If $1, \alpha_{1}, \alpha_{2}, \alpha_{3} \ldots . \alpha_{\mathrm{n}-1}$ are the $\mathrm{n}, \mathrm{n}^{\text {th }}$ root of unity then:
(i) They are in G.P. with common ratio $\mathrm{e}^{\mathrm{i}(2 \pi / \mathrm{n})} \quad \mathcal{\&}$
(ii) $1^{\mathrm{p}}+\alpha_{1}^{\mathrm{p}}+\alpha_{2}^{\mathrm{p}}+\ldots .+\alpha_{\mathrm{n}-1}^{\mathrm{p}}=0$ if p is not an integral multiple of n $=\mathrm{n}$ if p is an integral multiple of n
(iii) $\quad\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) \ldots \ldots .\left(1-\alpha_{n-1}\right)=n \quad \boldsymbol{\&}$
$\left(1+\alpha_{1}\right)\left(1+\alpha_{2}\right) \ldots \ldots . .\left(1+\alpha_{\mathrm{n}}-1\right)=0$ if n is even and 1 if n is odd.
(iv) $1 \cdot \alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3} \ldots \ldots \ldots . \alpha_{n-1}=1$ or -1 according as $n$ is odd or even.
11. THE SUM OF THE FOLLOWING SERIES SHOULD BE REMEMBERED :
(i) $\cos \theta+\cos 2 \theta+\cos 3 \theta+\ldots . .+\cos n \theta=\frac{\sin (n \theta / 2)}{\sin (\theta / 2)} \cos \left(\frac{n+1}{2}\right) \theta$.
(ii) $\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots . .+\sin n \theta=\frac{\sin (\mathrm{n} \theta / 2)}{\sin (\theta / 2)} \sin \left(\frac{\mathrm{n}+1}{2}\right) \theta$.
12. STRAIGHT LINES \& CIRCLES IN TERMS OF COMPLEX NUMBERS :
(A) If $z_{1} \& z_{2}$ are two complex numbers then the complex number $z=\frac{n z_{1}+m z_{2}}{m+n}$ divides the joins of $z_{1}$ $\& z_{2}$ in the ratio $m: n$.
Note:(i) If $a, b, c$ are three real numbers such that $a z_{1}+\mathrm{bz}_{2}+\mathrm{cz}_{3}=0$;
where $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are not all simultaneously zero, then the complex numbers $\mathrm{z}_{1}, \mathrm{z}_{2}$ \& $\mathrm{z}_{3}$ are collinear.
(ii) If the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of a $\Delta$ represent the complex nos. $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ respectively, then :
(a) Centroid of the $\triangle \mathrm{ABC}=\frac{\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}}{3}$ :
(b) Orthocentre of the $\triangle \mathrm{ABC}=$

$$
\begin{aligned}
& \frac{(a \sec \mathrm{~A}) \mathrm{z}_{1}+(\mathrm{b} \sec \mathrm{~B}) \mathrm{z}_{2}+(\mathrm{csec} \mathrm{C}) \mathrm{z}_{3}}{a \sec \mathrm{~A}+\mathrm{bsec} \mathrm{~B}+\mathrm{csec} \mathrm{C}} \text { OR } \frac{\mathrm{z}_{1} \tan \mathrm{~A}+\mathrm{z}_{2} \tan \mathrm{~B}+\mathrm{z}_{3} \tan \mathrm{C}}{\tan \mathrm{~A}+\tan \mathrm{B}+\tan \mathrm{C}} \\
& \text { Incentre of the } \triangle A B C=\left(a z_{1}+b \mathrm{z}_{2}+c \mathrm{z}_{3}\right) \div(\mathrm{a}+\mathrm{b}+\mathrm{c}) .
\end{aligned}
$$

(d) Circumcentre of the $\triangle \mathrm{ABC}=$ :
$\left(\mathrm{Z}_{1} \sin 2 \mathrm{~A}+\mathrm{Z}_{2} \sin 2 \mathrm{~B}+\mathrm{Z}_{3} \sin 2 \mathrm{C}\right) \div(\sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C})$.
(B) $\operatorname{amp}(\mathrm{z})=\theta$ is a ray emanating from the origin inclined at an angle $\theta$ to the $\mathrm{x}-$ axis.
(C) $\quad|\mathrm{z}-\mathrm{a}|=|\mathrm{z}-\mathrm{b}|$ is the perpendicular bisector of the line joining a to b .
(D) The equation of a line joining $\mathrm{z}_{1} \& \mathrm{z}_{2}$ is given by ;
$\mathrm{z}=\mathrm{z}_{1}+\mathrm{t}\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)$ where t is a perameter.
(E) $\quad \mathrm{z}=\mathrm{z}_{1}(1+\mathrm{it})$ where t is a real parameter is a line through the point $\mathrm{z}_{1}$ \& perpendicular to $\mathrm{oz}_{1}$.
(F) The equation of a line passing through $z_{1} \& z_{2}$ can be expressed in the determinant form as
$\left|\begin{array}{ccc}\mathrm{z} & \overline{\mathrm{z}} & 1 \\ \mathrm{z}_{1} & \bar{z}_{1} & 1 \\ \mathrm{z}_{2} & \overline{\mathrm{z}}_{2} & 1\end{array}\right|=0$. This is also the condition for three complex numbers to be collinear.
$\mathrm{z}\left(\overline{\mathrm{z}}_{1}-\overline{\mathrm{z}}_{2}\right)-\overline{\mathrm{z}}\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)+\left(\mathrm{z}_{1} \overline{\mathrm{z}}_{2}-\overline{\mathrm{z}}_{1} \mathrm{z}_{2}\right)=0$, which on manipulating takes the form as $\bar{\alpha} \mathrm{z}+\alpha \overline{\mathrm{z}}+\mathrm{r}=0$ where $r$ is real and $\alpha$ is a non zero complex constant.
(H) The equation of circle having centre $z_{0} \&$ radius $\rho$ is :
$\left|z-z_{0}\right|=\rho$ or $z \bar{z}-z_{0} \bar{z}-\bar{z}_{0} z+\bar{z}_{0} z_{0}-\rho^{2}=0$ which is of the form
$z \bar{z}+\bar{\alpha} z+\alpha \bar{z}+r=0, r$ is real centre $-\alpha \&$ radius $\sqrt{\alpha \bar{\alpha}-r}$.
Circle will be real if $\alpha \bar{\alpha}-r \geq 0$.
(I) The equation of the circle described on the line segment joining $z_{1} \& z_{2}$ as diameter is :
(i) $\arg \frac{\mathrm{z}-\mathrm{z}_{2}}{\mathrm{z}-\mathrm{z}_{1}}= \pm \frac{\pi}{2}$ or $\left(\mathrm{z}-\mathrm{z}_{1}\right)\left(\overline{\mathrm{z}}-\overline{\mathrm{z}}_{2}\right)+\left(\mathrm{z}-\mathrm{z}_{2}\right)\left(\overline{\mathrm{z}}-\overline{\mathrm{z}}_{1}\right)=0$
(J) Condition for four given points $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3} \& \mathrm{z}_{4}$ to be concyclic is, the number
taken as $\frac{\left(z-z_{2}\right)\left(z_{3}-z_{1}\right)}{\left(z-z_{1}\right)\left(z_{3}-z_{2}\right)}$ is real $\Rightarrow \frac{\left(z-z_{2}\right)\left(z_{3}-z_{1}\right)}{\left(z-z_{1}\right)\left(z_{3}-z_{2}\right)}=\frac{\left(\bar{z}-\bar{z}_{2}\right)\left(\bar{z}_{3}-\bar{z}_{1}\right)}{\left(\bar{z}-\bar{z}_{1}\right)\left(\bar{z}_{3}-\bar{z}_{2}\right)}$
13.(a) Reflection points for a straight line :

Two given points $\mathrm{P} \& \mathrm{Q}$ are the reflection points for a given straight line if the given line is the right bisector of the segment $P Q$. Note that the two points denoted by the complex numbers $z_{1} \& z_{2}$ will be $\underset{\sim}{\infty}$ the reflection points for the straight line $\bar{\alpha} z+\alpha \bar{z}+r=0$ if and only if; $\bar{\alpha} z_{1}+\alpha \bar{z}_{2}+r=0$, wherer is $\stackrel{\rightharpoonup}{\sigma}$ real and $\alpha$ is non zero complex constant.
(b) Inverse points w.r.t. a circle :

Two points $\mathrm{P} \& \mathrm{Q}$ are said to be inverse w.r.t. a circle with centre ' O ' and radius $\rho$, if :
(i) the point $\mathrm{O}, \mathrm{P}, \mathrm{Q}$ are collinear and on the same side of O .
(ii) $\mathrm{OP} . \mathrm{OQ}=\rho^{2}$.
Note that the two points $z_{1} \& z_{2}$ will be the inverse points w.r.t. the circle
$\mathrm{z} \overline{\mathrm{z}}+\bar{\alpha} \mathrm{z}+\alpha \overline{\mathrm{z}}+\mathrm{r}=0$ if and only if $\mathrm{z}_{1} \overline{\mathrm{z}}_{2}+\bar{\alpha} \mathrm{z}_{1}+\alpha \bar{z}_{2}+\mathrm{r}=0$.
14. PTOLEMY'S THEOREM : It states that the product of the lengths of the diagonals of a convex quadrilateral inscribed in a circle is equal to the sum of the lengths of the two pairs of its opposite sides. i.e. $\left|z_{1}-z_{3}\right|\left|z_{2}-z_{4}\right|=$
15. LOGARITHM OF A COMPLEX QUANTITY:

## VERY ELEMENTARY EXERCISE

Q. 1 Simplify and express the result in the form of $a+b i$
(a) $\left(\frac{1+2 i}{2+i}\right)^{2}$
(b) $-i(9+6 i)$
$(2-i)^{-1}(c)$
c) $\left(\frac{4 i^{3}-i}{2 i+1}\right)^{2}$
(d) $\frac{3+2 i}{2-5 i}+\frac{3-2 i}{2+5 i}$
(e) $\frac{(2+i)^{2}}{2-i}-\frac{(2-i)^{2}}{2+i}$
(b) $(x+i y)+(7-5 i)=9+4 i$
(a) $(x+2 y)+i(2 x-3 y)=5-4 i$
(d) $(2+3 i) x^{2}-(3-2 i) y=2 x-3 y+5 i$
(c) $x^{2}-y^{2}-i(2 x+y)=2 i$
(d) $(2+3 i) x^{2}-(3-2 i) y$
$4 y^{2}-\left(x^{2} / 2\right)+\left(3 x y-2 y^{2}\right) i$
(e) $4 x^{2}+3 x y+\left(2 x y-3 x^{2}\right) i=4 y^{2}-\left(x^{2} / 2\right)+$
Find the square root of
(a) $9+40 i$
(b) $-11-60 \mathrm{i}$
(c) 50 i
(a) If $f(x)=x^{4}+9 x^{3}+35 x^{2}-x+4$, find $f(-5+4 i)$
(b) If $g(x)=x^{4}-x^{3}+x^{2}+3 x-5$, find $g(2+3 i)$
Q. 5 Among the complex numbers $z$ satisfying the condition $|z+3-\sqrt{3} i|=\sqrt{3}$, find the number having the Q 6 least positive argument.

Solve the following equations over $C$ and express the result in the form $a+i b, a, b \in R$.
(a) $i x^{2}-3 x-2 i=0$
(b) $2(1+i) x^{2}-4(2-i) x-5-3 i=0$
Q. 7 Locate the points representing the complex number $z$ on the Argand plane:
仓 $\quad$ (a) $|\mathrm{z}+1-2 \mathrm{i}|=\sqrt{7}$;
(b) $|z-1|^{2}+|z+1|^{2}=4$;
; (c) $\left|\frac{\mathrm{z}-3}{\mathrm{z}+3}\right|=3$;
(d) $|z-3|=|z-6|$
Q. 8 If $\mathrm{a} \& \mathrm{~b}$ are real numbers between $0 \& 1$ such that the points $\mathrm{z}_{1}=\mathrm{a}+\mathrm{i}, \mathrm{z}_{2}=1+\mathrm{bi} \& \mathrm{z}_{3}=0$ form an equilateral triangle, then find the values of ' $a$ ' and ' $b$ '.
$+i x^{2} y \& x^{2}+y+4 i$ conjugate complex?
Q. 10 Find the modulus, argument and the principal argument of the complex numbers.
(i) $6\left(\cos 310^{\circ}-\mathrm{i} \sin 310^{\circ}\right)$
(ii) $-2\left(\cos 30^{\circ}+\mathrm{i} \sin 30^{\circ}\right)$
(iii) $\frac{2+\mathrm{i}}{4 \mathrm{i}+(1+\mathrm{i})^{2}}$
Q. 11 If $(x+i y)^{1 / 3}=a+b i$; prove that $4\left(a^{2}-b^{2}\right)=\frac{x}{a}+\frac{y}{b}$.
Q.12(a) If $\frac{a+i b}{c+i d}=p+q i$, prove that $p^{2}+q^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$.
(b) Let $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ be the complex numbers such that

$$
\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}=\mathrm{z}_{1} \mathrm{z}_{2}+\mathrm{z}_{2} \mathrm{z}_{3}+\mathrm{z}_{3} \mathrm{z}_{1}=0 \text {. Prove that }\left|\mathrm{z}_{1}\right|=\left|\mathrm{z}_{2}\right|=\left|\mathrm{z}_{3}\right| .
$$

Q. 13 Let z be a complex number such that $\mathrm{z} \in \mathrm{c} \backslash \mathrm{R}$ and $\frac{1+\mathrm{z}+\mathrm{z}^{2}}{1-\mathrm{z}+\mathrm{z}^{2}} \in R$, then prove that $|\mathrm{z}|=1$.
Q. 14 Prove the identity, $\left|1-z_{1} \bar{z}_{2}\right|^{2}-\left|z_{1}-z_{2}\right|^{2}=\left(1-\left|z_{1}\right|^{1}\right)^{2}\left(1-\left|z_{2}\right|^{2}\right)$ geometrical interpretation of this identity.
Q. 16 (a) Find all non-zero complex numbers $Z$ satisfying $\bar{Z}=i Z^{2}$.
(b) If the complex numbers $\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots . . . . . . . . . . . \mathrm{z}_{\mathrm{n}}$ lie on the unit circle $|\mathrm{z}|=1$ then show that

$$
\left|\mathrm{z}_{1}+\mathrm{z}_{2}+\ldots \ldots \ldots \ldots . .+\mathrm{z}_{\mathrm{n}}\right|=\left|\mathrm{z}_{1}^{-1}+\mathrm{z}_{2}^{-1}+\ldots \ldots \ldots \ldots \ldots . . \mathrm{z}_{\mathrm{n}}^{-1}\right| .
$$

Q. 17 Find the Cartesian equation of the locus of ' $z$ ' in the complex plane satisfying, $|z-4|+|z+4|=16$.
Q. 18 If $\omega$ is an imaginary cube root of unity then prove that:
(a) $\left(1+\omega-\omega^{2}\right)^{3}-\left(1-\omega+\omega^{2}\right)^{3}=0$
(b) $\left(1-\omega+\omega^{2}\right)^{5}+\left(1+\omega-\omega^{2}\right)^{5}=32$
(c) If $\omega$ is the cube root of unity, Find the value of, $\left(1+5 \omega^{2}+\omega^{4}\right)\left(1+5 \omega^{4}+\omega^{2}\right)\left(5 \omega^{3}+\omega+\omega^{2}\right)$.
Q. 19 If $\omega$ is a cube root of unity, prove that ; (i) $\left(1+\omega-\omega^{2}\right)^{3}-\left(1-\omega+\omega^{2}\right)^{3}$
(ii) $\frac{a+b \omega+c \omega^{2}}{c+a \omega+b \omega^{2}}=\omega^{2}$
(iii) $(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)\left(1-\omega^{8}\right)=9$
Q. 20 If $x=a+b+y=a \omega+b \omega^{2} ; \quad z=a \omega^{2}+b \omega$, show that
(i) $x y z=a^{3}+b^{3}$
(ii) $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=6$ ab (iii) $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}=3\left(\mathrm{a}^{3}+\mathrm{b}^{3}\right)$
$\infty$
© Q. 21 If $(w \neq 1)$ is a cube root of unity then

$$
\left|\begin{array}{ccc}
1 & 1+i+w^{2} & w^{2} \\
1-i & -1 & w^{2}-1 \\
-i & -i+w-1 & -1
\end{array}\right|=
$$

(A) 0
(B) 1
(D) w
$\underset{\sim}{\mathrm{Q}} \mathrm{Q} .22(\mathrm{a})(1+\mathrm{w})^{7}=\mathrm{A}+\mathrm{Bw}$ where w is the imaginary cube root of a unity and $\mathrm{A}, \mathrm{B} \in \mathrm{R}$, find the ordered pair (A, B).
(b) The value of the expression ;

1. $(2-w)\left(2-w^{2}\right)+2$. $(3-w)\left(3-w^{2}\right)+$ $\qquad$ $+(n-1) .(n-w)\left(n-w^{2}\right)$, where $w$ is an imaginary cube root of unity is $\qquad$ $+$
Q. 23 If $n \in N$, prove that $(1+i)^{n}+(1-i)^{n}=2^{\frac{n}{2}+1} \cdot \cos \frac{n \pi}{4}$.
Q. 24 Show that the sum $\sum_{\mathrm{k}=1}^{2 \mathrm{n}}\left(\sin \frac{2 \pi \mathrm{k}}{2 \mathrm{n}+1}-\mathrm{i} \cos \frac{2 \pi \mathrm{k}}{2 \mathrm{n}+1}\right)$ simplifies to a pure imaginary number.
Q. 25 If $x=\cos \theta+i \sin \theta \& 1+\sqrt{1-a^{2}}=n a$, prove that $1+a \cos \theta=\frac{a}{2 n}(1+n x)\left(1+\frac{n}{x}\right)$
Q. 26 The number $t$ is real and not an integral multiple of $\pi / 2$. The complex number $x_{1}$ and $x_{2}$ are the roots of the equation, $\tan ^{2}(\mathrm{t}) \cdot \mathrm{x}^{2}+\tan (\mathrm{t}) \cdot \mathrm{x}+1=0$ Show that $\left(\mathrm{x}_{1}\right)^{\mathrm{n}}+\left(\mathrm{x}_{2}\right)^{\mathrm{n}}=2\left(\cos \frac{2 \mathrm{n} \pi}{3}\right) \cot ^{\mathrm{n}} \mathrm{t}(\mathrm{t}$.
EXERCISE-1
Q. $1 \quad$ Simplify and express the result in the form of $a+b i$ :
(a) $-\mathrm{i}\left(9+6\right.$ i) $(2-\mathrm{i})^{-1}$
(b) $\left(\frac{4 i^{3}-i}{2 i+1}\right)^{2}$
(c) $\frac{3+2 \mathrm{i}}{2-5 \mathrm{i}}+\frac{3-2 \mathrm{i}}{2+5 \mathrm{i}}$
(d) $\frac{(2+\mathrm{i})^{2}}{2-\mathrm{i}}-\frac{(2-\mathrm{i})^{2}}{2+\mathrm{i}}$
(e) $\sqrt{i}+\sqrt{-i}$
Find the modulus, argument and the princip
(i) $z=1+\cos \left(\frac{10 \pi}{9}\right)+i \sin \left(\frac{10 \pi}{9}\right)$
(ii) $(\tan 1-i)^{2}$
(iii) $\mathrm{z}=\frac{\sqrt{5+12 \mathrm{i}}+\sqrt{5-12 \mathrm{i}}}{\sqrt{5+12 \mathrm{i}}-\sqrt{5-12 \mathrm{i}}}$
(iv) $\frac{i-1}{i\left(1-\cos \frac{2 \pi}{5}\right)+\sin \frac{2 \pi}{5}}$
Q. 3 Given that $x, y \in R$, solve :
(a) $(x+2 y)+i(2 x-3 y)=5-4 i$
(b) $\frac{x}{1+2 i}+\frac{y}{3+2 i}=\frac{5+6 i}{8 i-1}$
(c) $x^{2}-y^{2}-i(2 x+y)=2 i$
(d) $(2+2 i j) x^{3}+(3-2 i) y=2 x-3 y+5 i$
(e) $4 x^{2}+3 x y+\left(2 x y-3 x^{2}\right) i=4 y^{2}-\left(x^{2} / 2\right)+\left(3 x y-2 y^{2}\right) i$
Q.4(a) Let $Z$ is complex satisfying the equation, $Z^{2}-(3+i) z+m+2 i=0$, where $m \in R$.
(b) a, b, c are real numbers in the polynomial, $\mathrm{P}(\mathrm{Z})=2 \mathrm{Z}^{4}+\mathrm{aZ}+\mathrm{bZ}^{2}+\mathrm{cZ}+3$
If two roots of the equation $\mathrm{P}(\mathrm{Z})=0$ are 2 and i , then find the value of 'a'.
Q.5(a) Find the real values of $x \& y$ for which $z_{1}=9 y^{2}-4-10 i x$ and
$z_{2}=8 y^{2}-20 i$ are conjugate complex of each other.
(b) Find the value of $x^{4}-x^{3}+x^{2}+3 x-5$ if $x=2+3 i$
(a) $z^{2}-(3-2 i) z=(5 i-5)$
(b) $|\mathrm{z}|+\mathrm{z}=2+\mathrm{i}$
Q.7(a) If ${ }^{5} \mathrm{i}^{3}+\mathrm{Z}^{2}-\mathrm{Z}+\mathrm{i}=0$, then show that $|\mathrm{Z}|=1$.
(b) Let $z_{1}$ and $z_{2}$ be two complex numbers such that $\left|\frac{z_{1}-2 z_{2}}{2-z_{1} \bar{z}_{2}}\right|=1$ and $\left|z_{2}\right| \neq 1$, find $\left|z_{1}\right|$.
(c) Let $z_{1}=10+6 i \& z_{2}=4+6$ i. If $z$ is any complex number such that the argument of, $\frac{z-z_{1}}{z-z_{2}}$ is $\frac{\pi}{4}$, then prove that $|z-7-9 i|=3 \sqrt{2}$.
Q. 8 Show that the product,
$\left[1+\left(\frac{1+\mathrm{i}}{2}\right)\right]\left[1+\left(\frac{1+\mathrm{i}}{2}\right)^{2}\right]\left[1+\left(\frac{1+\mathrm{i}}{2}\right)^{2^{2}}\right] \ldots . .\left[1+\left(\frac{1+\mathrm{i}}{2}\right)^{2^{\mathrm{n}}}\right]$ is equal to $\left(1-\frac{1}{2^{2^{\mathrm{n}}}}\right)(1+\mathrm{i}) \quad$ where $\mathrm{n} \geq 2$.
Q. 9 Let $\mathrm{a} \& \mathrm{~b}$ be complex numbers (which may be real) and let,
$Z=z^{3}+(a+b+3 i) z^{2}+(a b+3 i a+2 i b-2) z+2 a b i-2 a$.
(i) Show that Z is divisible by, $\mathrm{z}+\mathrm{b}+\mathrm{i}$. (ii) Find all complex numbers z for which $\mathrm{Z}=0$.
(iii) Find all purely imaginary numbers a \& b when $\mathrm{z}=1+\mathrm{i}$ and Z is a real number.
Q. 10 Interpret the following locii in $\mathrm{z} \in \mathrm{C}$.
(a)
$1<|z-2 i|<3$
(b) $\operatorname{Re}\left(\frac{z+2 i}{i z+2}\right) \leq 4 \quad(z \neq 2 i)$
(c) $\quad \operatorname{Arg}(\mathrm{z}+\mathrm{i})-\operatorname{Arg}(\mathrm{z}-\mathrm{i})=\pi / 2$
(d) $\quad \operatorname{Arg}(\mathrm{z}-\mathrm{a})=\pi / 3$ where $\mathrm{a}=3+4 \mathrm{i}$.
Q.11 Prove that the complex numbers $z_{1}$ and $z_{2}$ and the origin form an isosceles triangle with vertical angle $2 \pi / 3$ if $z_{1}^{2}+z_{2}^{2}+z_{1} z_{2}=0$. that $\angle \mathrm{POQ}=\angle \mathrm{QOR}=\theta$. If ' O ' is the origin \& $\mathrm{P}, \mathrm{Q} \& \mathrm{R}$ are represented by the complex numbers $Z_{1}, Z_{2} \& Z_{3}$ respectively, show that $: Z_{2}^{2} \cdot \cos 2 \theta=Z_{1} \cdot Z_{3} \cos ^{2} \theta$.
Q. 13 Let $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ are three pair wise distinct complex numbers and $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}$ are non-negative real numbers such that $\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}=1$. Prove that the complex number $\mathrm{z}=\mathrm{t}_{1} \mathrm{z}_{1}+\mathrm{t}_{2} \mathrm{z}_{2}+\mathrm{t}_{3} \mathrm{z}_{3}$ lies inside a triangle with vertices $z_{1}, z_{2}, z_{3}$ or on its boundry.
Q. 14 If a CiS $\alpha$, bCiS $\beta, \mathrm{cCiS} \gamma$ represent three distinct collinear points in an Argand's plane, then prove the following :
(i) $\quad \Sigma \mathrm{ab} \sin (\alpha-\beta)=0$.
(ii) $\quad(\mathrm{a} \mathrm{CiS} \alpha) \sqrt{\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc} \cos (\beta-\gamma)} \pm(\mathrm{bCiS} \beta) \sqrt{\mathrm{a}^{2}+\mathrm{c}^{2}-2 \mathrm{ac} \cos (\alpha-\gamma)}$

$$
\mp(c \operatorname{CiS} \gamma) \sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab} \cos (\alpha-\beta)}=0 .
$$

Q. 15 Find all real values of the parameter a for which the equation
$(a-1) z^{4}-4 z^{2}+a+2=0$ has only pure imaginary roots. If the origin ' O ' is the orthocentre of the triangle, then prove that

$$
\mathrm{z}_{1} \overline{\mathrm{z}}_{2}+\overline{\mathrm{z}}_{1} \mathrm{z}_{2}=\mathrm{z}_{2} \overline{\mathrm{z}}_{3}+\overline{\mathrm{z}}_{2} \mathrm{z}_{3}=\mathrm{z}_{3} \overline{\mathrm{z}}_{1}+\overline{\mathrm{z}}_{3} \mathrm{z}_{1}
$$

(b) If $\mathrm{A}, \mathrm{B}$ and C are the angles of a triangle
(a) $\left(1-w+w^{2}\right)\left(1-w^{2}+w^{4}\right)\left(1-w^{4}+w^{8}\right)$ ve that
(b) If $w$ is a complex cube root of unity, find the value of
$(1+w)\left(1+w^{2}\right)\left(1+w^{4}\right)\left(1+w^{8}\right)$..... to $n$ factors .
Q. 20 Prove that $\left(\frac{1+\sin \theta+i \cos \theta}{1+\sin \theta-i \cos \theta}\right)^{n}=\cos \left(\frac{n \pi}{2}-n \theta\right)+i \sin \left(\frac{n \pi}{2}-n \theta\right)$. Hence deduce that

$$
\left(1+\sin \frac{\pi}{5}+i \cos \frac{\pi}{5}\right)^{5}+i\left(1+\sin \frac{\pi}{5}-i \cos \frac{\pi}{5}\right)^{5}=0
$$

Q. 21 If $\cos (\alpha-\beta)+\cos (\beta-\gamma)+\cos (\gamma-\alpha)=-3 / 2$ then prove that:
(a) $\Sigma \cos 2 \alpha=0=\Sigma \sin 2 \alpha$
(b) $\Sigma \sin (\alpha+\beta)=0=\Sigma \cos (\alpha+\beta)$
(c) $\Sigma \sin ^{2} \alpha=\Sigma \cos ^{2} \alpha=3 / 2$
(d) $\Sigma \sin 3 \alpha=3 \sin (\alpha+\beta+\gamma)$
(e) $\Sigma \cos 3 \alpha=3 \cos (\alpha+\beta+\gamma)$
(f) $\cos ^{3}(\theta+\alpha)+\cos ^{3}(\theta+\beta)+\cos ^{3}(\theta+\gamma)=3 \cos (\theta+\alpha) \cdot \cos (\theta+\beta) \cdot \cos (\theta+\gamma)$ where $\theta \in \mathrm{R}$.
Q. 22 Resolve $\mathrm{Z}^{5}+1$ into linear \& quadratic factors with real coefficients. Deduce that: $4 \cdot \sin \frac{\pi}{10} \cdot \cos \frac{\pi}{5}=1$.
Q. 23 If $\mathrm{x}=1+\mathrm{i} \sqrt{3}$; $\mathrm{y}=1-\mathrm{i} \sqrt{3} \& \mathrm{z}=2$, then prove that $\mathrm{x}^{\mathrm{p}}+\mathrm{y}^{\mathrm{p}}=\mathrm{z}^{\mathrm{p}}$ for every prime $\mathrm{p}>3$.
(1) Q. 24 If the expression $\mathrm{z}^{5}-32$ can be factorised into linear and quadratic factors over real coefficients as
$\left(\mathrm{z}^{5}-32\right)=(\mathrm{z}-2)\left(\mathrm{Z}^{2}-p \mathrm{z}+4\right)\left(\mathrm{z}^{2}-q \mathrm{z}+4\right)$ then find the value of $\left(\mathrm{p}^{2}+2 \mathrm{p}\right)$.
Q.25(a) Let $\mathrm{z}=\mathrm{x}+i \mathrm{y}$ be a complex number, where $x$ and $y$ are real numbers. Let $A$ and B be the sets defined by $\mathrm{A}=\{\mathrm{z}| | \mathrm{z} \mid \leq 2\}$ and $\mathrm{B}=\{\mathrm{z} \mid(1-i) \mathrm{z}+(1+i) \overline{\mathrm{z}} \geq 4\}$. Find the area of the region $\mathrm{A} \cap \mathrm{B}$.
(b) For all real numbers x , let the mapping $\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}-i}$, where $i=\sqrt{-1}$. If there exist real number $a, b, c$ and $d$ for which $f(\mathrm{a}), f(\mathrm{~b}), f(\mathrm{c})$ and $f(\mathrm{~d})$ form a square on the complex plane. Find the area of the square.


Q. 2 The equation $\mathrm{x}^{3}=9+46 i$ where $i=\sqrt{-1}$ has a solution of the form a $+\mathrm{b} i$ where $a$ and $b$ are integers. Find the value of $\left(a^{3}+b^{3}\right)$.
Q. 3 Show that the locus formed by $z$ in the equation $z^{3}+i z=1$ never crosses the co-ordinate axes in the Argand's plane. Further show that $|z|=\sqrt{\frac{-\operatorname{Im}(z)}{2 \operatorname{Re}(z) \operatorname{Im}(z)+1}}$
Q. 4 If $\omega$ is the fifth root of 2 and $x=\omega+\omega^{2}$, prove that $x^{5}=10 x^{2}+10 x+6$.
Prove that, with regard to the quadratic equation $z^{2}+\left(p+i p^{\prime}\right) z+q+i q^{\prime}=0$
where $\mathrm{p}, \mathrm{p}^{\prime}, \mathrm{q}, \mathrm{q}^{\prime}$ are all real.
(i) if the equation has one real root then $\mathrm{q}^{\prime 2}-\mathrm{pp}^{\prime} \mathrm{q}^{\prime}+\mathrm{qp}^{\prime 2}=0$.
(ii) if the equation has two equal roots then $\mathrm{p}^{2}-\mathrm{p}^{\prime 2}=4 \mathrm{q} \& \mathrm{pp}^{\prime}=2 \mathrm{q}^{\prime}$. State whether these equal roots are real or complex.
Q. 6 If the equation $(z+1)^{7}+z^{7}=0$ has roots $z_{1}, z_{2}, \ldots z_{7}$, find the value of
(a) $\quad \sum_{\mathrm{r}=1}^{7} \operatorname{Re}\left(\mathrm{Z}_{\mathrm{r}}\right) \quad$ and $\quad$ (b) $\quad \sum_{\mathrm{r}=1}^{7} \operatorname{Im}\left(\mathrm{Z}_{\mathrm{r}}\right)$
Q. 7 Find the roots of the equation $\mathrm{Z}^{\mathrm{n}}=(\mathrm{Z}+1)^{\mathrm{n}}$ and show that the points which represent them are collinear on the complex plane. Hence show that these roots are also the roots of the equation
$\left(2 \sin \frac{m \pi}{n}\right)^{2} \bar{Z}^{2}+\left(2 \sin \frac{m \pi}{n}\right)^{2} \bar{Z}+1=0$.
Q. 8 Dividing $f(z)$ by $z-i$, we get the remainder $i$ and dividing it by $z+i$, we get the remainder

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
$1+i$. Find the remainder upon the division of $f(z)$ by $z^{2}+1$.
Q. 9 Let $z_{1} \& z_{2}$ be any two arbitrary complex numbers then prove that :

$$
\left|z_{1}+z_{2}\right| \geq \frac{1}{2}\left(\left|z_{1}\right|+\left|z_{2}\right|\right)\left|\frac{z_{1}}{\left|z_{1}\right|}+\frac{z_{2}}{\left|z_{2}\right|}\right| .
$$

Q. 10 If $\mathrm{Z}_{\mathrm{r}}, \mathrm{r}=1,2,3, \ldots \ldots \ldots .2 \mathrm{~m}, \mathrm{~m} \varepsilon \mathrm{~N}$ are the roots of the equation
$\mathrm{Z}^{2 \mathrm{~m}}+\mathrm{Z}^{2 \mathrm{~m}-1}+\mathrm{Z}^{2 \mathrm{~m}-2}+\ldots \ldots \ldots \ldots .+\mathrm{Z}+1=0$ then prove that $\sum_{\mathrm{r}=1}^{2 \mathrm{~m}} \frac{1}{\mathrm{Z}_{\mathrm{r}}-1}=-\mathrm{m}$
Q. 11 If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots .+C_{n} x^{n}(n \in N)$, prove that:
(a) $\mathrm{C}_{0}+\mathrm{C}_{4}+\mathrm{C}_{8}+\ldots=\frac{1}{2}\left[2^{\mathrm{n}-1}+2^{\mathrm{n} / 2} \cos \frac{\mathrm{n} \pi}{4}\right]$
(b) $\mathrm{C}_{1}+\mathrm{C}_{5}+\mathrm{C}_{9}+\ldots=\frac{1}{2}\left[2^{\mathrm{n}-1}+2^{\mathrm{n} / 2} \sin \frac{\mathrm{n} \pi}{4}\right]$
(c) $\mathrm{C}_{2}+\mathrm{C}_{6}+\mathrm{C}_{10}+\ldots .=\frac{1}{2}\left[2^{\mathrm{n}-1}-2^{\mathrm{n} / 2} \cos \frac{\mathrm{n} \pi}{4}\right]$
(d) $\mathrm{C}_{3}+\mathrm{C}_{7}+\mathrm{C}_{11}+\ldots=\frac{1}{2}\left[2^{\mathrm{n}-1}-2^{\mathrm{n} / 2} \sin \frac{\mathrm{n} \pi}{4}\right]$
(e) $\mathrm{C}_{0}+\mathrm{C}_{3}+\mathrm{C}_{6}+\mathrm{C}_{9}+$ $\qquad$ $=\frac{1}{3}\left[2^{\mathrm{n}}+2 \cos \frac{\mathrm{n} \pi}{3}\right]$
Q. 12 Let $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}, \mathrm{z}_{4}$ be the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ respectively of a square on the Argand diagram taken in anticlockwise direction then prove that :
(i) $2 \mathrm{z}_{2}=(1+\mathrm{i}) \mathrm{z}_{1}+(1-\mathrm{i}) \mathrm{z}_{3}$
\&
(ii) $2 z_{4}=(1-i) z_{1}+(1+i) z_{3}$
Q. 13 Show that all the roots of the equation $\left(\frac{1+i x}{1-i x}\right)^{n}=\frac{1+i a}{1-i a} \quad a \in R$ are real and distinct.
Q. 14 Prove that:
(a) $\cos x+{ }^{n} C_{1} \cos 2 x+{ }^{n} C_{2} \cos 3 x+\ldots .+{ }^{n} C_{n} \cos (n+1) x=2^{n} \cdot \cos ^{n} \frac{x}{2} \cdot \cos \left(\frac{n+2}{2}\right) x$
(b) $\sin \mathrm{x}+{ }^{\mathrm{n}} \mathrm{C}_{1} \sin 2 \mathrm{x}+{ }^{\mathrm{n}} \mathrm{C}_{2} \sin 3 \mathrm{x}+\ldots . .+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \sin (\mathrm{n}+1) \mathrm{x}=2^{\mathrm{n}} \cdot \cos ^{\mathrm{n}} \frac{\mathrm{x}}{2} \cdot \sin \left(\frac{\mathrm{n}+2}{2}\right) \mathrm{x}$
(c) $\cos \left(\frac{2 \pi}{2 n+1}\right)+\cos \left(\frac{4 \pi}{2 n+1}\right)+\cos \left(\frac{6 \pi}{2 n+1}\right)+\ldots .+\cos \left(\frac{2 n \pi}{2 n+1}\right)=-\frac{1}{2}$ When $n \in N$.
$\ddot{\theta}$ Q. 15 Show that all roots of the equation $a_{0} z^{n}+a_{1} z^{n-1}+\ldots \ldots+a_{n-1} z+a_{n}=n$,
where $\left|a_{i}\right| \leq 1, i=0,1,2, \ldots, n$ lie outside the circle with centre at the origin and radius $\frac{n-1}{n}$.
Q. 16 The points A, B, C depict the complex numbers $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ respectively on a complex plane \& the angle $B \& C$ of the triangle $A B C$ are each equal to $\frac{1}{2}(\pi-\alpha)$. Show that

$$
\left(z_{2}-z_{3}\right)^{2}=4\left(z_{3}-z_{1}\right)\left(z_{1}-z_{2}\right) \sin ^{2} \frac{\alpha^{2}}{2} .
$$

Q. 17 Show that the equation $\frac{A_{1}{ }^{2}}{x-a_{1}}+\frac{A_{2}{ }^{2}}{x-a_{2}}+\ldots . .+\frac{A_{n}{ }^{2}}{x-a_{n}}=k$ has no imaginary root, given that: $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3} \ldots . \mathrm{a}_{\mathrm{n}} \& \mathrm{~A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3} \ldots . . \mathrm{A}_{\mathrm{n}}, \mathrm{k}$ are all real numbers.
Q. 18 Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be distinct complex numbers such that $\frac{\mathrm{a}}{1-\mathrm{b}}=\frac{\mathrm{b}}{1-\mathrm{c}}=\frac{\mathrm{c}}{1-\mathrm{a}}=\mathrm{k}$. Find the value of k .
Q. 19 Let $\alpha, \beta$ be fixed complex numbers and z is a variable complex number such that,

$$
|z-\alpha|^{2}+|z-\beta|^{2}=\mathrm{k} .
$$

Find out the limits for ' k ' such that the locus of z is a circle. Find also the centre and radius of the circle.
Q. $20 \quad \mathrm{C}$ is the complex number. $\mathrm{f}: \mathrm{C} \rightarrow \mathrm{R}$ is defined by $\mathrm{f}(\mathrm{z})=\left|\mathrm{z}^{3}-\mathrm{z}+2\right|$. What is the maximum value of f on the unit circle $|\mathrm{z}|=1$ ?
Q. 21 Let $f(x)=\log _{\cos 3 x}(\cos 2 i x)$ if $x \neq 0$ and $f(0)=K$ (where $\left.i=\sqrt{-1}\right)$ is continuous at $x=0$ then find $\stackrel{\stackrel{\circ}{\varrho}}{\perp}$ the value of $K$. Use of LHospital's rule or series expansion not allowed.
Q. 22 If $z_{1}, z_{2}$ are the roots of the equation $\mathrm{az}^{2}+\mathrm{bz}+\mathrm{c}=0$, with $\mathrm{a}, \mathrm{b}, \mathrm{c}>0 ; 2 \mathrm{~b}^{2}>4 \mathrm{ac}>\mathrm{b}^{2}$;
$\mathrm{z}_{1} \in$ third quadrant $; \mathrm{z}_{2} \in$ second quadrant in the argand's plane then, show that

$$
\arg \left(\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}\right)=2 \cos ^{-1}\left(\frac{\mathrm{~b}^{2}}{4 \mathrm{ac}}\right)^{1 / 2}
$$

Q. 23 Find the set of points on the argand plane for which the real part of the complex number $(1+\mathrm{i}) \mathrm{z}^{2}$ is positive where $\mathrm{z}=\mathrm{x}+\mathrm{iy}, \mathrm{x}, \mathrm{y} \in \mathrm{R}$ and $\mathrm{i}=\sqrt{-1}$.
Q. 24 If $a$ and $b$ are positive integer such that $N=(a+i b)^{3}-107 i$ is a positive integer. Find $N$.

[REE '97, 6]
Q.2(a) Let $\mathrm{z}_{1}$ and $\mathrm{z}_{2}$ be roots of the equation $\mathrm{z}^{2}+\mathrm{pz}+\mathrm{q}=0$, where the co-efficients p and q may be complex numbers. Let A and B represent $\mathrm{z}_{1}$ and $\mathrm{z}_{2}$ in the complex plane. If $\angle \mathrm{AOB}=\alpha \neq 0$ and $\mathrm{OA}=\mathrm{OB}$, where O is the origin. Prove that $\mathrm{p}^{2}=4 \mathrm{q} \cos ^{2}\left(\frac{\alpha}{2}\right)$.
[JEE '97, 5]
(b) Prove that $\sum_{k=1}^{\mathrm{n}-1}(\mathrm{n}-\mathrm{k}) \cos \frac{2 \mathrm{k} \pi}{\mathrm{n}}=-\frac{\mathrm{n}}{2}$ where $\mathrm{n} \geq 3$ is an integer.
[JEE '97, 5]
Q.3(a) If $\omega$ is an imaginary cube root of unity, then $\left(1+\omega-\omega^{2}\right)^{7}$ equals
(A) $128 \omega$
(B) $-128 \omega$
(C) $128 \omega^{2}$
(D) $-128 \omega^{2}$
(b) The value of the sum $\sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)$, where $i=\sqrt{-1}$, equals
(A) i
(B) $i-1$
(C) -i
(D) 0
[JEE' 98, 2 + 2]
Q. 4 Find all the roots of the equation $(3 z-1)^{4}+(z-2)^{4}=0$ in the simplified form of $a+i b$.
Q.5(a) If $\mathrm{i}=\sqrt{-1}$, then $4+5\left(-\frac{1}{2}+\frac{\mathrm{i} \sqrt{3}}{2}\right)^{334}+3\left(-\frac{1}{2}+\frac{\mathrm{i} \sqrt{3}}{2}\right)^{365}$ is equal to:
(A) $1-\mathrm{i} \sqrt{3}$
(B) $-1+i \sqrt{3}$
(C) $i \sqrt{3}$
(D) $-\mathrm{i} \sqrt{3}$
[REE '98, 6]
(b) For complex numbers $z \& \omega$, prove that, $|z|^{2} \omega-|\omega|^{2} z=z-\omega$ if and only if,

$$
z=\omega \text { or } z \bar{\omega}=1
$$

[JEE '99, $2+10$ (out of 200)]
Q. 6 If $\alpha=e^{\frac{2 \pi i}{7}}$ and $f(x)=A_{0}+\sum_{k=t}^{20} A_{k} x^{k}$, then find the value of,

$$
f(x)+f(\alpha x)+\ldots \ldots+f^{k}\left(\alpha^{6} x\right) \text { independent of } \alpha
$$

[REE '99, 6]
Q.7(a) If $z_{1}, z_{2}, z_{3}$ are complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=\left[\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}\right]=1$, then $\frac{\pi}{5}$
$\left|z_{1}+z_{2}+z_{3}\right|$ is:
(A) equal to 1
(B) less than 1
(C) greater than 3
(D) equal to 3
(b) If $\arg (\mathrm{z})<0$, then $\arg (-\mathrm{z})-\arg (\mathrm{z})=$
(A) $\pi$
(B) $-\pi$
(C) $-\frac{\pi}{2}$
(D) $\frac{\pi}{2}$
[ JEE 2000 (Screening) $1+1$ out of 35]
Q. $8 \quad \begin{aligned} & \text { Given, } z=\cos \frac{2 \pi}{2 n+1}+i \sin \frac{2 \pi}{2 n+1}, \quad ' n ' \text { a positive integer, find the equation whose roots are, } \\ & \alpha=z+z^{3}+\ldots \ldots+z^{2 n-1}\end{aligned} \&^{2}=z^{2}+z^{4}+\ldots \ldots .+z^{2 n} . ~ \$$ $\alpha=z+z^{3}+\ldots \ldots+z^{2 n-1} \quad \&{ }^{2 n+1}=z^{2}+z^{4}+\ldots \ldots+z^{2 n}$.
[ REE 2000 (Mains) 3 out of 100]
Q.9(a) The complex numbers $z_{1}, z_{2}$ and $z_{3}$ satisfying $\frac{z_{1}-z_{3}}{z_{2}-z_{3}}=\frac{1-i \sqrt{3}}{2}$ are the vertices of a triangle which is
(A) of area zero
(B) right-angled isosceles
(C) equilateral
(D) obtuse - angled isosceles
(b) Let $\mathrm{z}_{1}$ and $\mathrm{z}_{2}$ be nth roots of unity which subtend a right angle at the origin. Then n must be of the form
(A) $4 \mathrm{k}+1$
(B) $4 \mathrm{k}+2$
(C) $4 \mathrm{k}+3$
(D) 4 k
[ JEE 2001 (Scr) $1+1$ out of 35]
Q. 10 Find all those roots of the equation $z^{12}-56 z^{6}-512=0$ whose imaginary part is positive.
[REE 2000, 3 out of 100 ]
Q.11(a) Let $\omega=-\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}$. Then the value of the determinant $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1-\omega^{2} & \omega^{2} \\ 1 & \omega^{2} & \omega^{4}\end{array}\right|$ is
(A) $3 \omega$
(B) $3 \omega(\omega-1)$
(C) $3 \omega^{2}$
(D) $3 \omega(1-\omega)$
(b) For all complex numbers $z_{1}, z_{2}$ satisfying $\left|z_{1}\right|=12$ and $\left|z_{2}-3-4 i\right|=5$, the minimum value of $\widetilde{\sim}$ $\left|\mathrm{z}_{1}-\mathrm{z}_{2}\right|$ is
(A) 0
(B) 2
(C) 7
(D) 17
[JEE 2002 (Scr) 3+3]
(c) Let a complex number $\alpha, \alpha \neq 1$, be a root of the equation
$z^{p+q}-z^{p}-z^{q}+1=0 \quad$ where $p, q$ are distinct primes.
Show that either $1+\alpha+\alpha^{2}+\ldots \ldots .+\alpha^{p-1}=0$ or $1+\alpha+\alpha^{2}+\ldots \ldots+\alpha^{q-1}=0$, but not both together.
[JEE 2002, (5)]
Q.12(a) If $z_{1}$ and $z_{2}$ are two complex numbers such that $\left|z_{1}\right|<1<\left|z_{2}\right|$ then prove that $\left|\frac{1-z_{1} \bar{z}_{2}}{z_{1}-z_{2}}\right|<1$.
(b) Prove that there exists no complex number $z$ such that $|\mathrm{z}|<\frac{1}{3}$ and $\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{r}} \mathrm{z}^{\mathrm{r}}=1$ where $\left|\mathrm{a}_{\mathrm{r}}\right|<2$.
[JEE-03, $2+2$ out of 60] Q.13(a) $\omega$ is an imaginary cube root of unity. If $\left(1+\omega^{2}\right)^{\mathrm{m}}=\left(1+\omega^{4}\right)^{\mathrm{m}}$, then least positive integral value of m is
(A) 6
(B) 5
(C) 4
(D) 3
(b) Find centre and radius of the circle determined by all complex numbers $z=x+i y$ satisfying $\left|\frac{(z-\alpha)}{(z-\beta)}\right|=k$, where $\alpha=\alpha_{1}+i \alpha_{2}, \beta=\beta_{1}+i \beta_{2}$ are fixed complex and $k \neq 1$.
[JEE 2004, 2 out of 60]
Q.14(a) The locus of $z$ which lies in shaded region is best represented by
(A) $\mathrm{z}:|\mathrm{z}+1|>2,|\arg (\mathrm{z}+1)|<\pi / 4$
(B) $\mathrm{z}:|\mathrm{z}-1|>2,|\arg (\mathrm{z}-1)|<\pi / 4$
(C) $\mathrm{z}:|\mathrm{z}+1|<2,|\arg (\mathrm{z}+1)|<\pi / 2$
(D) $\mathrm{z}:|\mathrm{z}-1|<2,|\arg (\mathrm{z}-1)|<\pi / 2$

(b) If $a, b, c$ are integers not all equal and $w$ is a cube root of unity $(w \neq 1)$, then the minimum value of $\left|a+b w+c w^{2}\right|$ is
(A) 0
(B) 1
(C) $\frac{\sqrt{3}}{2}$
(D) $\frac{1}{2}$
[JEE 2005 (Scr), 3 + 3]
(a) $\pm(5+4 \mathrm{i})$;
(b) $\pm(5-6 \mathrm{i})$
(c) $\pm 5(1+\mathrm{i})$
Q. 4
(a) -160;
(b) $-(77+108$ i)
$-\frac{3}{2}+\frac{3 \sqrt{3}}{2}$ i
Q. 6
(a) $-\mathrm{i},-2 \mathrm{i}$ (b) $\frac{3-5 \mathrm{i}}{2}$ or $-\frac{1+\mathrm{i}}{2}$
(a) on a circle of radius $\sqrt{7}$ with centre $(-1,2)$; (b) on a unit circle with centre at origin
(c) on a circle with centre $(-15 / 4,0) \&$ radius $9 / 4$; (d) a straight line
$\mathrm{a}=\mathrm{b}=2-\sqrt{3}$;
Q. $9 x=1, y=-4$ or $x=-1, y=-4$
Q. 10
(i) Modulus $=6, \operatorname{Arg}=2 \mathrm{k} \pi+\frac{5 \pi}{18}(\mathrm{~K} \in \mathrm{I})$, Principal $\operatorname{Arg}=\frac{5 \pi}{18}(\mathrm{~K} \in \mathrm{I})$
(ii) Modulus $=2, \operatorname{Arg}=2 \mathrm{k} \pi+\frac{7 \pi}{6}$, Principal $\operatorname{Arg}=-\frac{5 \pi}{6}$
(iii) Modulus $=\frac{\sqrt{5}}{6}, \operatorname{Arg}=2 \mathrm{k} \pi-\tan ^{-1} 2(\mathrm{~K} \in \mathrm{I})$, Principal $\operatorname{Arg}=-\tan ^{-1} 2$
(a) $\frac{\sqrt{3}}{2}-\frac{\mathrm{i}}{2},-\frac{\sqrt{3}}{2}-\frac{\mathrm{i}}{2}, \mathrm{i}$;
Q. $17 \frac{\mathrm{x}^{2}}{64}+\frac{\mathrm{y}^{2}}{48}=1 ; ~ \mathbf{Q . ~} 18$
(c) 64 ;
Q. 21 A
め
Q. 22 (a) (1, 1);
(b) $\left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right]^{2}-\mathrm{n}$

## EXERCISE-1

Q. 1 (a) $\frac{21}{5}-\frac{12}{5}$ i
(b) $3+4 \mathrm{i}$
(c) $-\frac{8}{29}+0 \mathrm{i}$
(d) $\frac{22}{5} \mathrm{i}$ (e) $\pm \sqrt{2}+0 \mathrm{i}$ or $0 \pm \sqrt{2} \mathrm{i}$
Q. 2 (i) Principal $\operatorname{Arg} z=-\frac{4 \pi}{9} ;|z|=2 \cos \frac{4 \pi}{9} ; \operatorname{Arg} z=2 k \pi-\frac{4 \pi}{9} k \in I$
(ii) Modulus $=\sec ^{2} 1, \operatorname{Arg}=2 n \pi+(2-\pi)$, Principal $\operatorname{Arg}=(2-\pi)$
(iii) Principal value of $\operatorname{Agr} z=-\frac{\pi}{2} \&|z|=\frac{3}{2}$; Principal value of $\operatorname{Arg} z=\frac{\pi}{2} \&|z|=\frac{2}{3}$
(iv) Modulus $=\frac{1}{\sqrt{2}} \operatorname{cosec} \frac{\pi}{5}, \operatorname{Arg} \mathrm{z}=2 \mathrm{n} \pi+\frac{11 \pi}{20}, \quad$ Principal $\operatorname{Arg}=\frac{11 \pi}{20}$
©.3(a) $\mathrm{x}=1, \mathrm{y}=2$; (b) $\mathrm{x}=1 \& \mathrm{y}=2$; (c) $(-2,2)$ or $\left(-\frac{2}{3},-\frac{2}{3}\right)$; (d) $(1,1)\left(0, \frac{5}{2}\right) ;$ (e) $\mathrm{x}=\mathrm{K}, \mathrm{y}=\frac{3 \mathrm{~K}}{2} \mathrm{~K} \in \mathrm{R}$
Q. 4
(a) 2 , (b) $-11 / 2$
Q. 5
(a) $[(-2,2) ;(-2,-2)]$
(b) $-(77+108$ i)
Q. 6
(a) $\mathrm{z}=(2+\mathrm{i})$ or $(1-3 \mathrm{i}) ;$ (b) $\mathrm{z}=\frac{3+4 \mathrm{i}}{4}$
Q. 7 (b) 2
Q. 9
(ii) $\mathrm{z}=-(\mathrm{b}+\mathrm{i}) ;-2 \mathrm{i},-\mathrm{a}$
(iii) $\left(-\frac{2 \mathrm{ti}}{3 \mathrm{t}+5}, \mathrm{ti}\right)$ where $\mathrm{t} \in \mathrm{R}-\left\{-\frac{5}{3}\right\}$
ชิQ. 10
(a) The region between the co encentric circles with centre at $(0,2) \&$ radii $1 \& 3$ units
(b) region outside or on the circle with centre $\frac{1}{2}+2 \mathrm{i}$ and radius $\frac{1}{2}$.
(c) semi circle (in the 1 st \& 4th quadrant) $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ (d) a ray emanating from the point $(3+4 i)$ directed away from the origin \& having equation $\sqrt{3} x-y+4-3 \sqrt{3}=0$
Q. $17\left(1-c^{2}\right)|z|^{2}-2(a+b c)(\operatorname{Re} z)+a^{2}-b^{2}=0$
Q. 18 (a) $K=3$, (b) -4
Q. 19 (b) one if $n$ is even ; $-w^{2}$ if $n$ is odd
Q. $22(\mathrm{Z}+1)\left(\mathrm{Z}^{2}-2 \mathrm{Z} \cos 36^{\circ}+1\right)\left(\mathrm{Z}^{2}-2 \mathrm{Z} \cos 108^{\circ}+1\right)$
Q. 244

## EXERCISE-2

$\underset{\sim}{\underset{\sim}{\amalg}} \mathbf{\text { Q. } 2} \quad 35 \quad$ Q. $6 \quad$ (a) $-\frac{7}{2}$, (b) zero $\quad$ Q. $8 \quad \frac{\mathrm{iz}}{2}+\frac{1}{2}+\mathrm{i} \quad$ Q. $18 \quad-\omega$ or $-\omega^{2}$
区. $19 \mathrm{k}>\frac{1}{2}|\alpha-\beta|^{2} \mathbf{Q . 2 0}|\mathrm{f}(\mathrm{z})|$ is maximum when $\mathrm{z}=\omega$, where $\omega$ is the cube root unity and $|\mathrm{f}(\mathrm{z})|=\sqrt{13}$
Q. $21 \mathrm{~K}=-\frac{4}{9}$
Q. 1 48(1-i)
Q. 3 (a) D
(b) B
Q. $4 \quad Z=\frac{(29+20 \sqrt{2})+i( \pm 15+25 \sqrt{2})}{82}$,
$\frac{(29-20 \sqrt{2})+i( \pm 15-25 \sqrt{2})}{82}$
Q. 5 (a) C
Q. $67 \mathrm{~A}_{0}+7 \mathrm{~A}_{7} \mathrm{x}^{7}+7 \mathrm{~A}_{14} \mathrm{x}^{14}$
Q. 7 (a) A
(b) A
Q. $8 z^{2}+z+\frac{\sin ^{2} n \theta}{\sin ^{2} \theta}=0$, where $\theta=\frac{2 \pi}{2 n+1}$
Q. $10 \pm 1+\mathrm{i} \sqrt{3}, \frac{( \pm \sqrt{3}+\mathrm{i})}{\sqrt{2}}, \sqrt{2} \mathrm{i}$
Q. 11
(a) B
; (b) B
$\infty$
Q. 9 (a) C, (b) D
Q. $25 \quad 51$

## EXERCISE-3

(A) 0
(B) $-\frac{1}{|z+1|^{2}}$
(C) $\left\lvert\, \frac{z}{z+1} \cdot \frac{1}{|z+1|^{2}}\right.$
(D) $\frac{\sqrt{2}}{|z+1|^{2}}$
Q. 13 (a) D ; (b) Centre $\equiv \frac{\mathrm{k}^{2} \beta-\alpha}{\mathrm{k}^{2}-1}$, Radius $=\frac{1}{\left(\mathrm{k}^{2}-1\right)} \sqrt{\left|\alpha-\mathrm{k}^{2} \beta\right|^{2}-\left(\mathrm{k}^{2} .|\beta|^{2}-|\alpha|^{2}\right)\left(\mathrm{k}^{2}-1\right)}$
(a) A ,
(b) B ,
(c) $z_{2}=-\sqrt{3} i ; z_{3}=(1-\sqrt{3})+i ; z_{4}=(1+\sqrt{3})-i$
Q. 15 D

## EXERCISE-4



If $w=\alpha,+i \beta$, where $\beta \neq 0$ and $z \neq 1$, satisfies the condition that $\left(\frac{w-\bar{w} z}{1-z}\right)$ is purely real, then the set of values of $z$ is
(A) $\{z:|z|=1\}$
(B) $\{z: z=\bar{z}\}$
(C) $\{z: z \neq 1\}$
(D) $\{z:|z|=1, z \neq 1\}$
4. If $(\sqrt{3}+i)^{100}=2^{99}(a+i b)$, then $b$ is equal to
(A) $\sqrt{3}$
(B) $\sqrt{2}$
(C) 1
(D) none of these
5. If $\operatorname{Re}\left(\frac{z-8 i}{z+6}\right)=0$, then $z$ lies on the curve
(A) $x^{2}+y^{2}+6 x-8 y=0$
(B) $4 x-3 y+24=0$
(C) $4 a b$
(D) none of these
6. If $n_{1}, n_{2}$ are positive integers then: $(1+i)^{n_{1}}+\left(1+i^{3}\right)^{n_{1}}+\left(1-i^{5}\right)^{n_{2}}+\left(1-i^{7}\right)^{n_{2}}$ is a real number if and only if
(A) $n_{1}=n_{2}+1$
(B) $\mathrm{n}_{1}+1=\mathrm{n}_{2}$
(C) $n_{1}=n_{2}^{2}$
(D) $n_{1}, n_{2}$ are anny two positive integers
[IIT-2005, 3]
(A) $z:|z+1|>2$ and $|\arg (z+1)|<\pi / 4$
(B) $z:|z-1|>2$ and $|\arg (z-1)|<\pi / 4$

The three vertices of a triangle are represented by the complex numbers, $0, z_{1}$ and $z_{2}$. If the triangle is
equilateral, then
(A) $z_{1}^{2}-z_{2}^{2}=z_{1} z_{2}$
(B) $z_{2}^{2}-z_{1}^{2}=z_{1} z_{2}$
(C) $z_{1}^{2}+z_{2}^{2}=z_{1} z_{2}$
(D) $z_{1}^{2}+z_{2}^{2}+z_{1} z_{2}=0$
8. If $x^{2}-x+1=0$ then the value of $\sum_{n=1}^{5}\left(x^{n}+\frac{1}{x^{n}}\right)^{2}$ is
(A) 8
(B) 10
(C) 12
(D) none of these
9. If $\alpha$ is nonreal and $\alpha=\sqrt[5]{1}$ then the value of $2^{\left|1+\alpha+\alpha^{2}+\alpha^{-2}-\alpha^{-1}\right|}$ is equal to
(A) 4
(B) 2
(C) 1
(D) none of these
10. If $z=x+i y$ and $z^{1 / 3}=a-i b$ then $\frac{x}{a}-\frac{y}{b}=k\left(a^{2}-b^{2}\right)$ where $k=$
(A) 1
(B) 2
(C) 3
(D) 4
11. $\left[\frac{-1+i \sqrt{3}}{2}\right]^{6}+\left[\frac{-1-\mathrm{i} \sqrt{3}}{2}\right]^{6}+\left[\frac{-1+i \sqrt{3}}{2}\right]^{5}+\left[\frac{-1-i \sqrt{3}}{2}\right]^{5}$ is equal to :
(A) 1
(B) -1
(C) 2
(D) none
12. Expressed in the form $r(\cos \theta+i \sin \theta),-2+2 i$ becomes :
(A) $2 \sqrt{2}\left[\cos \left(-\frac{\pi}{4}\right)+\mathrm{i} \sin \left(-\frac{\pi}{4}\right)\right]$
(B) $2 \sqrt{2}\left[\cos \left(\frac{3 \pi}{4}\right)+\mathrm{i} \sin \left(\frac{3 \pi}{4}\right)\right]$
(C) $2 \sqrt{2}\left[\cos \left(-\frac{3 \pi}{4}\right)+\mathrm{i} \sin \left(-\frac{3 \pi}{4}\right)\right]$
(D) $\sqrt{2}\left[\cos \left(-\frac{\pi}{4}\right)+\mathrm{i} \sin \left(-\frac{\pi}{4}\right)\right]$
13. The number of solutions of the equation in $z, z \bar{z}-(3+i) z-(3-i) \bar{z}-6=0$ is :
(A) 0
(B) 1
(C) 2
(D) infinite
14. If $|z|=\max \{|z-1|,|z+1|\}$ then
(A) $|\bar{z}+\bar{z}|=\frac{1}{2}$
(B) $z+\bar{z}=1$
(C) $|z+\bar{z}|=1$
(D) none of these
15. If $P, P^{\prime}$ represent the complex number $z_{1}$ and its additive inverse respectively then the complex equation of the circle with PP' as a diameter is
(A) $\frac{z}{z_{1}}=\left(\frac{z_{1}}{z}\right)$
(B) $z \bar{z}+z_{1} \bar{z}_{1}=0$
(C) $z \bar{z}_{1}+\bar{z} z_{1}=0$
(D) none of these
16. The points $z_{1}=3+\sqrt{3} i$ and $z_{2}=2 \sqrt{3}+6 i$ are given on a complex plane. The complex number tying on the bisector of the angle formed by the vectors $z_{1}$ and $z_{2}$ is:
(A) $z=\frac{(3+2 \sqrt{3})}{2}+\frac{\sqrt{3}+2}{2} i$
(B) $z=5+5 i$
(C) $\mathrm{z}=-1-\mathrm{i}$
(D) none

The expression $\left[\frac{1+\mathrm{i} \tan \alpha}{1-\mathrm{i} \tan \alpha}\right]^{\mathrm{n}}-\frac{1+\mathrm{i} \tan \mathrm{n} \alpha}{1-\mathrm{i} \tan \alpha}$ when simplified reduces to :
(A) zero
(B) $2 \sin n \alpha$
(C) $2 \cos n \alpha$
(D) none
18. All roots of the equation, $(1+z)^{6}+z^{6}=0$ :
(A) lie on a unit circle with centre at the origin (B) lie on a unit circle with centre at ( $-1,0$ )
(C) lie on the vertices of a regular polygon with centre at the origin (D) are collinear
19. Points $z_{1} \& z_{2}$ are adjacent vertices of a regular octagon. The vertex $z_{3}$ adjacent to $z_{2}\left(z_{3} \neq z_{1}\right)$ is represented by:
(A) $z_{2}+\frac{1}{\sqrt{2}}(1 \pm i)\left(z_{1}+z_{2}\right)$
(B) $z_{2}+\frac{1}{\sqrt{2}}(1 \pm i)\left(z_{1}-z_{2}\right)$
(C) $z_{2}+\frac{1}{\sqrt{2}}(1 \pm i)\left(z_{2}-z_{1}\right)$
(D) none of these
20. If $z=x+i y$ then the equation of a straight line $A x+B y+C=0$ where $A, B, C \in R$, can be written on the complex plane in the form $\bar{a} z+a \bar{z}+2 C=0$ where ' $a$ ' is equal to :
(A) $\frac{(A+i B)}{2}$
(B) $\frac{\mathrm{A}-\mathrm{iB}}{2}$
(C) $A+i B$
(D) none
21. The points of intersection of the two curves $|z-3|=2$ and $|z|=2$ in an argand plane are:
(A) $\frac{1}{2}(7 \pm \mathrm{i} \sqrt{3})$
(B) $\frac{1}{2}(3 \pm \mathrm{i} \sqrt{7})$
(C) $\frac{3}{2} \pm i \sqrt{\frac{7}{2}}$
(D) $\frac{7}{2} \pm i \sqrt{\frac{3}{2}}$
22. The equation of the radical axis of the two circles represented by the equations, $|z-2|=3$ and $|z-2-3 i|=4$ on the complex plane is:
(A) $3 i z-3 i \bar{z}-2=0$
(B) $3 i z-3 i \bar{z}+2=0$
(C) $i z-i \bar{z}+1=0$
(D) $2 \mathrm{iz}-2 \mathrm{i} \overline{\mathrm{z}}+3=0$
23. If $\prod_{\mathrm{p}=1}^{\mathrm{r}} \mathrm{e}^{\mathrm{ip} \theta}=1$ where $\Pi$ denotes the continued product, then the most general value of $\theta$ is :
(A) $\frac{2 \mathrm{n} \pi}{\mathrm{r}(\mathrm{r}-1)}$
(B) $\frac{2 \mathrm{n} \pi}{\mathrm{r}(\mathrm{r}+1)}$
(C) $\frac{4 \mathrm{n} \pi}{\mathrm{r}(\mathrm{r}-1)}$
(D) $\frac{4 \mathrm{n} \pi}{\mathrm{r}(\mathrm{r}+1)}$
24. The set of values of $a \in R$ for which $x^{2}+i(a-1) x+5=0$ will have a pair of conjugate imaginary roots is
(A) R
(B) $\{1\}$
(C) $\left.|a| a^{2}-2 a+21>0\right\}$
(D) none of these
25. If $\left|z_{1}-1\right|<1,\left|z_{2}-2\right|<2,\left|z_{3}-3\right|<3$ then $\left|z_{1}+z_{2}+z_{3}\right|$
(A) is less than 6
(B) is more than 3
(C) is less than 12
(D) lies between 6 and 12
26. If $z_{1}, z_{2}, z_{3}, \ldots \ldots \ldots, z_{n}$ lie on the circle $|z|=2$, then the value of
$E=\left|z_{1}+z_{2}+\ldots .+z_{n}\right|-4\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\ldots \ldots .+\frac{1}{z_{n}}\right|$ is
(A) 0
(B) $n$
(C) -n
(D) none of these

Part : (B) May have more than one options correct
27. If $z_{1}$ lies on $|z|=1$ and $z_{2}$ lies on $|z|=2$, then
(A) $3 \leq\left|z_{1}-2 z_{2}\right| \leq 5$
(B) $1 \leq\left|z_{1}+z_{2}\right| \leq 3$
(C) $\left|z_{1}-3 z_{2}\right| \geq 5$
(D) $\left|z_{1}-z_{2}\right| \geq 1$
$\stackrel{\infty}{\infty}$
28. If $z_{1}, z_{2}, z_{3}, z_{4}$ are root of the equation $a_{0} z^{4}+z_{1} z^{3}+z_{2} z^{2}+z_{3} z^{2}+z_{4}=0$, where $a_{0}, a_{1}, a_{2}, a_{3}$ and $a_{4}$ are real, then
(A)
$\overline{\mathrm{z}}_{1}, \overline{\mathrm{z}}_{2}, \overline{\mathrm{z}}_{3}, \overline{\mathrm{z}}_{4}$ are also roots of the equation
(B) $z_{1}$ is equal to at least one of $\bar{z}_{1}, \bar{z}_{2}, \bar{z}_{3}, \bar{z}_{4}$
(C) $\quad-\bar{z}_{1},-\bar{z}_{2},-\bar{z}_{3},-\bar{z}_{4}$ are also roots of the equation (D) none of these
$\stackrel{\otimes}{\square}$
29. If $a^{3}+b^{3}+6 a b c=8 c^{3} \& \omega$ is a cube root of unity then :
(A) a, c, b are in A.P.
(B) a, c, b are in H.P.
(C) $a+b \omega-2 c \omega^{2}=0$
(D) $a+b \omega^{2}-2 c \omega=0$
30. The points $z_{1}, z_{2}, z_{3}$ on the complex plane are the vertices of an equilateral triangle if and only if :
(A) $\sum\left(z_{1}-z_{2}\right)\left(z_{2}-z_{3}\right)=0$
(B) $z_{1}{ }^{2}+z_{2}{ }^{2}+z_{3}{ }^{2}=2\left(z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right)$
(C) $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$
(D) $2\left(z_{1}^{2}+z_{2}^{2}+z_{3}^{2}\right)=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$
31. If $\left|z_{1}+z_{2}\right|=\left|z_{1}-z_{2}\right|$ then
(A) $\left|a m p z_{1}-a m p z_{2}\right|=\frac{\pi}{2}$
(B) $\left|a m p z_{1}-a m p_{2}\right|=\pi$
(C) $\frac{z_{1}}{z_{2}}$ is purely real
(D) $\frac{z_{1}}{z_{2}}$ is purely imaginary


1. Given that $x, y \in R$, solve $4 x^{2}+3 x y+\left(2 x y-3 x^{2}\right) i=4 y^{2}-\left(x^{2} / 2\right)+\left(3 x y-2 y^{2}\right) i$
2. If $\alpha \& \beta$ are any two complex numbers, prove that :

$$
\left|\alpha-\sqrt{\alpha^{2}-\beta^{2}}\right|+\left|\alpha+\sqrt{\alpha^{2}-\beta^{2}}\right|=|\alpha+\beta|+|\alpha-\beta| .
$$

3. If $\alpha, \beta$ are the numbers between 0 and 1 , such that the points $z_{1}=\alpha+i, z_{2}=1+\beta i$ and $z_{3}=0$ form an equilateral triangle, then find $\alpha$ and $\beta$.
$A B C D$ is a rhombus. Its diagonals $A C$ and $B D$ intersect at the point $M$ and satisfy $B D=2 A C$. If the points $D$ and $M$ represent the complex numbers $1+i$ and 2 - $i$ respectively, then find the complex number corresponding to A .
4. Show that the sum of the $p^{\text {th }}$ powers of $n^{\text {th }}$ roots of unity :
(a)
is zero, when $p$ is not a multiple of $n$.
(b) is equal to n , when p is a multiple of n .

If $(1+x)^{n}=p_{0}+p_{1} x+p_{2} x^{2}+p_{3} x^{3}+\ldots \ldots$. , then prove that:
(a) $p_{0}-p_{2}+p_{4}-\ldots \ldots=2^{n / 2} \cos \frac{n \pi}{4}$
(b) $p_{1}-p_{3}+p_{5}-\ldots \ldots=2^{n / 2} \sin \frac{n \pi}{4}$

Prove that, $\log _{e}\left(\frac{1}{1-e^{i \theta}}\right)=\log _{e}\left(\frac{1}{2} \operatorname{cosec} \frac{\theta}{2}\right)+i\left(\frac{\pi}{2}-\frac{\theta}{2}\right)$
8. If $\mathrm{i}^{\mathrm{i}}{ }^{\ldots \ldots . .}=A+i B$, principal values only being considered, prove that
(a) $\tan \frac{1}{2} \pi \mathrm{~A}=\frac{\mathrm{B}}{\mathrm{A}}$
(b) $\quad A^{2}+B^{2}=e^{-\pi B}$
9. Prove that the roots of the equation, $(x-1)^{n}=x^{n}$ are $\frac{1}{2}\left(1+i \cot \frac{r \pi}{r}\right)$, where $r=0,1,2, \ldots \ldots . .(n-1) \& n \in N$.
10. If $\cos (\alpha-\beta)+\cos (\beta-\gamma)+\cos (\gamma-\alpha)=-3 / 2$ then prove that :
(a) $\quad \Sigma \cos 2 \alpha=0=\Sigma \sin 2 \alpha$
(b) $\quad \Sigma \sin (\alpha+\beta)=0=\Sigma \cos (\alpha+\beta)$
(c) $\quad \Sigma \sin 3 \alpha=3 \sin (\alpha+\beta+\gamma)$
(d) $\quad \Sigma \cos 3 \alpha=3 \cos (\alpha+\beta+\gamma)$
(e) $\quad \Sigma \sin ^{2} \alpha=\Sigma \cos ^{2} \alpha=3 / 2$
(f) $\cos ^{3}(\theta+\alpha)+\cos ^{3}(\theta+\beta)+\cos ^{3}(\theta+\gamma)=3 \cos (\theta+\alpha) \cdot \cos (\theta+\beta) \cdot \cos (\theta+\gamma)$ where $\theta \in \mathrm{R}$.
11. If $\alpha, \beta, \gamma$ are roots of $x^{3}-3 x^{2}+3 x+7=0$ (and $\omega$ is imaginary cube root of unity), then find the value
of $\frac{\alpha-1}{\beta-1}+\frac{\beta-1}{\gamma-1}+\frac{\gamma-1}{\alpha-1}$.
12. Given that, $|z-1|=1$, where ' $z$ ' is a point on the argand plane. Show that $\frac{z-2}{z}=i \tan (\arg z)$.
13. $P$ is a point on the Argand diagram. On the circle with $O P$ as diameter two points $Q$ \& $R$ are taken such that $\angle \mathrm{POQ}=\angle \mathrm{QOR}=\theta$. If ' O ' is the origin $\& P, \mathrm{Q} \& \mathrm{R}$ are represented by the complex numbers $Z_{1}, Z_{2} \& Z_{3}$ respectively, show that: $Z_{2}{ }^{2} \cos 2 \theta=Z_{1} Z_{3} \cos ^{2} \theta$.
14. Find an expression for $\tan 7 \theta$ in terms of $\tan \theta$, using complex numbers. By considering ${ }^{\circ}$ $\tan 7 \theta=0$, show that $x=\tan ^{2}(3 \pi / 7)$ satisfies the cubic equation $x^{3}-21 x^{2}+35 x-7=0$. circle with centre origin and radius $2 / 3$.
18. Prove that $\sum_{k=1}^{n-1}(n-k) \cos \frac{2 k \pi}{n}=-\frac{n}{2}$, where $n \geq 3$ is an integer
19. Show that the equation $\frac{A_{1}{ }^{2}}{x-a_{1}}+\frac{A_{2}{ }^{2}}{x-a_{2}}+\ldots . .+\frac{A_{n}{ }^{2}}{x-a_{n}}=k$ has no imaginary root, given that :
20. $\quad a_{1}, a_{2}, a_{3} \ldots a_{n} \& A_{1}, A_{2}, A_{3} \ldots . A_{n}, k$ are all real numbers.
20. Let $z_{1}, z_{2}, z_{3}$ be three distinct complex numbers satisfying, $1 / 2 z_{1}-1 \frac{1}{2}=1 / 2 z_{2}-1 \frac{1}{2}=1 / 2 z_{3}-11 / 2$. Let A, B \& C be the points represented in the Argand plane corresponding to $z_{1}, z_{2}$ and $z_{3}$ resp. Prove that $z_{1}+z_{2}+$ $z_{3}=3$ if and only if $D A B C$ is an equilateral triangle.
21. Let $\alpha, \beta$ be fixed complex numbers and z is a variable complex number such that,
$|z-\alpha|^{2}+|z-\beta|^{2}=k$.
Find out the limits for ' $k$ ' such that the locus of $z$ is a circle. Find also the centre and radius of the circle.

If $1, \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \ldots, \alpha_{n-1}$ are the $n, n^{\text {th }}$ roots of unity, then prove that
$\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)\left(1-\alpha_{3}\right) \ldots \ldots .\left(1-\alpha_{n-1}\right)=n$.
Hence prove that $\sin \frac{\pi}{n} \cdot \sin \frac{2 \pi}{n} \cdot \sin \frac{3 \pi}{n} \cdots \cdots \cdot \sin \frac{(n-1) \pi}{n}=\frac{n}{2^{n-1}}$.
23. Find the real values of the parameter 'a' for which at least one complex number
24. Prove that, with regard to the quadratic equation $z^{2}+\left(p+i p^{\prime}\right) z+q+i q^{\prime}=0$; where $p, p^{\prime}, q, q^{\prime}$ are all real.
(a) if the equation has one real root then $q^{\prime 2}-p p^{\prime} q^{\prime}+q p^{\prime 2}=0$.
(b) if the equation has two equal roots then $p^{2}-p^{\prime 2}=4 q \& p p^{\prime}=2 q^{\prime}$.

State whether these equal roots are real or complex.
25. The points $A, B, C$ depict the complex numbers $z_{1}, z_{2}, z_{3}$ respectively on a complex plane \& the angle $B \& C$ of the triangle $A B C$ are each equal to $\frac{1}{2}(\pi-\alpha)$. Show that
$\left(z_{2}-z_{3}\right)^{2}=4\left(z_{3}-z_{1}\right)\left(z_{1}-z_{2}\right) \sin ^{2} \frac{\alpha}{2}$.
26. If $z_{1}, z_{2} \& z_{3}$ are the affixes of three points $A, B \& C$ respectively and satisfy the condition $\left|z_{1}-z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ and $\left|(2-i) z_{1}+i z_{3}\right|=\left|z_{1}\right|+\left|(1-i) z_{1}+i z_{3}\right|$ then prove that $\Delta A B C$ in a right angled.
27. If $1, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ be the roots of $x^{5}-1=0$, then prove that
$\frac{\omega-\alpha_{1}}{\omega^{2}-\alpha_{1}} \cdot \frac{\omega-\alpha_{2}}{\omega^{2}-\alpha_{2}} \cdot \frac{\omega-\alpha_{3}}{\omega^{2}-\alpha_{3}} \cdot \frac{\omega-\alpha_{4}}{\omega^{2}-\alpha_{4}}=\omega$.
28. If one the vertices of the square circumscribing the circle $|z-1|=\sqrt{2}$ is $2+\sqrt{3}$ i. Find the other vertices of the square.
[IIT - 2005, 4]


