. A bag contains 8 marbles of which 3 are blue and 5 are red. One marble is drawn at random, its colour is noted and the marble is replaced in the bag. A marble is again drawn from the bag and its colour is noted. Find the probability that the marbles will be
(i) blue followed by red
(ii) blue and red in any order
(iii) of the same colour.
Ans.
(i) $\frac{15}{64}$
(ii) $\frac{15}{32}$
(iii) $\frac{17}{32}$
17. A coin is tossed thrice. In which of the following cases are the events E and F independent ?
(i) E : "the first throw results in head".
F : "the last throw result in tail".
(ii) E : "the number of heads is two".

F : "the last throw result in head".
(iii) E : "the number of heads is odd".

F : "the number of tails is odd".
Ans. (i)
6. Binomial Probability Theorem

If an experiment is such that the probability of success or failure does not change with trials, then the probability of getting exactly r success in n trials of an experiment is ${ }^{n} C_{r} p^{r} q^{n-r}$, where ' p ' is the probability of a success and q is the probability of a failure. Note that $p+q=1$.

Solved Example 26

A pair of dice is thrown 5 times. Find the probability of getting a doublet twice.
$\therefore \quad q=1-\frac{1}{6}=\frac{5}{6}$
number of success $r=2$

$$
\therefore \quad P(r=2)={ }^{5} C_{2} p^{2} q^{3}=10 \cdot\left(\frac{1}{6}\right)^{2} \cdot\left(\frac{5}{6}\right)^{3}=\frac{625}{3888}
$$

Solved Example \# 27

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com of 2 successes in 3 performances.

Answer
 3125
 Expectation :

19. Probability that a bulb produced by a factory will fuse after an year of use is 0.2 . Find the probability that out of 5 such bulbs not more than 1 bulb will fuse after an year of use.
If a value M_{i} is associated with a probability of p_{i}, then the expectation is given by $\sum p_{i} M_{i}$.

Solved Example \# 30

There are 100 tickets in a raffle (Lottery). There is 1 prize each of Rs. 1000/-, Rs. 500/- and Rs. 200/-. Remaining tickets are blank. Find the expected price of one such ticket.
Solution
Expectation $=\sum p_{i} M_{i} \quad$ outcome of a ticket can be
(i) I prize $\frac{1}{100} \quad 1000$
(ii) Il prize $\frac{1}{100} \quad 500 \quad 5$
(iii) III prize $\frac{1}{100} \quad 200$
(iv) Blank $\frac{97}{100} \quad 0 \quad 0$
$\sum p_{i} M_{i}=17$

Hence expected price of one such ticket Rs. 17
Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Solved Example \# 31
A purse contains four coins each of which is either a rupee or two rupees coin. Find the expected value of a $\stackrel{¢}{\odot}$ Solution coin in that purse.

Various possibilities of coins in the purse can be
(i) 41 rupee coins $\quad \frac{1}{16}$
(ii) 3 one Rs. +1 two Rs. $\frac{4}{16}$
$p_{i} \quad M$
$M_{i} \quad p_{i} M_{i}$

4
$5 \quad \frac{20}{16}$
(iii) 2 one Rs. +2 two Rs. $\frac{6}{16}$

6
$\frac{4}{16}$
$\frac{20}{16}$
$\frac{36}{16}$
$\frac{28}{16}$
$\frac{8}{16}$
6 /-
Note that since each coin is equally likely to be one Rs. or two Rs. coin, the probability is determined using Binomial probability; unlike the case when the purse contained the coins with all possibility being equally o likely, where we take $p_{i}=\frac{1}{5}$ for each.
Hence expected value is Rs. 6/-

Box - I contains 5 red and 4 white balls whilst box - II contains 4 red and 2 white balls. A fair die is thrown. If it turns up a multiple of 3, a ball is drawn from box-I else a ball is drawn from box-II. Find . the probability that the ball drawn is white.

Solution

Let A be the event 'a multiple of 3 turns up on the die' and R be the event 'the ball drawn is white'.
then P (ball drawn is white)

$$
\begin{aligned}
& =P(A) \cdot P(R / A)+P(\bar{A}) P(R / \bar{A}) \\
& =\frac{2}{6} \times \frac{4}{9}+\left(1-\frac{2}{6}\right) \frac{2}{6}=\frac{10}{27}
\end{aligned}
$$

Solved Example \# 33

Cards of an ordinary deck of playing cards are placed into two heaps. Heap - I consists of all the red cards and heap - II consists of all the black cards. A heap is chosen at random and a card is drawn, find the probability that the card drawn is a king.

Solution

Let I and II be the events that heap - I and heap - II are choosen respectively. Then

$$
P(I)=P(I I)=\frac{1}{2}
$$

Let K be the event 'the card drawn is a king'

$$
\therefore \quad P(K / I)=\frac{2}{26} \quad \text { and } \quad P(K / I I)=\frac{2}{26}
$$

$\therefore \quad \mathrm{P}(\mathrm{K})=\mathrm{P}(\mathrm{I}) \mathrm{P}(\mathrm{K} / \mathrm{I})+\mathrm{P}(\mathrm{II}) \mathrm{P}(\mathrm{K} / \mathrm{II})=\frac{1}{2} \times \frac{2}{26}+\frac{1}{2} \times \frac{2}{26}=\frac{1}{13}$.

E21.	Box-I contains 3 red tossed. If it turns
box-II. Find the pro	

If an event A can occur with one of the n mutually exclusive and exhaustive events $B_{1}, B_{2}, \ldots \ldots, B_{n}$ and the probabilities $\mathrm{P}\left(\mathrm{A} / \mathrm{B}_{1}\right), \mathrm{P}\left(\mathrm{A} / \mathrm{B}_{2}\right) \ldots . \mathrm{P}\left(\mathrm{A} / \mathrm{B}_{n}\right)$ are known, then

$$
P\left(B_{i} / A\right)=\frac{P\left(B_{i}\right) \cdot P\left(A / B_{i}\right)}{\sum_{i=1}^{n} P\left(B_{i}\right) \cdot P\left(A / B_{i}\right)}
$$

Proof:
Box - I contains 3 red and 2 blue balls whilest box - II contains 2 red and 3 blue balls. A fair coin is ossed. Fit turns up head, a ball is drawn from box - I, else a ball is drawn from box - 11 . Find the probabily that be ball draw is red.
Answer
$\frac{1}{2}$
The odds in favour of choosing the class XI are $2: 3$. If the class XI is not chosen then the class XI is chosen. Find the probability of selecting a brilliant student.
Answer $\quad \frac{17}{125}$.
The event A occurs with one of the n mutually exclusive and exhaustive events
$\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \ldots \ldots . ., \mathrm{B}_{\mathrm{n}}$
$A^{\prime}=\left(A^{\prime} \cap^{3} B_{1}\right) \cup\left(A^{n} \cap B_{2}\right) \cup\left(A \cap B_{3}\right) \cup \ldots \ldots . . \cup\left(A \cap B_{n}\right)$
$P(A)=P\left(A \cap B_{1}\right)+P\left(A \cap B_{2}\right)+\ldots \ldots .+P\left(A \cap B_{n}\right)=\sum_{i=1}^{n} P\left(A \cap B_{i}\right)$
Note: $A \equiv$ event what we have ; $\quad B_{i}=$ event what we want Now,

From (1), $P\left(A_{1} / A\right)=\frac{\frac{2}{3} \cdot \frac{3}{4}}{\frac{2}{3} \cdot \frac{3}{4}+\frac{1}{3} \cdot \frac{1}{2}}=\frac{6}{6+2}=\frac{3}{4}$

Solved Example \# 35

There are 5 brilliant students in class XI and 8 brilliant students in class XII. Each class has 50 n students. The odds in favour of choosing the class XI are $2: 3$. If the class XI is not chosen then the e class XII is chosen. A student is a chosen and is found to be brilliant, find the probability that the chosen student is from class XI .

Solution

Let E and F be the events 'Class $X I$ is chosen' and 'Class XII is chosen' respectively.
Then $P(E)=\frac{2}{5}, P(F)=\frac{3}{5}$
Let A be the event 'Student chosen is brilliant'.
Then $P(A / E)=\frac{5}{50}$ and $P(A / F)=\frac{8}{50}$.

$$
\begin{array}{ll}
\therefore & P(A)=P(E) \cdot P(A / E)+P(F) \cdot P(A / F)=\frac{2}{5} \cdot \frac{5}{50}+\frac{3}{5} \cdot \frac{8}{50}=\frac{34}{250} . \\
\therefore & P(E / A)=\frac{P(E) \cdot P(A / E)}{P(E) \cdot P(A / E)+P(F) \cdot P(A / F)}=\frac{5}{17} .
\end{array}
$$

Solved Example \# 36

A pack of cards is counted with face downwards. It is found that one card is missing. One card is drawn and is found to be red. Find the probability that the missing card is red.

Solution

Let A be the event of drawing a red card when one card is drawn out of 51 cards (excluding missing card.) Let
A_{1} be the event that the missing card is red and A_{2} be the event that the missing card is black.
Now by Bayes's theorem, required probability,
$P\left(A_{1} / A\right)=\frac{P\left(A_{1}\right) \cdot\left(P\left(A / A_{1}\right)\right.}{P\left(A_{1}\right) \cdot P\left(A / A_{1}\right)+P\left(A_{2}\right) \cdot P\left(A / A_{2}\right)}$
In a pack of 52 cards 26 are red and 26 are black.
Now $P\left(A_{1}\right)=$ probability that the missing card is red $=\frac{{ }^{26} C_{1}}{{ }^{52} C_{1}}=\frac{26}{52}=\frac{1}{2}$
$\mathrm{P}\left(\mathrm{A}_{2}\right)=$ probability that the missing card is black $=\frac{26}{52}=\frac{1}{2}$
$\mathrm{P}\left(\mathrm{A} / \mathrm{A}_{1}\right)=$ probability of drawing a red card when the missing card is red.

$$
=\frac{25}{51}
$$

\because Total number of cards left is 51 out of which 25 are red and 26 are black as the missing card is red]
Again $P\left(A / A_{2}\right)=$ Probability of drawing a red card when the missing card is black $=\frac{26}{51}$
Now from (i), required probability,
$P\left(A_{1} / A\right)=\frac{\frac{1}{2} \cdot \frac{25}{51}}{\frac{1}{2} \cdot \frac{25}{51}+\frac{1}{2} \cdot \frac{26}{51}}=\frac{25}{51}$

Solved Example \# 37

A bag contains 6 white and an unknown number of black balls (≤ 3). Balls are drawn one by one with replacement from this bag twice and is found to be white on both occassion. Find the probability that the bag had exactly ' 3 ' Black balls.

Solution

Apriori, we can think of the following possibilies

(i)	E_{1}	6 W	0 B	
(ii)	E_{2}	6 W	,	1 B
(iii)	E_{3}	6 W	2 B	
(iv)	E_{4}	6 W	3 B	

Clearly $P\left(E_{1}\right)=P\left(E_{2}\right)=P\left(E_{3}\right)=P\left(E_{4}\right)=\frac{1}{4}$
Let ' A ' be the event that two balls drawn one by one with replacement are both white therefore we have to find $P\left(\frac{E_{4}}{A}\right)$

By Baye's theorem $P\left(\frac{E_{4}}{A}\right)=\frac{P\left(\frac{A}{E_{4}}\right) \times P\left(E_{4}\right)}{P\left(\frac{A}{E_{1}}\right) \times P\left(E_{1}\right)+P\left(\frac{A}{E_{2}}\right) \cdot P\left(E_{2}\right)+P\left(\frac{A}{E_{3}}\right) \cdot P\left(E_{3}\right)+P\left(\frac{A}{E_{4}}\right) \cdot P\left(E_{4}\right)}$
$P\left(\frac{A}{E_{4}}\right)=\frac{6}{9} \times \frac{6}{9} ; \quad P\left(\frac{A}{E_{3}}\right)=\frac{6}{8} \times \frac{6}{8} ; \quad P\left(\frac{A}{E_{2}}\right)=\frac{6}{7} \times \frac{6}{7} ;$
$P\left(\frac{A}{E_{1}}\right)=\frac{6}{6} \times \frac{6}{6} ;$
Putting values $P\left(\frac{E_{4}}{A}\right)=\frac{\frac{1}{81}}{\frac{1}{81}+\frac{1}{64}+\frac{1}{49}+\frac{1}{36}}$

Self Practice Problems :

23. Box-I contains 3 red and 2 blue balls whilest box-II contains 2 red and 3 blue balls. A fair coin is tossed. If it turns up head, a ball is drawn from box-I, else a ball is drawn from box-II. If the ball drawn is red, then find the probability that the ball is drawn from box-II.

Answer
 $\frac{3}{5}$

24. Cards of an ordinary deck of playing cards are placed into two heaps. Heap - I consists of all the red cards and heap - II consists of all the black cards. A heap is chosen at random and a card is drawn, if the card drawn is found to be a king, find the probability that the card drawn is from the heap - II.

Solved Example \# 38

A die is thrown, a man C gets a prize of Rs. 5 if the die turns up 1 and gets a prize of Rs. 3 if the die turns up 2, else he gets nothing. A man A whose probability of speaking the truth is $\frac{1}{2}$ tells C. that the die has turned up 1 and another man B whose probability of speaking the truth is $\frac{2}{3}$ tells C that the die has turned up 2 . Find the expectation value of C.

Solution

Let A and B be the events ' A speaks the truth' and ' B speaks the truth' respectively. Then $P(A)=\frac{1}{2} \frac{}{0}$ and $P(B)=\frac{2}{3}$.
0. Value of Testimony

If p_{1} and p_{2} are the probabilities of speaking the truth of two independent witnesses A and B then P (their
combined statement is true $=\frac{p_{1} p_{2}}{p_{1} p_{2}+\left(1-p_{1}\right)\left(1-p_{2}\right)}$
In this case it has been assumed that we have no knowledge of the event except the statement made by A and B.
However if p is the probability of the happening of the event before their statement, then
P (their combined statement is true) $=\frac{p p_{1} p_{2}}{p p_{1} p_{2}+(1-p)\left(1-p_{1}\right)\left(1-p_{2}\right)}$.
Here it has been assumed that the statement given by all the independent witnesses can be given in two ways only, so that if all the witnesses tell falsehoods they agree in telling the same falsehood. If this is not the case and c is the chance of their coincidence testimony then the
Probability that the statement is true $=P p_{1} p_{2}$
Probability that the statement is false $=\left(1-p_{2}\right) . c\left(1-p_{1}\right)\left(1-p_{2}\right)$
However chance of coincidence testimony is taken only if the joint statement is not contradicted by any witness.
$\therefore \quad P\left(E / E_{1}\right)=P(A) . P(\bar{B})=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$

$$
P\left(E / E_{2}\right)=P(\bar{A}) \cdot P(B)=\frac{1}{2} \times \frac{2}{3}=\frac{2}{6}
$$

$$
P\left(E / E_{3}\right)=P(\bar{A}) \cdot P(\bar{B})=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}
$$

$$
\therefore \quad P(E)=P\left(E_{1}\right) P\left(E / E_{1}\right)+P\left(E_{2}\right) P\left(E^{0} / E_{2}\right)^{0}+P\left(E_{3}\right) P\left(E / E_{3}\right)
$$

$$
=\frac{1}{6} \cdot \frac{1}{6}+\frac{1}{6} \cdot \frac{2}{6}+\frac{4}{6} \cdot \frac{1}{6}=\frac{7}{36}
$$

$$
\text { Thus } P\left(E_{1} / E\right)=\frac{P\left(E_{1}\right) P\left(E / E_{1}\right)}{P(E)}=\frac{1}{7}
$$

$$
P\left(E_{2} / E\right)=\frac{P\left(E_{2}\right) P\left(E / E_{2}\right)}{P(E)}=\frac{2}{7}
$$

$$
P\left(E_{3} / E\right)=\frac{P\left(E_{3}\right) P\left(E / E_{3}\right)}{P(E)}=\frac{4}{7}
$$

$$
\therefore \quad \text { expectation of } C=\frac{1}{7} \times 5+\frac{2}{7} \times 3+0=\text { Rs. } \frac{11}{7}
$$

Solved Example \#39
A speaks the truth ' 3 times out of 4 ' and B speaks the truth ' 2 times out of 3 '. A die is thrown. Both assert that the number turned up is 2 . Find the probability of the truth of their assertion.

Solution

Let A and B be the events ' A speaks the truth' and ' B speaks the truth' repectively. Let C be the event
'the number turned up is not 2 but both agree to the same conclustion that the die has turned up 2'.
Then $P(A)=\frac{3}{4}, P(B)=\frac{2}{3}$ and $P(C)=\frac{1}{5} \times \frac{1}{5}$
There are two hypotheses
(i) the die turns up 2
(ii) the die does not turns up 2

Let these be the events E_{1} and E_{2} respectively, then
$P\left(E_{1}\right)=\frac{1}{6}, P\left(E_{2}\right)=\frac{5}{6} \quad$ (a priori probabilities)
Now let E be the event 'the statement made by A and B agree to the same conclusion.
then $P\left(E / E_{1}\right)=P(A) \cdot P(B)=\frac{3}{4} \cdot \frac{2}{3}=\frac{1}{2}$
$P\left(E / E_{2}\right)=P(\bar{A}) \cdot P(\bar{B}) \cdot P(C)=\frac{1}{4} \cdot \frac{1}{3} \cdot \frac{1}{25}=\frac{1}{300}$
Thus $P(E)=P\left(E_{1}\right) P\left(E / E_{1}\right)+P\left(E_{2}\right) P\left(E / E_{2}\right)$
$=\frac{1}{6} \times \frac{1}{2}+\frac{5}{6} \times \frac{1}{300}=\frac{31}{360}$
$\therefore \quad P\left(E_{1} / E\right)=\frac{P\left(E_{1}\right) P\left(E / E_{1}\right)}{P(E)}=\frac{30}{31}$

Self Practice Problems :

25. A ball is drawn from an urn containing 5 balls of different colours including white. Two men A and B whose probability of speaking the truth are $\frac{1}{3}$ and $\frac{2}{5}$ respectively assert that the ball drawn is white. Find the probability of the truth of their assertion.

Answer $\frac{4}{7}$

11. Binomial Probability Distribution :
(i) A probability distribution spells out how a total probability of 1 is distributed over several values of a random variable.
(ii) Mean of any probability distribution of a random variable is given by :

$$
\mu=\frac{\Sigma p_{i} x_{i}}{\Sigma p_{i}}=\Sigma p_{i} x_{i} \quad\left(\text { Since } \Sigma p_{i}=1\right)
$$

(iii) Variance of a random variable is given by, $\sigma^{2}=\Sigma\left(x_{i}-\mu\right)^{2} \cdot p_{i}$
$\underset{\leq \leq i s}{\text { s }}$
The probability distribution for a binomial variate ' X ' is given by :
$P(X=r)={ }^{n} C_{r} p^{r} q^{n-r}$ where $P(X=r)$ is the probability of r successes.
The recurrence formula $\frac{P(r+1)}{P(r)}=\frac{n-r}{r+1} \cdot \frac{p}{q}$, is very helpful for quickly computing $P(1) . P(2) . P(3)$ etc. if $P(0)$ is known.
Mean of BPD $=n p$; variance of BPD $=n p q$.
(vi)
If p represents a person's chance of success in any venture and ' M ' the sum of money which he will receive in case of success, then his expectations or probable value $=\mathrm{pM}$

Solved Example \# 40

A random variable X has the following probability distribution :

X	0	1	2	3	4	5	6	7
$P(X)$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

(i) k
(ii) $\mathrm{P}(\mathrm{X}<3)$
(iii) $P(X>6)$
(iv) $\mathrm{P}(0<\mathrm{X}<3)$
[Hint: Use $\sum P(X)=1$ to determine , $P(X<3)=P(0)+P(1)+P(2), P(X>6)=P(7)$ etc.]
Solved Example \# 41
A pair of dice is thrown 5 times. If getting a doublet is considered as a success, then find the mean and variance of successes.

Solution

In a single throw of a pair of dice, probability of getting a doublet $=\frac{1}{6}$
con sidering it to be a success, $\mathrm{p}=\frac{1}{6}$
$\therefore \quad q=1-\frac{1}{6}=\frac{5}{6}$
mean $=5 \times \frac{1}{6}=\frac{5}{6}$
variance $=5 \times \frac{1}{6} \cdot \frac{5}{6}=\frac{25}{36}$

Solved Example \# 42

A pair of dice is thrown 4 times. If getting a total of 9 in a single throw is considered as a success then find the mean and variance of successes.

Solution

$p=$ probability of getting a total of $9=\frac{4}{36}=\frac{1}{9}$
$\therefore \quad q=1-\frac{1}{9}=\frac{8}{9}$
$\therefore \quad$ mean $=n p=4 \times \frac{1}{9}=\frac{4}{9}$
variance $=n \mathrm{nq}=4 \times \frac{1}{9} \times \frac{8}{9}=\frac{32}{81}$
Solved Example \# 43
Difference between mean and variance of a Binomial variate is ' 1 ' and difference between their squares is ' 11 '.

Solution

Find the probability of getting exactly three success
$\begin{array}{lll}\text { Mean }=n p & \text { \& variance }=n p q & \\ \text { therefore, } & n p-n p q=1 & \ldots \ldots . . \text { (i) } \\ n^{2} p^{2}-n^{2} p^{2} q^{2}=11 & \ldots \ldots \ldots \text { (ii) }\end{array}$
Also, we know that $p+q=1$
Divide equation (ii) by square of (i) and solve, we get, $q=\frac{5}{6}, p=\frac{1}{6} \& n=36$
27. Probability that a bulb produced by a factory will fuse after an year of use is 0.2 . If fusing of a bulb is considered an failure, find the mean and variance of successes for a sample of 10 bulbs.
Answer
mean $=8$ and variance $=1.6$
28. A random variable X is specified by the following distribution law :

X	2	3	4
$P(X=x)$	0.3	0.4	0.3

Then the variance of this distribution is :
(A^{*}) 0.6
(B) 0.7
(C) 0.77
(D) 1.55
12. Geometrical Applications:

The following statements are axiomatic :
(i) If a point is taken at random on a given straight line segment $A B$, the chance that it falls on a particular
(ii) If a point is taken at random on the area S which includes an area σ, the chance that the point falls on σ is σ / S.

Required probability $=\frac{\text { favorable volume }}{\text { total volume }}$

Clearly if edge length of cube is a radius of sphere will be $\frac{a \sqrt{3}}{2}$
Thus, volume of sphere $=\frac{4}{3} \pi\left(\frac{\mathrm{a} \sqrt{3}}{2}\right)^{3}=\frac{\pi \mathrm{a}^{3} \sqrt{3}}{2}$

Solved Example \# 45
A given line segment is divided at random into three parts. What is the probability that they form sides of a possible triangle?

Let $A B$ be the line segment of length ℓ.
Let C and D be the points which divide $A B$ into three parts.
Let $A C=x, C D=y$. Then $D B=\ell-x-y$.
Clearly $x+y<\ell$
the sample space is given by
the region enclosed by $\Delta \mathrm{OPQ}$, where $\mathrm{OP}=\mathrm{OQ}=\ell$

Area of $\triangle \mathrm{OPQ}=\frac{\ell^{2}}{2}$
Now if the parts $A C, C D$ and $D B$ form a triangle, then
$x+y>\ell-x-y \quad$ i.e. $\quad x+y>\frac{\ell}{2}$
$x+\ell-x-y>y \quad$ i.e. $y<\frac{\ell}{2}$
$y+\ell-x-y>x \quad$ i.e. $\quad x<\frac{\ell}{2}$
from (i), (ii) and (iii), we get
the event is given by the region closed in \triangle RST
$E \quad \therefore \quad$ Probability of the event $=\frac{\operatorname{ar}(\Delta \mathrm{RST})}{\operatorname{ar}(\Delta \mathrm{OPQ})}=\frac{\frac{1}{2} \cdot \frac{\ell}{2} \cdot \frac{\ell}{2}}{\frac{\ell^{2}}{2}}=\frac{1}{4}$
$\mathrm{O}_{\mathrm{O}} \mathrm{Solved}$ Example \# 46
${ }^{-}$Solved Example \# 46
On a line segment of length L two points are taken at random, find the probability that the distance between them is ℓ, where $\ell<1$

Solution

Let $A B$ be the line segment
Let C and D be any two points on $A B$ so that $A C=x$ and $C D=y$. Then $x+y<L, y>\ell$
$\therefore \quad$ sample space is represented by the region enclosed by $\triangle \mathrm{OPQ}$.
Area of $\triangle \mathrm{OPQ}=\frac{1}{2} \mathrm{~L}^{2}$

The event is represented by the region, bounded by the $\triangle \mathrm{RSQ}$
Area of $\triangle \mathrm{RSQ}=\frac{1}{2}(\mathrm{~L}-\ell)^{2}$
$\therefore \quad$ probability of the event $=\left(\frac{L-\ell}{L}\right)^{2}$

Self Practice Problems:

29. A line segment of length a is divided in two parts at random by taking a point on it, find the probability that no part is greater than b, where $2 b>a$
Answer $\quad \frac{2 b-a}{a}$
30. A cloth of length 10 meters is to be randomly distributed among three brothers, find the probability that no one gets more than 4 meters of cloth.

