Get Solution of These Packages & Learn by Video Tutorials on www a³ - b³ = (a - b) (a - ob) (a - ob) : x² + x + 1 = (x - o) (x - a³ + b³ = (a + b) (a + ob) (a + o²b) : x² + x + 1 = (x - o) (x - a³ + b³ + c³ - a) dots (a + ob) + ob) (a + ob + o²c) (a + o²b + oc) (a + o²b + o²b + oc) (a + o²b + oc) Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com $a^{3} - b^{3} = (a - b) (a - \omega b) (a - \omega^{2} b)$ $x^{2} + x + 1 = (x - \omega) (x - \omega^{2});$ $1^p + \alpha_1^p + \alpha_2^p + \dots + \alpha_{n-1}^p = 0$ if p is not an integral multiple of n = n if p is an integral multiple of n $(1 + \alpha_1)(1 + \alpha_2)$ $(1 + \alpha_{n-1}) = 0$ if n is even and 1 if n is odd. 1. α_1 . α_2 . α_3 $\alpha_{n-1} = 1$ or -1 according as n is odd or even. THE SUM OF THE FOLLOWING SERIES SHOULD BE REMEMBERED : STRAIGHT LINES & CIRCLES IN TERMS OF COMPLEX NUMBERS : If $z_1 \& z_2$ are two complex numbers then the complex number $z = \frac{nz_1 + mz_2}{m+n}$ divides the joins of z where a + b + c = 0 and a,b,c are not all simultaneously zero, then the complex numbers z_1 , $z_2 \& z_3$ If the vertices A, B, C of a Δ represent the complex nos. z_1, z_2, z_3 respectively, then : $z_1 \tan A + z_2 \tan B + z_3 \tan C$ $\tan A + \tan B + \tan C$ $(Z_1 \sin 2A + Z_2 \sin 2B + Z_3 \sin 2C) \div (\sin 2A + \sin 2B + \sin 2C)$. $amp(z) = \theta$ is a ray emanating from the origin inclined at an angle θ to the x-axis. |z-a| = |z-b| is the perpendicular bisector of the line joining a to b. $z = z_1(1 + it)$ where t is a real parameter is a line through the point z_1 & perpendicular to oz_1 . The equation of a line passing through $z_1 \& z_2$ can be expressed in the determinant form as = 0. This is also the condition for three complex numbers to be collinear. Complex equation of a straight line through two given points $z_1 \& z_2$ can be written as $z(\overline{z}_1 - \overline{z}_2) - \overline{z}(z_1 - z_2) + (z_1\overline{z}_2 - \overline{z}_1z_2) = 0$, which on manipulating takes the form as $\overline{\alpha} z + \alpha \overline{z} + r = 0$ $|z - z_0| = \rho$ or $z\overline{z} - z_0\overline{z} - \overline{z}_0z + \overline{z}_0z_0 - \rho^2 = 0$ which is of the form The equation of the circle described on the line segment joining $z_1 \& z_2$ as diameter is : (i) $\arg \frac{z - z_2}{z - z_1} = \pm \frac{\pi}{2}$ or $(z - z_1)(\overline{z} - \overline{z}_2) + (z - z_2)(\overline{z} - \overline{z}_1) = 0$ Condition for four given points $z_1, z_2, z_3 \& z_4$ to be concyclic is, the number **(J)**

Get	Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
	$\frac{z_3 - z_1}{z_1 - z_2}$. $\frac{z_4 - z_2}{z_1 - z_2}$ is real. Hence the equation of a circle through 3 non collinear points $z_1, z_2 \& z_3$ can be
E	$L_2 - L_2$ $L_4 - L_1$
C C	taken as $\frac{(\overline{z}-\overline{z}_2)(z_3-\overline{z}_1)}{(z-z_1)(z_3-\overline{z}_2)}$ is real $\Rightarrow \frac{(z-z_2)(z_3-\overline{z}_1)}{(z-z_1)(z_3-\overline{z}_2)} = \frac{(\overline{z}-\overline{z}_2)(\overline{z}_3-\overline{z}_1)}{(\overline{z}-\overline{z}_1)(\overline{z}_3-\overline{z}_2)}$
ag.	$(z-z_1)(z_3-z_2) \xrightarrow{\text{is real } \rightarrow} (z-z_1)(z_3-z_2) \xrightarrow{-} (\overline{z}-\overline{z}_1)(\overline{z}_3-\overline{z}_2)$
<u>–</u> 13.(a)	Reflection points for a straight line :
SC	Two given points P & Q are the reflection points for a given straight line if the given line is the right
В М	bisector of the segment PQ. Note that the two points denoted by the complex numbers $z_1 \& z_2$ will be \mathfrak{A} the reflection points for the straight line $\overline{\alpha} z + \alpha \overline{z} + r = 0$ if and only if; $\overline{\alpha} z_1 + \alpha \overline{z}_2 + r = 0$, where r is \mathfrak{B}
lsr	real and α is non zero complex constant.
(b) at	Inverse points w.r.t. a circle :
Σ	Two points P & Q are said to be inverse w.r.t. a circle with centre 'O' and radius ρ , if : (i) the point O, P, Q are collinear and on the same side of O. (ii) OP . OQ = ρ^2 .
₹	Note that the two points $z_1 & z_2$ will be the inverse points with the circle
& www.MathsBySuhag.com (p) (p)	$z\overline{z}+\overline{\alpha}z+\alpha\overline{z}+r=0$ if and only if $z_1\overline{z}_2+\overline{\alpha}z_1+\alpha\overline{z}_2+r=0$.
og 14.	$z\overline{z}+\overline{\alpha}z+\alpha\overline{z}+r=0$ if and only if $z_1\overline{z}_2+\overline{\alpha}z_1+\alpha\overline{z}_2+r=0$. PTOLEMY'S THEOREM : It states that the product of the lengths of the diagonals of a c onvex quadrilateral inscribed in a circle is equal to the sum of the lengths of the two pairs of c
E	convex quadrilateral inscribed in a circle is equal to the sum of the lengths of the two pairs of \bigcirc its opposite sides i.e. $ z_1 - z_2 = z_1 - z_2 = z_1 - z_2 + z_2 - z_2 + z_1 - z_2 $
E 0 15.	its opposite sides. i.e. $ z_1 - z_3 z_2 - z_4 = z_1 - z_2 z_3 - z_4 + z_1 - z_4 z_2 - z_3 $. LOGARITHM OF A COMPLEX QUANTITY:
	$\operatorname{Log}_{e}(\alpha + i\beta) = \frac{1}{2}\operatorname{Log}_{e}(\alpha^{2} + \beta^{2}) + i\left(2n\pi + \tan^{-1}\frac{\beta}{\alpha}\right) \text{ where } n \in I.$
SS	
$\overline{\alpha}$	i ⁱ represents a set of positive real numbers given by $e^{-\left(2n\pi+\frac{\pi}{2}\right)}$, $n \in I$.
	VERY ELEMENTARY EXERCISE
(i) Q.1 Q.2 (ii) Q.1	Simplify and express the result in the form of $a + bi$
∠. ∠	(a) $\left(\frac{1+2i}{2+i}\right)^2$ (b) $-i(9+6i)(2-i)^{-1}$ (c) $\left(\frac{4i^3-i}{2i+1}\right)^2$ (d) $\frac{3+2i}{2-5i} + \frac{3-2i}{2+5i}$ (e) $\frac{(2+i)^2}{2-i} - \frac{(2-i)^2}{2+i}$ $\stackrel{\text{eq}}{=}$
<u>کر</u>	(a) $\left(\frac{1}{2+i}\right)$ (b) $-1(9+61)(2-1)^{-1}$ (c) $\left(\frac{1}{2i+1}\right)$ (d) $\frac{1}{2-5i} + \frac{1}{2+5i}$ (e) $\frac{1}{2-i} - \frac{1}{2+i}$ g
	(c) $x^2 - y^2 - i(2x + y) = 2i$ (d) $(2 + 3i)x^2 - (3 - 2i)y = 2x - 3y + 5i$ (e) $4x^2 + 3xy + (2xy - 3x^2)i = 4y^2 - (x^2/2) + (3xy - 2y^2)i$ Find the square root of : (a) $9 + 40i$ (b) $-11 - 60i$ (c) $50i$ (a) If $f(x) = x^4 + 9x^3 + 35x^2 - x + 4$, find $f(-5 + 4i)$
5.9 Sit	Find the square root of : (a) $9 + 40i$ (b) $-11 - 60i$ (c) $50i$ (a) If $f(x) = x^4 + 9x^3 + 35x^2 - x + 4$, find $f(-5+4i)$
ebsite: ⁶⁷³	
≥ ⊂ 0.5	(b) If $g(x) = x^4 - x^3 + x^2 + 3x - 5$, find $g(2+3i)$ Among the complex numbers z satisfying the condition $ z + 3 - \sqrt{3}i = \sqrt{3}$, find the number having the \checkmark
БО ⁽¹⁾	least positive argument. 2^{+5} $\sqrt{51} = \sqrt{5}$, find the number having the 2^{-5}
ي Q.6	Solve the following equations over C and express the result in the form $a + ib$, $a, b \in \mathbb{R}$.
$\tilde{D}_{0.7}$	(a) $ix^2 - 3x - 2i = 0$ Locate the points representing the complex number z on the Argand plane:
a م ح. ،	Solve the following equations over C and express the result in the form $\mathbf{a} + \mathbf{ib}$, $\mathbf{a}, \mathbf{b} \in \mathbb{R}$. (a) $\mathbf{ix}^2 - 3\mathbf{x} - 2\mathbf{i} = 0$ (b) $2(1 + \mathbf{i}) \mathbf{x}^2 - 4(2 - \mathbf{i}) \mathbf{x} - 5 - 3\mathbf{i} = 0$ Locate the points representing the complex number z on the Argand plane: (a) $ \mathbf{z} + 1 - 2\mathbf{i} = \sqrt{7}$; (b) $ \mathbf{z} - 1 ^2 + \mathbf{z} + 1 ^2 = 4$; (c) $\left \frac{\mathbf{z} - 3}{\mathbf{z} + 3}\right = 3$; (d) $ \mathbf{z} - 3 = \mathbf{z} - 6 $
ac	
₽ ₽	If a & b are real numbers between 0 & 1 such that the points $z_1 = a + i$, $z_2 = 1 + bi$ & $z_3 = 0$ form an equilateral triangle, then find the values of 'a' and 'b'.
9.9 t	For what real values of x & y are the numbers $-3 + ix^2 y \& x^2 + y + 4i$ conjugate complex?
$\mathcal{O}_{Q.10}$	Find the modulus, argument and the principal argument of the complex numbers.
oac	(i) $6(\cos 310^\circ - i \sin 310^\circ)$ (ii) $-2(\cos 30^\circ + i \sin 30^\circ)$ (iii) $\frac{2+i}{4i+(1+i)^2}$
EREE Download Study Package from w 6.9 6.9 6.0 7.10 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6	If a & b are real numbers between 0 & 1 such that the points $z_1 = a + i$, $z_2 = 1 + bi$ & $z_3 = 0$ form an equilateral triangle, then find the values of 'a' and 'b'. For what real values of x & y are the numbers $-3 + ix^2 y & x^2 + y + 4i$ conjugate complex? Find the modulus, argument and the principal argument of the complex numbers. (i) $6 (\cos 310^\circ - i \sin 310^\circ)$ (ii) $-2 (\cos 30^\circ + i \sin 30^\circ)$ (iii) $\frac{2 + i}{4i + (1 + i)^2}$ If $(x + iy)^{1/3} = a + bi$; prove that $4(a^2 - b^2) = \frac{x}{a} + \frac{y}{b}$. (i) If $\frac{a + ib}{c + id} = p + qi$, prove that $p^2 + q^2 = \frac{a^2 + b^2}{c^2 + d^2}$.
$\overset{0}{0}_{0,12(a)}$	a) If $\frac{a + ib}{c + id} = p + qi$, prove that $p^2 + q^2 = \frac{a^2 + b^2}{c^2 + d^2}$.
Щ (12(а	
	Let z_1, z_2, z_3 be the complex numbers such that $z_1 + z_2 + z_3 = z_1 z_2 + z_2 z_3 + z_3 z_4 = 0$. Prove that $ z_1 = z_2 = z_3 $.
	Let z_1, z_2, z_3 be the complex numbers such that $z_1 + z_2 + z_3 = z_1 z_2 + z_2 z_3 + z_3 z_1 = 0$. Prove that $ z_1 = z_2 = z_3 $. Let z be a complex number such that $z \in c \setminus R$ and $\frac{1 + z + z^2}{1 - z + z^2} \in R$, then prove that $ z = 1$. Prove the identity, $ 1 - z_1 \overline{z}_2 ^2 - z_1 - z_2 ^2 = (1 - z_1 ^2)(1 - z_2 ^2)$
Q.13	Prove the identity $ 1\rangle = z^2 1\rangle = z^2 (1 + z^2) (1 + z^2)$
Q.14	From the identity, $ 1 - z_1 z_2 - z_1 - z_2 = (1 - z_1)(1 - z_2)$

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com For any two complex numbers, prove that $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2[|z_1|^2 + |z_2|^2]$. Also give the If $w \neq 1$ is a clube foot of unity then $\begin{vmatrix} -1 & -i & w & -1 \end{vmatrix} = -\frac{1}{(C)i}$ $\begin{vmatrix} -1 & -i & w & -1 \end{vmatrix} = -\frac{1}{(C)i}$ $\begin{vmatrix} 0 & w & 0 \end{vmatrix}$ (A) 0 (B) 1 (C) i $-1 & \begin{vmatrix} -1 & -1 & -1 & \end{vmatrix} = -\frac{1}{(C)i}$ (D) w (a) $(1 + w)^7 = A + Bw$ where w is the imaginary cube root of a unity and A, B \in R, find the ordered pair (A, B). The value of the expression ; 1. $(2 - w)(2 - w^2) + 2.$ $(3 - w)(3 - w^2) + \dots + (n - 1)$. $(n - w)(n - w^2)$, where w is an imaginary cube root of unity is $-\frac{1}{(1 - i)^n} = 2^{\frac{n}{2} + 1}$. $\cos \frac{n\pi}{4}$. Show that the sum $\sum_{k=1}^{2n} \left(\sin \frac{2\pi k}{2n + 1} - i \cos \frac{2\pi k}{2n + 1} \right)$ simplifies to a pute imaginary number. If $n \in N$, prove that $(1 + i)^n + (1 - i)^n = 2^{\frac{n}{2} + 1}$. $\cos \frac{n\pi}{4}$. Show that the sum $\sum_{k=1}^{2n} \left(\sin \frac{2\pi k}{2n + 1} - i \cos \frac{2\pi k}{2n + 1} \right)$ simplifies to a pute imaginary number. If $x = \cos \theta + i \sin \theta$ & $1 + \sqrt{1 - a^2} = na$, prove that $1 + a \cos \theta = \frac{a}{2n}(1 + nx)\left(1 + \frac{n}{x}\right)$. The number t is real and not an integral multiple of $\pi/2$. The complex number x_1 and x_2 are the roots of the equation, $\tan^2(1) \cdot x^2 + \tan(1) \cdot x + 1 = 0$ Show that $(x_1)^n + (x_2)^n = 2\left(\cos \frac{2n\pi}{3}\right) \cot^n(1)$. **EXERCEISEE-1** Simplify and express the result in the form of a + bi: (a) $-i(9 + 6i)(2 - i)^{-1}$ (b) $\left(\frac{4i^3 - i}{2i + 1}\right)^2$ (c) $\frac{3 + 2i}{2 - 5i} + \frac{3 - 2i}{2 + 5i}$ (d) $\frac{(2 + i)^2}{2 - i} - \frac{(2 - i)^2}{2 + i}$ (e) $\sqrt{i} + \sqrt{-i}$ Find the modulus, argument and the principal argument of the complex numbers. (i) $z = 1 + \cos\left(\frac{10\pi}{9}\right) + i \sin\left(\frac{10\pi}{9}\right)$ (ii) $(\tan 1 - i)^2$ (iii) $z = \frac{\sqrt{5 + 12i} + \sqrt{5 - 12i}}{\sqrt{5 + 12i} - \sqrt{5 - 12i}}$ (iv) $\frac{i - 1}{i(1 - \cos \frac{2\pi}{5}) + \sin \frac{2\pi}{5}}$ Given that $x, y \in R$, solve : (a) (x + 2w) + i(2x - 3y) = 5 - 4i (b) $\frac{x}{2} + \frac{y}{2} = \frac{5 + 6i}{2}$ Q.25 Q.26 Given that $x, y \in R$, solve : (b) $\frac{x}{1+2i} + \frac{y}{3+2i} = \frac{5+6i}{8i-1}$ (d) $(2+3i) x^2 - (3-2i) y = 2x - 3y + 5i$ (a) (x + 2y) + i(2x - 3y) = 5 - 4i(c) $x^2 - y^2 - i(2x + y) = 2i$ (e) $4x^2 + 3xy + (2xy - 3x^2)i = 4y^2 - (x^2/2) + (3xy - 2y^2)i$ Q.4(a) Let Z is complex satisfying the equation, $z^2 - (3+i)z + m + 2i = 0$, where $m \in \mathbb{R}$.

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

38 page 18 of 0 98930 58881.

(b) If A, B and C are the angles of a triangle

Q.8 Dividing f(z) by z - i, we get the remainder i and dividing it by z + i, we get the remainder

1 + i. Find the remainder upon the division of f(z) by $z^2 + 1$.

$$|z_1 + z_2| \ge \frac{1}{2} (|z_1| + |z_2|) \left| \frac{z_1}{|z_1|} + \frac{z_2}{|z_2|} \right|$$

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.on 1+1: Find the remainder upon the division of f(z) by $z^{3} + 1$. (9) Let $z_1 \& z_2$ be any two arbitrary complex numbers then prove that: $|z_1 + z_2| \ge \frac{1}{2}(|z_1| + |z_2|) \left| \frac{z_1}{|z_1|} + \frac{z_2}{|z_2|} \right|$. (0) If $Z_n = 1, 2, 3, ..., 2n, m \in N$ are the roots of the equation $z^{2m} + z^{2m-1} + z^{2m-2} + ..., + z_n \land^n (n \in N)$, prove that: (a) $C_n + C_4 + C_8 + ..., = \frac{1}{2} \left[z^{n+1} + z^{n+2} \cos \frac{n\pi}{4} \right]$ (b) $C_1 + C_3 + C_9 + ..., = \frac{1}{2} \left[z^{n+1} + z^{n+2} \sin \frac{n\pi}{4} \right]$ (c) $C_2 + C_6 + C_9 + ..., = \frac{1}{2} \left[z^{n+1} - z^{n+3} \cos \frac{\pi}{4} \right]$ (d) $C_3 + C_7 + C_{11} + ..., = \frac{1}{2} \left[z^{n+1} - z^{n+3} \sin \frac{\pi\pi}{4} \right]$ (e) $C_0 + C_3 + C_6 + C_9 + ..., = \frac{1}{3} \left[z^{3} + 2 \cos \frac{\pi}{3} \right]$ (d) $C_3 + C_7 + C_{11} + ..., = \frac{1}{2} \left[z^{n+1} - z^{n+3} \sin \frac{\pi\pi}{4} \right]$ (e) $C_0 + C_3 + C_6 + C_9 + ..., = \frac{1}{3} \left[z^{3} + 2 \cos \frac{\pi}{3} \right]$ (f) $2z_2 = (1+i) z_1 + (1-i) z_3$ (f) $2z_1 = (1-i) z_1 + (1+i) z_3$ (g) 13 Show that all the roots of the equation $\left(\frac{1+ix}{1-ix} \right)^n = \frac{1+ia}{1-ia} a \in \mathbb{R}$ are real and distinct. (a) $\cos x + C_7 \cos 2x + C_2 \cos 3x + ..., + C_n \cos (n+1) x = 2^n \cdot \cos^n \frac{x}{2}$, $\cos(\frac{n+2}{2}) x$ (b) $\sin x + C_1 \sin 2x + C_2 \sin 3x + ..., + C_n \sin (n+1) x = 2^n \cdot \cos^n \frac{x}{2}$, $\sin(\frac{n+2}{2}) x$ (c) $\cos(\frac{2\pi}{4n+1}) + \cos(\frac{4\pi}{2n+1}) + \cos(\frac{6\pi}{2n+1}) + ..., + \cos(\frac{2n\pi}{2n+1}) = \frac{1}{2}$ When $n \in \mathbb{N}$. (3) The points A (b) $C_1 = 0, 1, 2, ..., n$ is outside the circle with centre the origin and ratios $\frac{n-1}{2}$. (c) $1^m z_1 = 0, 1, 2, ..., n$ is outside the circle with centre at the origin and ratios $\frac{n-1}{2}$. (c) $1^m z_1 = 0, 1, 2, ..., n$ is outside the circle with centre at the origin and ratios $\frac{n-1}{2}$. (c) $1^m z_1 = 0, 1, 2, ..., n$ is outside the circle with centre at the origin and ratios $\frac{n-1}{2}$. (c) $1^m z_1 = 0, 1, 2, ..., n = 1^m z_1 = 1^m z_1 = 1^m z_1 = 1^m z_2 = 1^m z_2 = 1^m z_1 = 1^m z_1 = 1^m z_2 = 1^m z_1 = 1^m z_1 = 1^m z_2 = 1^m z_1 = 1^m z_1 = 1^$ $\sum_{k=1}^{l} (c) C_2 + C_6 + C_{10} + \dots = \frac{1}{2} \left[2^{n-1} - 2^{n/2} \cos \frac{n\pi}{4} \right] (d) C_3 + C_7 + C_{11} + \dots = \frac{1}{2} \left[2^{n-1} - 2^{n/2} \sin \frac{n\pi}{4} \right] (e) C_0 + C_3 + C_6 + C_9 + \dots = \frac{1}{3} \left[2^n + 2\cos \frac{n\pi}{3} \right] (e) C_0 + C_3 + C_6 + C_9 + \dots = \frac{1}{3} \left[2^n + 2\cos \frac{n\pi}{3} \right] (e) C_0 + C_3 + C_6 + C_9 + \dots = \frac{1}{3} \left[2^n + 2\cos \frac{n\pi}{3} \right] (f) 2_4 = (1 - i) z_1 + (1 + i) z_3 (f) 2_4 + (1 - i) z_3 (f) 2_4 + (1 - i) z_1 + (1 + i) z_3 (f) 2_4 + (1 - i) z_1 + (1 + i) z_3 (f) 2_4 + (1 - i) z_1 + (1 + i) z_3 (f) 2_4 + (1 - i) z_1 + (1 + i) z_1 + (1 + i) z_3 (f) 2_4 + (1 - i) z_1 + (1 + i) z_1 + (1 + i) z_3 (f) 2_4 + (1 - i) z_1 + (1 + i) z_1$ (c) $C_2 + C_6 + C_{10} + \dots = \frac{1}{2} \left[2^{n-1} - 2^{n/2} \cos \frac{n\pi}{4} \right]$ (d) $C_3 + C_7 + C_{11} + \dots = \frac{1}{2} \left[2^{n-1} - 2^{n/2} \sin \frac{n\pi}{4} \right]$ Let $f(x) = \log_{\cos 3x} (\cos 2ix)$ if $x \neq 0$ and f(0) = K (where $i = \sqrt{-1}$) is continuous at x = 0 then find $\frac{9}{2}$ the value of K. Use of L Hospital's rule or series expansion $z_1 \in$ third quadrant; $z_2 \in$ second quadrant in the argand's plane then, show that

$$\arg\left(\frac{z_1}{z_2}\right) = 2\cos^{-1}\left(\frac{b^2}{4ac}\right)^{1/2}$$

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com $arg\left(\frac{z_{1}}{z_{2}}\right) = 2\cos^{-1}\left(\frac{b^{2}}{4ac}\right)^{1/2}$ (2.23 Find the set of points on the argand plane for which the real part of the complex number $(1 + i) z^{2}$ is positive where z = x + iy, $x, y \in R$ and $i = \sqrt{-1}$. (2.24 If a and b are positive integer such that $N = (a + h)^{3} - 107$ is a positive integer. Find N. (2.25 If the biquadratic $x^{4} + ax^{3} + bx^{2} + cx + d = 0$ (a, b, c, d $\in R$) has 4 non real roots, two with sum 3 + 4i and the other two with product 13 + 1. Find the value of b. **EXERCISE-3** (REE 97, 6] (2.26) Let z_{1} and z_{2} be roots of the equation $2^{2} + pz + q = 0$, where the co-efficients p and q may be complex numbers. Let A and B represent τ_{1} and z_{2} in the complex plane. If $ZAOB = a \neq 0$ and OA = OB, where O is the origin. Prove that $p^{2} = 4q \cos^{2}\left(\frac{\alpha}{2}\right)$. (JEE 97, 5] (b) Prove that $\sum_{k=1}^{n-1} (n-k) \cos^{2k\pi} = -\frac{n}{2}$ where $n \ge 3$ is an integer. (JEE 97, 5] (b) Prove that $\sum_{k=1}^{n-1} (n-k) \cos^{2k\pi} = -\frac{n}{2}$ where $i \ge \sqrt{-1}$, equals (A) 1280 (B) -1280 (C) 1280² (D) -1280² (b) The value of the sum $\sum_{k=1}^{n} (n+k) \cos^{2k\pi} = -\frac{1}{2}$ where $i = \sqrt{-1}$, equals (A) 1280 (B) -1280 (C) 1280² (D) -1280² (D) -1280² (D) -1280² (D) -1 $\sqrt{3}$ (D) $-i\sqrt{3}$ (D) -1 $\sqrt{3}$ (D) For complex numbers z 60, prove that, $|z| = |z_{2}| = |z_{3}| = \left[\frac{1}{z}, \frac{1}{z}, \frac{1}{z}\right] = 1$, then $\frac{1}{z}(x+i)^{2}$, $\frac{1}{y}(x+i)^{2}(x+i)$ If the biquadratic $x^4 + ax^3 + bx^2 + cx + d = 0$ (a, b, c, $d \in \mathbb{R}$) has 4 non real roots, two with sum page 22 58881. Q.2(a) Let z_1 and z_2 be roots of the equation $z^2 + pz + q = 0$, where the co-efficients p and q may be complex numbers. Let A and B represent z_1 and z_2 in the complex plane. If $\angle AOB = \alpha \neq 0$ and $\bigotimes_{n=1}^{\infty} (\alpha)$ (b) Prove that $\sum_{k=1}^{n-1} (n-k) \cos \frac{2k\pi}{n} = -\frac{n}{2}$ where $n \ge 3$ is an integer. [JEE 97, 5] (a) If ω is an imaginary cube root of unity, then $(1+\omega-\omega^2)^7$ equals (A) 128ω (B) -128ω (C) $128\omega^2$ (D) $-128\omega^2$ (EE '98, 6] (I) $f \alpha = e^{\frac{2\pi i}{2}}$ and $f(x) = A_0 + \sum_{k=0}^{2} A_k x^k$, then find the value of, $f(x) + f(\alpha x) + \dots + f(\alpha^k x)$ independent of α . [REE '99, 6] (I) If $\alpha_1 + \alpha_2 + \alpha_3$ are complex numbers such that $|z_1| = |z_2| = |z_3| = \left[\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}\right] = 1$, then $|z_1 + z_2 + z_3|$ is: (A) π (B) $-\pi$ (C) $-\frac{\pi}{2}$ (D) $\frac{\pi}{2}$ [JEE 2000 (Screening) 1 + 1 out of 35] Given, $z = \cos \frac{2\pi}{2n+1} + i \sin \frac{2\pi}{2n+1}$, 'n' a positive integer, find the equation whose roots are, $\alpha = z + z^3 + \dots + z^{2n-1}$ (EE 2000 (Mains) 3 out of 100] (T The complex numbers z_1, z_2 and z_1 satisfying $\frac{z_1 - z_3}{2n+2} - \frac{1 - i\sqrt{3}}{2}$ 0 $\frac{z_1 - z_3}{z_1 - z_3} = \frac{1 - iy}{2}$ Q.9(a) The complex numbers z_1 , z_2 and z_3 satisfying are the vertices of a triangle which is (B) right-angled isosceles (A) of area zero (C) equilateral (D) obtuse – angled isosceles

Get Solution of These Packages & Learn by Video Tutorials on vevo Q.3 (a) $\pm (5+4i)$; (b) $\pm (5-6i)$ (c) $\pm 5(1+i)$ Q.4 (a) -160 ± Q.5 $-\frac{3}{2}, -\frac{3\sqrt{3}}{2}i$ Q.6 (a) -i, -i(a) on a circle of radius $\sqrt{7}$ with centre (-1, 2); (b) on a unit circle with centre (c) on a circle of radius $\sqrt{7}$ with centre (-1, 2); (b) on a unit circle with centre (c) on a circle with centre (-15/4, 0) & radius 9/4; (d) a straight line (d) a straight line Q.8 $a = b = 2 - \sqrt{3}$; Q.9 x = 1, y = -4 or (ii) Modulus = 6, Arg = 2 k $\pi + \frac{5\pi}{18}$ (K $\in I$), Principal Arg $= \frac{5\pi}{18}$ (K \in (ii) Modulus = 2, Arg = 2 k $\pi + \frac{7\pi}{6}$, Principal Arg $= -\frac{5\pi}{6}$ (iii) Modulus = $\frac{\sqrt{5}}{2}, -\frac{\sqrt{3}}{2}, -\frac{1}{2}, i$; Q.17 $\frac{x^2}{64} + \frac{y^2}{48} = 1$; Q.18 (c) 64 ; Q.22 (a) (1, 1); (b) $\left[\frac{n(n+1)}{2}\right]^7 - n$ **EXERCLISEE.1** Q.16 (a) $\frac{\sqrt{3}}{2}, -\frac{12}{2}, -\frac{\sqrt{3}}{2}, -\frac{1}{2}, i$; Q.17 $\frac{x^2}{64}, +\frac{y^2}{48} = 1;$ Q.18 (c) 64 ; (ii) Modulus = $\frac{\sqrt{5}}{2}, -\frac{\sqrt{3}}{2}, -\frac{1}{2}, i = 2 \cos \frac{4\pi}{9};$ $|x| = 2 \cos \frac{4\pi}{9};$ $|xr| = 2 k \pi - \frac{4\pi}{9};$ (ii) Modulus = sec²1, Arg $= 2 n \pi + (2 - \pi)$. Principal Arg $= (2 - \pi)^7$ (iii) Principal Arg $x = -\frac{4\pi}{5};$ $|x| = 2 \cos \frac{4\pi}{9};$ Principal value of Arg $z = -\frac{\pi}{2}$ & $|x| = \frac{3}{2};$ Principal value of Arg $z = -\frac{\pi}{2}$ & $|x| = \frac{3}{2};$ Principal value of Arg $z = 1, \frac{1}{2}, \frac{1}{2} \cos \frac{\pi}{5};$ Arg $z = 2n\pi + \frac{1}{20}$, Principal Arg $= \frac{11}{20};$ (iii) Principal value of Agr $z = -\frac{\pi}{2}$ & $|x| = \frac{3}{2};$ Principal Arg $= \frac{11}{2};$ (iii) Modulus = $\frac{1}{\sqrt{2}} \cos \frac{\pi}{5};$ Arg $z = 2n\pi + \frac{1}{20};$ Principal Arg $= \frac{1}{2};$ (iv) Modulus = $\frac{1}{\sqrt{2}} \cos \frac{\pi}{5};$ Arg $z = 2n\pi + \frac{1}{2};$ (b) $(-77 + 1)^{-1};$ (ii) Principal value of Arg z = 2; (c) (-2, 2); (c) (-2, -2); (d) (1, 1); (d) $(0, -1)^{-1};$ (iii) Principal value of $Arg z = \frac{\pi}{2}, \frac{\pi}{2};$ (e) $\pm 1, \frac{\pi}{2}, \frac{\pi}{2};$ (f) (f) (1, 1) $(0, -1)^{-1};$ (iv) Modulus = $\frac{1}{\sqrt{2}} \cos \frac{\pi}{5};$ (a) (1-2; 2;); (c) (-2; -2); (b) $(-77 + 1)^{-1};$ (iii) Principal Arg (-1; -2(a) -160; (b) -(77+108 i)**Q.6** (a) -i, -2i (b) $\frac{3-5i}{2}$ or $-\frac{1+i}{2}$ (a) on a circle of radius $\sqrt{7}$ with centre (-1, 2); (b) on a unit circle with centre at origin x = 1, y = -4 or x = -1, y = -4(i) Modulus = 6, Arg = $2 k \pi + \frac{5 \pi}{18}$ (K \in I), Principal Arg = $\frac{5 \pi}{18}$ (K \in I) (iii) Modulus = $\frac{\sqrt{5}}{6}$, Arg = 2 k π - tan⁻¹ 2 (K \in I), Principal Arg = -tan⁻¹2 **0.21** A **Q.1 (a)** $\frac{21}{5} - \frac{12}{5}i$ (b) 3 + 4i (c) $-\frac{8}{29} + 0i$ (d) $\frac{22}{5}i$ (e) $\pm\sqrt{2} + 0i$ or $0\pm\sqrt{2}i$ **Q.2 (i)** Principal Arg $z = -\frac{4\pi}{9}$; $|z| = 2\cos\frac{4\pi}{9}$; Arg $z = 2k\pi - \frac{4\pi}{9}$ $k \in I$ (ii) Modulus = sec²1, Arg = $2n\pi + (2-\pi)$, Principal Arg = $(2-\pi)$ (iii) Principal value of Agr $z = -\frac{\pi}{2} \& |z| = \frac{3}{2}$; Principal value of Arg $z = \frac{\pi}{2} \& |z| = \frac{2}{3}$ (iv) Modulus $=\frac{1}{\sqrt{2}}\csc \frac{\pi}{5}$, Arg $z = 2n\pi + \frac{11\pi}{20}$, Principal Arg $=\frac{11\pi}{20}$ **Q.3(a)** x = 1, y = 2; (b) x = 1 & y = 2; (c) (-2, 2) or $\left(-\frac{2}{3}, -\frac{2}{3}\right);$ (d) $(1, 1) \left(0, \frac{5}{2}\right);$ (e) $x = K, y = \frac{3K}{2} K \in \mathbb{R}$ **Q.5** (a) [(-2, 2); (-2, -2)] (b) -(77+108 i)(ii) z = -(b+i); -2i, -a (iii) $\left(-\frac{2ti}{3t+5}, ti\right)$ where $t \in \mathbb{R} - \left\{-\frac{5}{3}\right\}$ (a) The region between the co encentric circles with centre at (0, 2) & radii 1 & 3 units (c) semi circle (in the 1st & 4th quadrant) $x^2 + y^2 = 1$ (d) a ray emanating from the point (3+4i) directed away from the origin & having equation $\sqrt{3}x - y + 4 - 3\sqrt{3} = 0$ **Q.17** $(1-c^2) |z|^2 - 2(a+bc) (\text{Re } z) + a^2 - b^2 = 0$ **Q.19** (b) one if n is even; $-w^2$ if n is odd 35 **Q.6** (a) $-\frac{7}{2}$, (b) zero **Q.8** $\frac{iz}{2} + \frac{1}{2} + i$ **Q.18** $-\omega \text{ or } -\omega^2$ **Q.19** $k > \frac{1}{2} |\alpha - \beta|^2$ **Q.20** |f(z)| is maximum when $z = \omega$, where ω is the cube root unity and $|f(z)| = \sqrt{13}$ **Q.21** K = $-\frac{4}{9}$

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com 0.23 required set is constituted by the angles without their boundaries, whose sides are the straight lines $y = (\sqrt{2} - 1) x$ and $y + (\sqrt{2} + 1) x = 0$ containing the x - axis Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com Q.24 198 **Q.25** 51 EXERCISE-3 **Q.1** 48(1-i)**Q.3** (a) D **(b)** B $, \frac{(29-20\sqrt{2})+i(\pm 15-25\sqrt{2})}{82}$ $\mathbf{Z} = \frac{(29 + 20\sqrt{2}) + i(\pm 15 + 25\sqrt{2})}{82}$ **Q.4** Q.5 (a) C **Q.6** $7 A_0 + 7 A_7 x^7 + 7 A_{14} x^{14}$ **Q.7 (a)** A **(b)** A **Q.8** $z^2 + z + \frac{\sin^2 n \theta}{\sin^2 \theta} = 0$, where $\theta = \frac{1}{2}$ eko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. **Q.10** $\pm 1 + i\sqrt{3}, \frac{(\pm\sqrt{3}+i)}{\sqrt{2}}, \sqrt{2}i$ **Q.11** (a) B Q.9 (a) C, (b) D ; (b) B (a) D ; (b) Centre = $\frac{k^2\beta - \alpha}{k^2 - 1}$, Radius = $\frac{1}{(k^2 - 1)}\sqrt{|\alpha - k^2\beta|^2 - (k^2 \cdot |\beta|^2 - |\alpha|^2)(k^2 - 1)}$ Q.13 (a) A, (b) B, (c) $z_2 = -\sqrt{3}i$; $z_3 = (1-\sqrt{3})+i$; $z_4 = (1+\sqrt{3})-i$ **Q.15** D Q.14 EXERCISE-4 Part : (A) Only one correct option If |z| = 1 and $\omega = \frac{z-1}{z+1}$ (where $z \neq -1$), the Re(ω) is [IIT - 2003, 3] (A) 0 (D) $|z+1|^2$ $|z+1|^{2}$ $|z+1|^{2}$ $|z+1|^{2}$ The locus of z which lies in shaded region (excluding the boundaries) is best represented by +√2,√2) $(-1 \ 0)$ arg(z) > -[IIT - 2005. 3] arq(z) = (B) z : |z - 1| > 2 and $|arg (z - 1)| < \pi/4$ (D) z : |z - 1| < 2 and $|arg (z + 1)| < \pi/2$ (A) z : |z + 1| > 2 and $|arg (z + 1)| < \pi/4$ (C) z : |z + 1| < 2 and $|arg (z + 1)| < \pi/2$ If $w = \alpha$, + i β , where $\beta \neq 0$ and $z \neq 1$, satisfies the condition that is purely real, then the set of values of z is [IIT - 2006, (3, -1)] (A) $\{z : |z| = 1\}$ (C) $\{z : z \neq 1\}$ (D) $\{z : |z| = 1, z \neq 1\}$ (B) $\{z : z = \overline{z}\}$ If $(\sqrt{3} + i)^{100} = 2^{99} (a + ib)$, then b is equal to (A) √3 (B) $\sqrt{2}$ (C) 1 (D) none of these If $\operatorname{Re}\left(\frac{z-8i}{z+6}\right) = 0$, then z lies on the curve (A) $x^2 + y^2 + 6x - 8y = 0$ (B) 4x - 3y + 24 = 0(C) 4ab (D) none of these If n_1 , n_2 are positive integers then : $(1+i)^{n_1} + (1+i^3)^{n_1} + (1-i^5)^{n_2} + (1-i^7)^{n_2}$ is a real number if and only $(A) n_1 = n_2 + 1$ (B) $n_1 + 1 = n_2$ EREE 11. (C) n' = n'(D) n₁, n₂ are any two positive integers The three vertices of a triangle are represented by the complex numbers, 0, z_1 and z_2 . If the triangle is equilateral, then (A) $z_1^2 - z_2^2 = z_1 z_2$ (C) $z_1^2 + z_2^2 = z_1 z_2$ (D) $z_1^2 + z_2^2 + z_1 z_2 = 0$ (B) $Z_2^2 - Z_1^2 = Z_1 Z_2$ If $x^2 - x + 1 = 0$ then the value of $\sum_{n=1}^{3} \left(x^n + \frac{1}{x^n} \right)$ 8. (A) 8 (B) 10 (C) 12 (D) none of these

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
9. If
$$\alpha$$
 is nonreal and $\alpha = \sqrt[n]{1}$ if the the value of $\frac{1}{2}(-\alpha + \alpha^{-1} + \alpha^{-1})$ is equal to
(A) 4 (B) 2 (C) 1 (D) none of these
(A) 1 (B) 2 (C) 3 (D) 4
If $z = x + iy$ and $2^{1/3} = a - ib$ then $\frac{x}{a} - \frac{y}{b} = k \left(a^2 - b^2\right)$ where $k =$
(A) 1 (B) 2 (C) 3 (D) 4
(A) 1 (B) 2 (C) 2 (C) 3 (D) 1
(A) 2 $\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$ (B) 2 $\sqrt{2} \left[\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right) \right]$
(C) 2 $\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$ (B) 2 $\sqrt{2} \left[\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right) \right]$
(C) 2 $\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$ (D) $\sqrt{2} \left[\cos\left(\frac{3\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$
(C) 2 $\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$ (D) $\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$
(A) 2 $\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$ (D) $\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$
(A) 2 $\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$ (D) $\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$
(A) $2\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$ (D) $\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$
(A) $2\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$ (B) $2\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$
(A) $2\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$ (B) $2\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$
(A) $2\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$ (B) $2\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$
(A) $2\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right]$ (B) $2\sqrt{2} + \frac{\pi}{2} = 0$ (D) none of these
(A) $\frac{\pi}{2} \left[\left(\frac{2}{2\sqrt{3}}\right) + \sqrt{3} + i \sin \alpha} (-2\sqrt{2\sqrt{3}} + 6i \ are given on a complex plane. The complex number lying
on the bised of the angle formed by the vectors z_1 and z_1 (D) none of these
(A) $\frac{\pi}{2} = \left(\frac{(4-2\sqrt{3})}{4} + \frac{\sqrt{3} + 2}{2} = (0)$ (D) $2\pi + 1$ (D) none of these
(A) $\frac{\pi}{2} = \left(\frac{(4-2\sqrt{3})}{4} + \frac{\sqrt{3} + 2}{2} = (0)$ (D) $2\pi + 1$ (D) none of these
(A) $\frac{\pi}{2} = \frac{(4-2\sqrt{3})}{4} + \frac{\sqrt{3} + 2}{2} = (0)$ (D) $2\pi + 1$ (D) $2\pi + 1$ (D) $2\pi + 1$ (D) $2$$

Get Solution of These Packages & Learn up with the set of the set Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com If $|z_1 - 1| < 1$, $|z_2 - 2| < 2$, $|z_3 - 3| < 3$ then $|z_1 + z_2 + z_3|$ (A) is less than 6 (B) is (C) is less than 12 (D) li 25. 3) ĭs more than 3 (D) lies between 6 and 12 If $z_1, z_2, z_3, \dots, z_n$ lie on the circle |z| = 2, then the value of E = $|z_1 + z_2 + \dots + z_n| - 4 \left| \frac{1}{z_1} + \frac{1}{z_2} + \dots + \frac{1}{z_n} \right|$ is (C) –n (D) none of these $\begin{array}{l} \text{(A) } 3 \leq |z_1 - 2z_2| \leq 5 \\ \text{(C) } |z_1 - 3z_2| \geq 5 \\ \text{(J) } |z_1 - z_2| \geq 1 \\ \text{(J) } |z_1 - z_2| = 1 \\ \text{(J)$ \overline{z}_1 , \overline{z}_2 , \overline{z}_3 , \overline{z}_4 are also roots of the equation (B) z_1 is equal to at least one of \overline{z}_1 , \overline{z}_2 , \overline{z}_3 , \overline{z}_4 $-\overline{z}_1, -\overline{z}_2, -\overline{z}_3, -\overline{z}_4$ are also roots of the equation (D) none of these 0 98930 58881. If $a^3 + b^3 + 6 abc = 8 c^3 \& \omega$ is a cube root of unity then : (B) a, c, b are in H.P. (D) a + bω² – 2 cω = 0 The points z_1, z_2, z_3 on the complex plane are the vertices of an equilateral triangle if and only if : (A) $\Sigma (z_1 - z_2) (z_2 - z_3) = 0$ (B) $z_1^2 + z_2^2 + z_3^2 = 2 (z_1 z_2 + z_2 z_3 + z_3 z_1)$ (C) $z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$ (D) $2 (z_1^2 + z_2^2 + z_3^2) = z_1 z_2 + z_2 z_3 + z_3 z_1$ Phone : 0 903 903 7779, (B) | amp $z_1 - amp_2$ = π (D) $\frac{z_1}{z_2}$ is purely imaginary EXERCIS Given that x, y \in R, solve : $4x^2 + 3xy + (2xy - 3x^2)i = 4y^2 - (x^2/2) + (3xy - 2y^2)i$ If $\alpha \& \beta$ are any two complex numbers, prove that : If α , β are the numbers between 0 and 1, such that the points $z_1 = \alpha + i$, $z_2 = 1 + \beta i$ and $z_3 = 0$ form an equilateral triangle, then find α and β . equilateral triangle, then find α and β . ABCD is a rhombus. Its diagonals AC and BD intersect at the point M and satisfy BD = 2AC. If the points D $\overline{\overline{o}}$ and M represent the complex numbers 1 + i and 2 - i respectively, then find the complex number corresponding Ľ. Show that the sum of the pth powers of nth roots of unity : is zero, when p is not a multiple of n. (b) is equal to n, when p is a multiple of n. If $(1 + x)^n = p_0 + p_1 x + p_2 x^2 + p_3 x^3 + \dots$, then prove that : (b) $p_1 - p_3 + p_5 - \dots = 2^{n/2} \sin \frac{n \pi}{4}$ Prove that, $\log_{e}\left(\frac{1}{1-e^{i\theta}}\right) = \log_{e}\left(\frac{1}{2}\csc\frac{\theta}{2}\right) + i\left(\frac{\pi}{2}-\frac{\theta}{2}\right)$ = A + i B, principal values only being considered, prove that $A^2 + B^2 = e^{-\pi B}$ Prove that the roots of the equation, $(x - 1)^n = x^n \operatorname{are} \frac{1}{2} \left(1 + i \cot \frac{r \pi}{r} \right)$, where Ц 10. Ц 10. Ц Ц Ц If $\cos(\alpha - \beta) + \cos(\beta - \gamma) + \cos(\gamma - \alpha) = -3/2$ then prove that : $\Sigma \cos 2\alpha = 0 = \Sigma \sin 2\alpha$ (b) $\Sigma \sin (\alpha + \beta) = 0 = \Sigma \cos (\alpha + \beta)$ (a) $\Sigma \sin 3\alpha = 3 \sin (\alpha + \beta + \gamma)$ (d) $\Sigma \cos 3\alpha = 3\cos(\alpha + \beta + \gamma)$ (c) $\Sigma \sin^2 \alpha = \Sigma \cos^2 \alpha = 3/2$ (e) $\cos^{3}(\theta + \alpha) + \cos^{3}(\theta + \beta) + \cos^{3}(\theta + \gamma) = 3\cos(\theta + \alpha).\cos(\theta + \beta).\cos(\theta + \gamma)$ (f) where $\theta \in R$.

Get 11.	Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com If α , β , γ are roots of $x^3 - 3x^2 + 3x + 7 = 0$ (and ω is imaginary cube root of unity), then find the value
com	of $\frac{\alpha-1}{\beta-1} + \frac{\beta-1}{\gamma-1} + \frac{\gamma-1}{\alpha-1}$.
0. 0. 12.	Given that, $ z - 1 = 1$, where 'z' is a point on the argand plane. Show that $\frac{z - 2}{z} = i$ tan (arg z).
& www.MathsBySuhag.com 21 9 9 15 19 15 15 15	P is a point on the Argand diagram. On the circle with OP as diameter two points Q & R are taken such that $\angle POQ = \angle QOR = \theta$. If 'O' is the origin & P, Q & R are represented by the complex numbers $Z_1, Z_2 \& Z_3$ respectively, show that : $Z_2^2 \cos 2\theta = Z_1, Z_3 \cos^2 \theta$. Find an expression for tan 7 θ in terms of tan θ , using complex numbers. By considering tan $7\theta = 0$, show that x = tan ² (3 $\pi/7$) satisfies the cubic equation $x^3 - 21x^2 + 35x - 7 = 0$.
Mat 15.	If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$ ($n \in N$), prove that $: C_2 + C_6 + C_{10} + \dots = \frac{1}{2} \left[2^{n-1} - 2^{n/2} \cos \frac{n\pi}{4} \right] \bigoplus_{n=0}^{\infty} C_n x^n$
	Prove that : $\cos\left(\frac{2\pi}{2n+1}\right) + \cos\left(\frac{4\pi}{2n+1}\right) + \cos\left(\frac{6\pi}{2n+1}\right) + \dots + \cos\left(\frac{2n\pi}{2n+1}\right) = -\frac{1}{2}$ When $n \in \mathbb{N}$. Show that all the roots of the equation $a_1z^3 + a_2z^2 + a_3z + a_4 = 3$, where $ a_i \le 1$, $i = 1, 2, 3, 4$ lie outside the $\underset{i=1}{\overset{\text{RN}}}{\overset{\text{RN}}{\overset{\text{RN}}{\overset{\text{RN}}{\overset{\text{RN}}{\overset{\text{RN}}{\overset{\text{RN}}{\overset{\text{RN}}{\overset{\text{RN}}{\overset{\text{RN}}{\overset{\text{RN}}{\overset{\text{RN}}{\overset{\text{RN}}{\overset{\text{RN}}}{\overset{\text{RN}}{\overset{\text{RN}}{\overset{\text{RN}}{\overset{\text{RN}}{\overset{\text{RN}}}{\overset{\text{RN}}{\overset{\text{RN}}}{\overset{\text{RN}}{\overset{\text{RN}}}{\overset{\text{RN}}}{\overset{\text{RN}}{\overset{\text{RN}}}}{\overset{\text{RN}}{\overset{\text{RN}}}}}}}}}}}}}}}}}}$
Шор 18.	Prove that $\sum_{k=1}^{n-1} (n-k) \cos \frac{2k\pi}{n} = -\frac{n}{2}$, where $n \ge 3$ is an integer
S 0 19.	Show that the equation $\frac{A_1^2}{x-a_1} + \frac{A_2^2}{x-a_2} + \dots + \frac{A_n^2}{x-a_n} = k$ has no imaginary root, given that :
www.TekoClasses.com 18. 05 19. 17. 10	a ₁ , a ₂ , a ₃ , a _n & A ₁ , A ₂ , A ₃ ,, A _n , k are all real numbers. Let z_1 , z_2 , z_3 be three distinct complex numbers satisfying, $\frac{1}{2}z_1 - \frac{1}{2} = \frac{1}{2}z_2 - \frac{1}{2} = \frac{1}{2}z_3 - \frac{1}{2}$. Let A, B & C be the points represented in the Argand plane corresponding to z_1 , z_2 and z_3 resp. Prove that $z_1 + z_2 + \frac{1}{2}z_3 = 3$ if and only if D ABC is an equilateral triangle.
[_] [_] ⁰ 21.	Let α , β be fixed complex numbers and z is a variable complex number such that,
.: 22.	$\begin{aligned} z - \alpha ^2 + z - \beta ^2 &= k. \end{aligned}$ Find out the limits for 'k' such that the locus of z is a circle. Find also the centre and radius of the circle. If 1, $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_{n-1}$ are the n, n th roots of unity, then prove that $(1 - \alpha_1) (1 - \alpha_2) (1 - \alpha_3) \dots (1 - \alpha_{n-1}) = n. \end{aligned}$ Hence prove that $\sin \frac{\pi}{n} \cdot \sin \frac{2\pi}{n} \cdot \sin \frac{3\pi}{n} \dots \sin \frac{(n-1)\pi}{n} = \frac{n}{2^{n-1}}. \end{aligned}$
≥ ≥ ^{23.}	Find the real values of the parameter 'a' for which at least one complex number z = x + iy satisfies both the equality $ z - ai = a + 4$ and the inequality $ z - 2 < 1$.
0 JJ 24.	Prove that, with regard to the quadratic equation $z^2 + (p + ip') z + q + iq' = 0$; where p, p', q, q' are all \dot{O}
FREE Download Study Package from wel	real. (a) if the equation has one real root then $q'^2 - pp'q' + qp'^2 = 0$. (b) if the equation has two equal roots then $p^2 - p'^2 = 4q \& pp' = 2q'$. State whether these equal roots are real or complex.
^{የ0} 25.	The points A, B, C depict the complex numbers $z_{1,} z_{2,} z_{3}$ respectively on a complex plane & the angle \vec{p}
Apr	B & C of the triangle ABC are each equal to $\frac{1}{2}(\pi - \alpha)$. Show that
l Sti	$(z_2 - z_3)^2 = 4 (z_3 - z_1) (z_1 - z_2) \sin^2 \frac{\alpha}{2}$.
26. 1090	The points A, B, C depict the complex numbers z_1, z_2, z_3 respectively on a complex plane & the angle B & C of the triangle ABC are each equal to $\frac{1}{2}(\pi - \alpha)$. Show that $(z_2 - z_3)^2 = 4(z_3 - z_1)(z_1 - z_2)\sin^2\frac{\alpha}{2}$. If z_1, z_2 & z_3 are the affixes of three points A, B & C respectively and satisfy the condition $ z_1 - z_2 = z_1 + z_2 $ and $ (2 - i) z_1 + iz_3 = z_1 + (1 - i) z_1 + iz_3 $ then prove that Δ ABC in a right angled. If 1, $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ be the roots of $x^5 - 1 = 0$, then prove that $\frac{\omega - \alpha_1}{\omega^2 - \alpha_1} \cdot \frac{\omega - \alpha_2}{\omega^2 - \alpha_2} \cdot \frac{\omega - \alpha_3}{\omega^2 - \alpha_3} \cdot \frac{\omega - \alpha_4}{\omega^2 - \alpha_4} = \omega$.
≥ 27.	If 1, α_1 , α_2 , α_3 , α_4 be the roots of $x^5 - 1 = 0$, then prove that
Ď	$\frac{\omega - \alpha_1}{\omega^2 - \alpha_1} \cdot \frac{\omega - \alpha_2}{\omega^2 - \alpha_2} \cdot \frac{\omega - \alpha_3}{\omega^2 - \alpha_3} \cdot \frac{\omega - \alpha_4}{\omega^2 - \alpha_4} = \omega.$
Ш 28.	If one the vertices of the square circumscribing the circle $ z-1 = \sqrt{2}$ is $2 + \sqrt{3}$ i. Find the other vertices of
	the square. [IIT – 2005, 4]

