Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 WhatsApp 9009260559 PART 3 OF 3

Some questions (Assertion-Reason type) are given below. Each question contains Statement - 1 (Assertion) and Statement - 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. So select the correct choice :
Choices are :
(A) Statement $\mathbf{- 1}$ is True, Statement $\mathbf{- 2}$ is True; Statement $\mathbf{- 2}$ is a correct explanation for Statement $\mathbf{- 1}$.
(B) Statement - $\mathbf{1}$ is True, Statement - $\mathbf{2}$ is True; Statement $\mathbf{- 2}$ is NOT a correct explanation for Statement $\mathbf{- 1}$.
(C) Statement - $\mathbf{1}$ is True, Statement - $\mathbf{2}$ is False.
(D) Statement - 1 is False, Statement -2 is True.

PROBABILITY

429. $P(E)=\frac{n(E)}{n(S)}=\frac{m}{n}$ or $\frac{\text { Area of }(E)}{\text { Area of }(S)}$
[Good]

Statement-1: Always the probability of an event is a rational number and less than or equal to one
Statement-2: The equation $\mathrm{P}(\mathrm{E})=|\sin \theta|$ is always consistent.
430. Let A and B be two event such that $P(A \cup B) \geq 3 / 4$ and $1 / 8 \leq P(A \cap B) \leq 3 / 8$

Statement-1: $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B}) \geq 7 / 8$
Statement-2 : $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B}) \leq 11 / 8$
431. Statement-1 : The probability of drawing either a ace or a king from a pack of card in a single draw is $\frac{2}{13}$.
Statement-2 : For two events E_{1} and E_{2} which are not mutually exclusive, probability is given by $P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)$.
432. Let A and B be two independent events.

Statement-1 : If $\mathrm{P}(\mathrm{A})=0.3$ and $\mathrm{P}(\mathrm{A} \cup \overline{\mathrm{B}})=0.8$ then $\mathrm{P}(\mathrm{B})$ is $\frac{2}{7}$.
Statement-2 : $\mathrm{P}(\overline{\mathrm{E}})=1-\mathrm{P}(\mathrm{E})$ where E is any event.
433. Let A and B be two independent events of a random experiment.

Statement-1 : $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) . \mathrm{P}(\mathrm{B})$
Statement-2 : Probability of occurrence of A is independent of occurrence or non-occurrence of B .
434. A fair die is rolled once.

Statement-1 : The probability of getting a composite number is $\frac{1}{3}$
Statement-2 : There are three possibilities for the obtained number (i) the number is a prime number (ii) the number is a composite number (iii) the number is 1 , and hence probability of getting a prime number $=\frac{1}{3}$
435. Let A and B are two events such that $P(A)=\frac{3}{5}$ and $P(B)=\frac{2}{3}$, then

Statement-1 : $\frac{4}{15} \leq \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq \frac{3}{5}$.
Statement-2 : $\frac{2}{5} \leq \mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}}\right) \leq \frac{9}{10}$.

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 WhatsApp 9009260559 PART 3 OF 3

436. Statement-1 : Three of the six vertices of a regular hexagon are chosen at random. The probability that the triangle with three vertices equilateral equals to $\frac{3}{10}$.
Statement-2 : A die is rolled three times. The probability of getting a large number than the previous number is $\frac{5}{64}$.
437. Statement-1: A coin is tossed thrice. The probability that exactly two heads appear, is $3 / 8$

Statement-2: Probability of success r times out of total n trials $=P(r)={ }^{n} C_{r}={ }^{n} C_{r} p^{r} q^{n-r}$ where p be the probability of success and q be the probability of failure.
438. Statement-1 : For any two events A and B in a sample space $P(A / B) \geq \frac{P(A)+P(B)}{P(B)}, P(B) \neq 0$ is always true

Statement-2 : For any two events A and B $0<\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \leq 1$.
439. Statement-1: The letters of the English alphabet are written in random order. The probability that letters x \& y are adjacent is $\frac{1}{13}$.
Statement-2: The probability that four lands deals at random from 94 ordinary deck of 52 cends will contain from an ordinary deck of 52 cends will contain from each suit is $1 / 4$.
440. Statement-1: The probability of being at least one white ball selected from two balls drawn simultaneously from the bag containing 7 black \& 4 white balls is $34 / 35$.
Statement-2: Sample space $={ }^{11} \mathrm{C}_{2}=55$, Number of fav. Cases $={ }^{4} \mathrm{C}_{1} \times{ }^{7} \mathrm{C}_{1}+{ }^{4} \mathrm{C}_{2} \times{ }^{7} \mathrm{C}_{0}$
441. Statement-1: If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be three mutually independent events then A and $\mathrm{B} \cup \mathrm{C}$ are also independent events.

Statement-2: Two events A and B are independent if and only if $P(A \cap B)=P(A) P(B)$.
442. Statement-1: If A and B be two events such that $P(A)=0.3$ and $P(A \cup B)=0.8$ also A and B are independent events $P(B)$ is 0.5 .
Statement-2: IF A \& B are two independent events then $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$.
443. Statement-1: The probability of occurence of a doublet when two identical dies are thrown is $2 / 7$.

Statement-2: When two identical dies are thrown then the total number of cases are 21 in place of 36 (when two distinct dies are thrown) because the cases like $(5,6)$. $(6,5)$ are considered to be same.
444. Statement-1: $\mathrm{A}=\{2,4,6\}, \mathrm{B}=\{1,2,3$,$\} where \mathrm{A}$ \& B are the number occuring on a dice, then $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=1$ Statement-2: If $A_{1}, A_{2}, \mathrm{~A}_{3} \ldots \mathrm{~A}_{\mathrm{n}}$ are all mutually exclusive events, then $\mathrm{P}\left(\mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{A}_{2}\right)+\ldots+\mathrm{P}\left(\mathrm{A}_{n}\right)=1$.
445. Statement-1: If $\mathrm{P}(\mathrm{A} / \mathrm{B}) \geq \mathrm{P}(\mathrm{A})$ then $\mathrm{P}(\mathrm{B} / \mathrm{A}) \geq \mathrm{P}(\mathrm{B})$

Statement-2:: $\mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}$
446. Statement-1: Balls are drawn one by one without replacement from a bag containing a white and b black balls, then probability that white balls will be first to exhaust is $a / a+b$.
Statement-2: Balls are drawn one by one without replacement from a bag containing a white and b black balls then probability that third drawn ball is white is $\mathrm{a} / \mathrm{a}+\mathrm{b}$.
447. Statement-1: Out of 5 tickets consecutively numbers, three are drawn at random, the chance that the numbers on them are in A.P. is $2 / 15$.
Statement-2: Out of $(2 n+1)$ tickets consectively numbered, three are drawn at random, the chance that the numbers on them are in A.P. is $\frac{3 n}{4 n^{2}-1}$.
448. Statement-1: If the odds against an event is $2 / 3$ then the probability of occurring of an event is $3 / 5$.

Statement-2: For two events A and BP($\left.A^{\prime} \cap B^{\prime}\right)=-1 P(A \cup B)$
449. Statement-1: A, B, C are events such that $\mathrm{P}(\mathrm{A})=0.3, \mathrm{P}(\mathrm{B})=0.4 \mathrm{P}(\mathrm{C})=0.8, \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.08, \mathrm{P}(\mathrm{A} \cap \mathrm{C})=0.28$, $\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=0.09$ then $\mathrm{P}(\mathrm{B} \cap \mathrm{C}) \in(0.23,0.48)$.
Statement-2: $0.75 \leq \mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}) \leq 1$.
450. Statement-1: If $\mathrm{P}(\mathrm{A})=0.25, \mathrm{P}(\mathrm{B})=0.50$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.14$ then the probability that neither A nor B occurs is 0.39 .

Statement-2: $(\overline{\mathrm{A} \cup \mathrm{B}})=\overline{\mathrm{A}} \cup \overline{\mathrm{B}}$

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 WhatsApp 9009260559 PART 3 OF 3

451. Statement-1: For events A and B of sample space if $P\left(\frac{A}{B}\right) \geq P(A)$ then $P\left(\frac{B}{A}\right) \geq P(B)$.

Statement-2: $P\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)}(P(B) \neq 0)$

ANSWER

429. D	430. D	431. B
435. A	436. D	437. A
442. D	443. D	444. C
449. A	450. C	451. A

432. A	433. A
438. D	439. C

434. C
435. D 439. C
436. D
437. A
438. A
439. A
440. D
441. B

Details Solution

430. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$\therefore 1 \geq \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \geq 3 / 4$
$\Rightarrow P(A)+P(B)-1 / 8 \geq 1 / 8 \geq 3 / 4$ (since min. value of $P(A \cap B)=1 / 8)$
$\Rightarrow \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B}) \leq 1 / 8+3 / 4=7 / 8$
As the max. value of $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=3 / 8$, we get
$1 \geq \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-3 / 8$
$\Rightarrow \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B}) \leq 1+3 / 8=11 / 8$.
Ans. D
431. (b) Clearly both are correct but statement - II is not the correct explanation for statement - I.
432. (A) $\mathrm{P}(\mathrm{A} \cup \overline{\mathrm{B}})=1-(\overline{\mathrm{A} \cup \overline{\mathrm{B}}})=1-(\overline{\mathrm{A}} \cap \mathrm{B})=1-\mathrm{P}(\overline{\mathrm{A}}) \mathrm{P}(\mathrm{B})$
$0.8=1-0.7 \times \mathrm{P}(\mathrm{B})$
$\Rightarrow \mathrm{P}(\mathrm{B})=\frac{2}{7}$.
433. Statement-II is true as this is the definition of the independent events.

Statement -I is also true, as if events are independent, then $\mathrm{P}\left(\frac{A}{B}\right)=\mathrm{P}(\mathrm{A})$
$\Rightarrow \frac{P(A \cap B)}{P(B)}=\mathrm{P}(\mathrm{A}) \Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) . \mathrm{P}(\mathrm{B})$.
Obviously statement - II is a correct reasoning of statement - I
Hence (a) is the correct answer.
434. Statement - I is true as there are six equally likely possibilities of which only two are favourable (4 and 6). Hence $\mathrm{P}($ obtained number is composite $)=\frac{2}{6}=\frac{1}{3}$.
Statement - II is not true, as the three possibilities are not equally likely.
Hence (c) is the correct answer.
435. $\because \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \geq \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-1$
$\therefore \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \geq \frac{3}{5}+\frac{2}{3}-1 \Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \geq \frac{4}{15}$
$\because \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq \mathrm{P}(\mathrm{A}) \Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq \frac{3}{5}$
from (i) and (ii), $\frac{4}{15} \leq \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq \frac{3}{5}$
from (iii), $\frac{4}{15 \mathrm{P}(\mathrm{B})} \leq \frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})} \leq \frac{3}{5 \mathrm{P}(\mathrm{B})} \Rightarrow \frac{2}{5} \leq \mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}}\right) \leq \frac{9}{10}$
Hence (a) is the correct answer.
436. For statement $I, n(S)={ }^{6} c_{3}=20$
only two triangle formed are equilateral, they are $\Delta \mathrm{A}_{1} \mathrm{~A}_{3} \mathrm{~A}_{5}$ and $\Delta \mathrm{A}_{2} \mathrm{~A}_{4} \mathrm{~A}_{6} . \therefore \mathrm{n}(\mathrm{E})=2$

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 WhatsApp 9009260559 PART 3 OF 3
$\Rightarrow P(E)=\frac{n(E)}{n(S)}=\frac{2}{20}=\frac{1}{10}$.
No. of favorable ways $=\sum_{i=1}^{6}(i-1)(6-i)=20$
$\therefore \quad$ Required probability $=\frac{20}{216}=\frac{5}{64}$.
Hence (d) is the correct answer.
440. $\quad \therefore$ Reqd. probability $=35 / 55$.

Option (A) is correct.
441. $\mathrm{P}\{\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C})\}=\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{C})$
$\therefore \mathrm{P}[\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})]=\mathrm{P}[(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A} \cap \mathrm{C})]$
$=P[(A \cap B)+(A \cap C)-P[(A \cap B) \cap(A \cap C)]$
$=p(A \cap B)+P(A \cap C)-P(A \cap B \cap C)$
$=P(A) P(B)+P(A) P(C)-P(A) P(B) P(C)$
$=P(A)[P(B)+P(C)-P(B) P(C)]$
$=P(A) \cdot P(B \cup C)$
$\therefore A \& B \cup C$ are independent events
442. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$
$0.8=0.3+\mathrm{P}(\mathrm{B})-0.3 \times \mathrm{P}(\mathrm{B})$
$\mathrm{P}(\mathrm{B})=5 / 7$
445. (A) The statement-1 A is true and follows from statement-2
indeed $P(A / B)=\frac{P(A \cap B)}{P(B)} \leq P(A)$
$\Rightarrow \frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})} \leq \mathrm{P}(\mathrm{B})$
$\Rightarrow \mathrm{P}(\mathrm{B} / \mathrm{A}) \leq \mathrm{P}(\mathrm{B})$
446. Statement-1 is false. Since if the colour white is first to exhaust then last ball must be black.
\Rightarrow favourable sample points
$((a+b-1)!) b$
req. probability $=\frac{b(a+b-1)!}{a+b!}=\frac{b}{a+b}$
447. (D) $2 n+1=5, n=2$
$\mathrm{P}(\mathrm{E})=\frac{3 \mathrm{n}}{4 \mathrm{n}^{2}-1}=\frac{6}{15}=\frac{2}{5}$
For $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A. P. $\mathrm{a}+\mathrm{c}=2 \mathrm{~b} \quad \Rightarrow \quad \mathrm{a}+\mathrm{c}$ is even
$\therefore \mathrm{a}$ and c are both even or both odd.
So, number of ways of choosing a and c is ${ }^{\mathrm{n}} \mathrm{C}_{2}+{ }^{\mathrm{n}+1} \mathrm{C}_{2}=\mathrm{n}^{2}$ ways.
$\mathrm{P}(\mathrm{E})=\frac{\mathrm{n}^{2}}{{ }^{2 n+1} \mathrm{C}_{3}}=\frac{3 \mathrm{n}}{4 \mathrm{n}^{2}-1}$
448. (B) Both A and R are correct but R is not the correct explanation of A .
449. (A) $\because P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(A \cap C)+P(A \cap B \cap C)$ using all the given values we get that $\mathrm{P}(\mathrm{B} \cap \mathrm{C}) \in(0.23,0.48)$.
450. (C) Required probability is $\mathrm{P}(\overline{\mathrm{A}} \cap \overline{\mathrm{B}})$
$=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})=1-[\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})]$ $=0.39$
For 39 Yrs. Que. of IIT-JEE \& 15 Yrs. Que. of AIEEE we have distributed already a book

