fo/u fopkjr Hk# tu] ughavkjEHksdke] foifr n{k Nk%srjar e/;e eu dj ';keA i∉"k flg lalYi dj] lgrsfoifr vusl] ^cuk`u Nk%s/;\$ dk\$ j?kqj jk[ksVslAA jfpr%ekuo /keZizkrk

Inx# Jhj.kNkMnkI thegkjktFUNCTIONS (ASSERTION AND REASON)

Some questions (Assertion–Reason type) are given below. Each question contains **Statement – 1** (Assertion) and **Statement – 2** (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct. So select the correct choice :

Choices are :

- (A) Statement -1 is True, Statement -2 is True; Statement -2 is a correct explanation for Statement -1.
- (B) Statement − 1 is True, Statement − 2 is True; Statement − 2 is NOT a correct explanation for Statement − 1.
- (C) **Statement 1** is True, **Statement 2** is False.
- (D) **Statement 1** is False, **Statement 2** is True.
- 1. Let $f(x) = \cos 3\pi x + \sin \sqrt{3}\pi x$.

Statement -1: f(x) is not a periodic function.

Statement – 2: L.C.M. of rational and irrational does not exist

2. Statement – 1: If f(x) = ax + b and the equation $f(x) = f^{-1}(x)$ is satisfied by every real value of x, then $a \in R$ and b = -1.

Statement – 2: If f(x) = ax + b and the equation $f(x) = f^{-1}(x)$ is satisfied by every real value of x, then a = -1 and $b \in \mathbb{R}$.

3. Statements-1: If f(x) = x and $F(x) = \frac{x^2}{x}$, then F(x) = f(x) always

Statements-2: At x = 0, F(x) is not defined.

- 4. Statement-1: If $f(x) = \frac{1}{1-x}$, $x \neq 0, 1$, then the graph of the function y = f(f(f(x)), x > 1 is a straight line Statement-2: f(f(x)) = x
- 5. Let f(1 + x) = f(1 x) and f(4 + x) = f(4 x)Statement-1: f(x) is periodic with period 6

Statement–2: 6 is not necessarily fundamental period of f(x)

6. Statement-1: Period of the function $f(x) = \sqrt{1 + \sin 2x} + e^{\{x\}}$ does not exist Statement-2: LCM of rational and irrational does not exist

7. Statement-1 : Domain of
$$f(x) = \frac{1}{\sqrt{|x|-x|}}$$
 is $(-\infty, 0)$ Statement-2: $|x| - x > 0$ for $x \in \mathbb{R}^-$

8. Statement-1 : Range of
$$f(x) = \sqrt{4 - x^2}$$
 is [0, 2]

Statement-2 : f(x) is increasing for $0 \le x \le 2$ and decreasing for $-2 \le x \le 0$.

9. Let
$$a, b \in \mathbb{R}$$
, $a \neq b$ and let $f(x) = \frac{a+x}{b+x}$.

Statement-1 : f is a one-one function. **Statement-2** : Range of f is $R - \{1\}$

10. Statement-1 : $\sin x + \cos (\pi x)$ is a non-periodic function. Statement-2 : Least common multiple of the periods of $\sin x$ and $\cos (\pi x)$ is an irrational number.

11. Statement-1: The graph of f(x) is symmetrical about the line x = 1, then, f(1 + x) = f(1 - x). Statement-2 : even functions are symmetric about the y-axis.

12. Statement-1 : Period of
$$f(x) = \sin \frac{\pi x}{(n-1)!} + \cos \frac{\pi x}{n!}$$
 is $2(n)!$

Statement–2 : Period of $|\cos x| + |\sin x| + 3$ is π .

- **13.** Statement-1: Number of solutions of $tan(|tan^{-1}x|) = cos|x|$ equals 2 Statement-2: ?
- Statement-1: Graph of an even function is symmetrical about y-axis
 Statement-2: If f(x) = cosx has x (+)ve solution then total number of solution of the above equation is 2n. (when f(x) is continuous even function).
- 15. If f is a polynomial function satisfying $2 + f(x).f(y) = f(x) + f(y) + f(xy) \forall x, y \in \mathbb{R}$ Statement-1: f(2) = 5 which implies f(5) = 26Statement-2: If f(x) is a polynomial of degree 'n' satisfying f(x) + f(1/x) = f(x). f(1/x), then $f(x) = 1 x^n + 1$
- 16. Statement-1: The range of the function $\sin^{-1} + \cos^{-1}x + \tan^{-1}x$ is $[\pi/4, 3\pi/4]$ Statement-2: $\sin^{-1}x$, $\cos^{-1}x$ are defined for $|x| \le 1$ and $\tan^{-1}x$ is defined for all 'x'.

17. A function f(x) is defined as $f(x) = \begin{cases} 0 & \text{where } x \text{ is rational} \\ 1 & \text{where } x \text{ is irrational} \end{cases}$

Statement-1 : f(x) is discontinuous at xll $x \in R$

Statement-2: In the neighbourhood of any rational number there are irrational numbers and in the vincity of any irrational number there are rational numbers.

18. Let $f(x) = \sin \left(2\sqrt{3} \pi x\right) + \cos \left(3\sqrt{3} \pi x\right)$

Statement-1 : f(x) is a periodic function

Statement-2: LCM of two irrational numbers of two similar kind exists.

- **19.** Statements-1: The domain of the function $f(x) = \cos^{-1}x + \tan^{-1}x + \sin^{-1}x$ is [-1, 1] Statements-2: $\sin^{-1}x$, $\cos^{-1}x$ are defined for $|x| \le 1$ and $\tan^{-1}x$ is defined for all x.
- **20.** Statement-1 : The period of $f(x) = -\sin 2x \cos [2x] \cos 2x \sin [2x]$ is 1/2

Statements-2: The period of x - [x] is 1, where $[\cdot]$ denotes greatest integer function.

21. Statements-1: If the function $f : R \to R$ be such that f(x) = x - [x], where [·] denotes the greatest integer less than or equal to x, then $f^{-1}(x)$ is equals to [x] + x

Statements-2: Function 'f' is invertible iff is one-one and onto.

22. Statements-1 : Period of $f(x) = \sin 4\pi \{x\} + \tan \pi [x]$ were, [·] & {·} denote we G.I.F. & fractional part respectively is 1.

Statements-2: A function f(x) is said to be periodic if there exist a positive number T independent of x such that f(T + x) = f(x). The smallest such positive value of T is called the period or fundamental period.

23. Statements-1: $f(x) = \frac{x+1}{x-1}$ is one-one function

Statements-2: $\frac{x+1}{x-1}$ is monotonically decreasing function and every decreasing function is one-one.

24. Statements-1: $f(x) = \sin 2x$ ($|\sin x| - |\cos x|$) is periodic with fundamental period $\pi/2$

Statements-2: When two or more than two functions are given in subtraction or multiplication form we take the L.C.M. of fundamental periods of all the functions to find the period.

25. Statements-1: $e^x = \ln x$ has one solution.

Statements-2: If $f(x) = x \Rightarrow f(x) = f^{-1}(x)$ have a solution on y = x.

26. Statements-1:
$$F(x) = x + \sin x$$
. $G(x) = -x$

H(x) = F(X) + G(x), is a periodic function.

Statements-2: If F(x) is a non-periodic function & g(x) is a non-periodic function then $h(x) = f(x) \pm g(x)$ will be a periodic function.

27. Statements-1:
$$f(x) = \begin{cases} x+1, x \ge 0 \\ x-1, x < 0 \end{cases}$$
 is an odd function.

Statements-2: If y = f(x) is an odd function and x = 0 lies in the domain of f(x) then f(0) = 0

28. Statements-1: $f(x) = \begin{cases} x; & x \in Q \\ -x; & x \in Q^C \end{cases}$ is one to one and non-monotonic function.

Statements-2: Every one to one function is monotonic.

29. Statement-1: Let $f: [1, 2] \cup [5, 6] \rightarrow [1, 2] \cup [5, 6]$ defined as $f(x) = \begin{cases} x+4, x \in [1, 2] \\ -x+7, x \in [5, 6] \end{cases}$ then the

equation $f(x) = f^{-1}(x)$ has two solutions.

Statements-2: $f(x) = f^{-1}(x)$ has solutions only on y = x line.

30. Statements-1: The function $\frac{px+q}{rx+s}$ (ps - qr \neq 0) cannot attain the value p/r.

Statements-2: The domain of the function $g(y) = \frac{q-sy}{ry-p}$ is all real except a/c.

- 31. Statements-1: The period of $f(x) = \sin [2] x \cos [2x] \cos 2x \sin [2x] is 1/2$ Statements-2: The period of x - [x] is 1.
- **32.** Statements-1: If f is even function, g is odd function then $\frac{b}{g}$ (g \neq 0) is an odd function.

Statements-2: If f(-x) = -f(x) for every x of its domain, then f(x) is called an odd function and if f(-x) = f(x) for every x of its domain, then f(x) is called an even function.

- **33.** Statements-1: $f : A \to B$ and $g : B \to C$ are two function then $(gof)^{-1} = f^{-1} og^{-1}$. Statements-2: $f : A \to B$ and $g : B \to C$ are bijections then $f^{-1} \& g^{-1}$ are also bijections.
- 34. Statements-1: The domain of the function $f(x) = \sqrt{\log_2 \sin x}$ is $(4n + 1) \frac{\pi}{2}$, $n \in N$. Statements-2: Expression under even root should be ≥ 0
- 35. Statements-1: The function $f: R \to R$ given $f(x) = \log_a(x + \sqrt{x^2 + 1}) a > 0, a \neq 1$ is invertible. Statements-2: f is many one into.

36. Statements-1:
$$\phi(x) = \sin(\cos x) \ x \in \left[0, \frac{\pi}{2}\right]$$
 is a one-one function.

Statements-2: $\phi'(x) \le \forall x \in \left[0, \frac{\pi}{2}\right]$

37. Statements-1: For the equation $kx^2 + (2 - k)x + 1 = 0$ $k \in \mathbb{R} - \{0\}$ exactly one root lie in (0, 1). Statements-2: If $f(k_1) f(k_2) < 0$ (f(x) is a polynomial) then exactly one root of f(x) = 0 lie in (k_1, k_2) .

38. Statements-1: Domain of
$$f(x) = \sin^{-1}\left(\frac{1+x^2}{2x}\right)$$
 is $\{-1, 1\}$

Statements-2: $x + \frac{1}{x} \ge 2$ when x > 0 and $x + \frac{1}{x} \le -2$ when x < 0.

- 39. Statements-1: Range of f(x) = |x|(|x| + 2) + 3 is [3, ∞)
 Statements-2: If a function f(x) is defined ∀ x ∈ R and for x ≥ 0 if a ≤ f(x) ≤ b and f(x) is even function than range of f(x) f(x) is [a, b].
- **40.** Statements-1: Period of $\{x\} = 1$. Statements-2: Period of [x] = 1
- 41. Statements-1: Domain of $f = \phi$. If $f(x) = \frac{1}{\sqrt{[x] x}}$

Statements-2: $[x] \le x \forall x \in R$

42. Statements-1: The domain of the function $\sin^{-1}x + \cos^{-1}x + \tan^{-1}x$ is [-1, 1]Statements-2: $\sin^{-1}x$, $\cos^{-1}x$ are defined for $|x| \le 1$ and $\tan^{-1}x$ is defined for all 'x'

	<u>ANSWER KEY</u>									
1. A	2. D	3. A	4. C	5. A	6. A	7. A				
8. C	9. B	10. C	11. A	12. C	13. B	14. A				
15. A	16. A	17. A	18. A	19. A	20. A	21. D				
22. A	23. A	24. A	25. D	26. C	27. D	28. C				
29. C	30. A	31. A	32. A	33. D	34. A	35. C				
36. A	37. C	38. A	39. A	40. A	41. A	42. A				

SOLUTIONS

4.
$$f(f(x)) = \frac{1}{1-f(x)} = \frac{1}{1-\frac{1}{1-x}} = \frac{x-1}{x}$$

$$\therefore f(f(f(x))) = \frac{1}{1-f(f(x))} = \frac{1}{1-\frac{x-1}{x}} = x$$
Ans. C
5.
$$f(1+x) = f(1-x)$$

$$(1) = f(1-x) = x$$

$$(2) = x \rightarrow 1 - x in (1) \Rightarrow f(1-x) = f(x)$$

$$(3) = x \rightarrow 4 - x in (2) \Rightarrow f(2-x) f(8-x) = f(x)$$

$$(4) = f(1-x) = f(x)$$

$$(1) and (4) \Rightarrow f(2-x) = f(8-x)$$

$$(3) = x \rightarrow 4 - x in (2) \Rightarrow f(2-x) f(8-x) = f(x)$$

$$(4) = f(1-x) =$$

 $f(x) = |\cos x| + |\sin x| + 3 = \sqrt{1 + |\sin 2x|} + 3$ Now. \therefore f(x) is periodic function with period = $\frac{\pi}{2}$. Hence (c) is the correct answer. $\tan(|\tan^{-1}x|) = |x|$, since $|\tan^{-1}x| = \tan^{-1}|x|$ 13. Obviously $\cos|x|$ and |x| meets at exactly two points \therefore (B) is the correct option. 14. (A)Since $\cos n$ is also even function. Therefore solution of $\cos x = f(x)$ is always sym. also out y-axis. 19. (a) Both A and R are obviously correct. 20. f(x) = x [x](a) f(x + 1) = x + 1 - ([x] + 1) = x - [x]So, period of x - [x] is 1. Let $f(x) = \sin (2x - [2x])$ $f\left(x+\frac{1}{2}\right) = \sin\left(2\left(x+\frac{1}{2}\right) - \left|2\left(x+\frac{1}{2}\right)\right|\right)$ So, period is 1/2 $= \sin (2x + 1 - [2x] - 1)$ $= \sin (2x - [2x])$ 21. f(1) = 1 - 1 = 0 f(0) = 0 \therefore f⁻¹(x) is not defined Ans. (D) \therefore f is not one-one 22. Clearly tan $\pi[x] = 0 \forall x \in \mathbb{R}$ and period of sin $4\pi \{x\} = 1$. Ans. (A) $f'(x) = \frac{(x-1) - (x+1)}{(x-1)^2} = \frac{-2}{(x-1)^2} < 0$ $f(x) = \frac{x+1}{x-1}$ 23. So f(x) is monotonically decreasing & every monotonic function is one-one. So 'a' is correct. 24. $f(x) = \sin 2x$ ($|\sin x| - |\cos x|$) is periodic with period $\pi/2$ because $f(\pi/2 + x) = \sin 2(\pi/2 + x)(|\sin(\pi/2 + x)|)$ $-|\cos(\pi/2 + x)|)$ $= \sin (\pi + 2x) (|\cos x| - |\sin x|)$ $= -\sin 2x (|\cos x| - |\sin x|)$ $= \sin 2x (|\sin x| - |\cos x|)$ Sometimes f(x + r) = f(x) where r is less than the L.C.M. of periods of all the function, but according to definition of periodicity, period must be least and positive, so 'r' is the fundamental period. So 'f' is correct. 27. (D) If f(x) is an odd function, then $f(x) + f(-x) = 0 \forall x \in D_f$ (C) For one to one function if $x_1 \neq x_2$ 28. \Rightarrow f(x₁) \neq f(x₂) for all x₁, x₂ \in D_f $\sqrt{3} > 1$ but $f(\sqrt{3}) < f(1)$ and 3 > 1f(5) > f(1)f(x) is one-to-one but non-monotonic (C) $\left(\frac{3}{2}, \frac{11}{2}\right)$ and $\left(\frac{11}{2}, \frac{3}{2}\right)$ both lie on y = f(x) then they will also lie on y = f⁻¹(x) \Rightarrow there are two 29. solutions and they do not lie on y = x.

30. If we take
$$y = \frac{px+q}{rx+s}$$
 then $x = \frac{q-sx}{rx-p} \Rightarrow x$ does not exist if $y = p/r$
Thus statement-1 is correct and follows from statement-2 (A)
31. $f(x) = sin(2x-[2x])$ $f(x+1/2) = sin(2x+1-[2(x+\frac{1}{2})])$
 $= sin(2x+1-[2x]-1]$ $= sin(2x-[2x])$ i.e., period is 1/2.
 $f(x) = x - [x]$ $f(x+1) = x - [x]$ i.e., period is 1. (A)
32. (A) Let $h(x) = \frac{f(x)}{g(x)}$ $= \frac{f(x)}{-g(x)} = -h(x)$
 $\therefore h(x) = \frac{f}{g}$ is an odd function.
33. (D) Assertion : f: A → B, g: B → C are two functions then $(gof)^{-1} \neq f^{-1} og^{-1}$ (since functions need not posses inverses. Reason : Bijective functions are invertibles.
34. (A) for $f(x)$ to be real log₂(sin $x) \ge 0$
 $\Rightarrow sin $x \ge 2^{\circ}$ $\Rightarrow sin x = 1 \Rightarrow x = (4n + 1)\frac{\pi}{2}, n \in N.$
35. (C) f is injective since $x \neq y(x, y \in R)$
 $\Rightarrow \log_a \left\{x + \sqrt{x^2 + 1}\right\} \neq \log_a \left\{y + \sqrt{y^2 + 1}\right\}$
 $\Rightarrow f(x) \neq f(y)$
f is onto because $\log_a \left(x + \sqrt{x^2 + 1}\right) = y$ $\Rightarrow x = \frac{a^2 - a^{-7}}{2}.$
40. Since $\{x\} = x - [x]$
 $\therefore (x + 1) = x + 1 - [x + 1]$
 $= x + 1 - [x] - 1$ $= x - [x] = [x]$
 $Period of [x] = 1$ Ans (A)
41. $f(x) = \frac{1}{\sqrt{[x]-x}} [x] - x \neq 0$
 $[x] \neq x \to [x] > x I is imposible or [x] \le x$
So the domain of fis ϕ because reason $[x] \le x$ Ans. (A)
Imp. Que. From Competitive examps$

	3111 X \pm CO3 X					
(a) 1		(b) 2	(c)	3	(d)	4

2.	If $f: R \to R$ satisfies $f(x +$	y) = $f(x) + f(y)$, for all x, y	$\in R$ and $f($	(1) = 7, then $\sum_{r=1}^{n} f(r)$	(r) is	[AIEEE 2003]
	(a) $\frac{7n}{2}$	(b) $\frac{7(n+1)}{2}$	(c)	7 <i>n</i> (n + 1)	(d)	$\frac{7n(n+1)}{2}$
3.	Suppose $f: [2, 2] \to R$ is de	efined by $f(x) = \begin{cases} -1 & \text{fo} \\ x - 1 & \text{fo} \end{cases}$	$r - 2 \le x \le r \le x \le 2$	$\begin{cases} 0 \\ 2 \end{cases}$, then $\{x \in (-2, $	2): x ≤ 0 a	and $f(x) = x$
	(a) {-1}	(b) {0}	(c)	$\{-1/2\}$ (d)	ϕ	[EAMCET 2003]
4.	If $f(x) = \operatorname{sgn}(x^3)$, then	[DCE	2001]			
	(a) f is continuous but not de	erivable at $x = 0$	(b)	$f'(0^+) = 2$		
	(c) $f'(0^-) = 1$		(d)	f is not derivable	at $x = 0$	
5.	If $f: R \to R$ and $g: R \to R$	R are given by $f(x) = x $ and	d g(x) = x	$x \mid \text{ for each } x \in R$, then $\{x \in$	$R: g(f(x)) \le f(g(x))\} =$
	(a) $Z \cup (-\infty, 0)$	(b) (−∞,0)	(c)	Z (d) R	[EAMCET	2003]
6.	For a real number x , $[x]$ den	otes the integral part of x . The	e value of			
	$\left[\frac{1}{2}\right] + \left[\frac{1}{2} + \frac{1}{100}\right] + \left[\frac{1}{2} + \frac{2}{10}\right]$	$\left[\frac{1}{0}\right] + \dots + \left[\frac{1}{2} + \frac{99}{100}\right]$ is		[IIT Screening 19	94]	
	(a) 49	(b) 50	(c)	48 (d)	51	
7.	If function $f(x) = \frac{1}{2} - \tan\left(\frac{\pi}{2}\right)$	$\left(\frac{x}{2}\right); (-1 < x < 1) \text{ and } g(x) =$	$=\sqrt{3+4x-}$	$4x^2$, then the dom	nain of <i>gof</i>	is [IIT 1990]
	(a) (-1, 1)	(b) $\left[-\frac{1}{2},\frac{1}{2}\right]$	(c)	$\left[-1,\frac{1}{2}\right](d)$	$\left[-\frac{1}{2}\right]$	- 1]
8.	The domain of the function f	$f(x) = \frac{1}{\log_{10}(1-x)} + \sqrt{x+2}$	is	[DCE 2000]		
	(a)] -3 , $-2.5[\cup] -2.5$, -2	2[(b) [−2, 0[∪]0, 1[(c)]0,1[(d)	None of	f these
9.	The domain of definition of the	the function $y(x)$ given by 2	$x^{x} + 2^{y} = 2$	is [IIT :	Screening 20	000; DCE 2001]
	(a) (0, 1]	(b) [0, 1]	(c)	(−∞, 0] (d)	(−∞, 1)	
10.	Let $f(x) = (1 + b^2)x^2 + 2bx$	+ 1 and $m(b)$ the minimum	value of $f(x)$	() for a given b. As i	b varies, the	e range of $m(b)$ is [IIT Screening 2001]
	(a) [0, 1]	(b) $\left(0, \frac{1}{2}\right]$	(c)	$\left[\frac{1}{2}, 1\right]$ (d)	(0, 1]	
11.	The range of the function $f(x)$	$x) = {}^{7-x} P_{x-3}$ is [AIEEE	2004]			
	(a) $\{1, 2, 3, 4, 5\}$	(b) (1, 2, 3, 4, 5, 6)		$\{1, 2, 3, 4\}$	(d)	{1,2,3}
12.						
	(a) $\left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$	(b) $\left(-1,\frac{5\pi}{6}\right)$	(c)	(-1, 2) (d)	$\left(\frac{\pi}{6}, 2\right)$	
13.	Let $f(x) = (x + 1)^2 - 1$, $(x \ge 1)^2 - 1$	-1). Then the set $S = \{x : f \}$	$f(x) = f^{-1}(x)$)} is		[IIT 1995]
	(a) Empty	(b) {0, -1}	(c)	$\{0, 1, -1\}$	(d)	$\left\{0, -1, \frac{-3 + i\sqrt{3}}{2}, \frac{-3 - i\sqrt{3}}{2}\right\}$
14.	If f is an even function define	d on the interval $(-5, 5)$, the	en four real	values of x satisfy	ng the equa	ation $f(x) = f\left(\frac{x+1}{x+2}\right)$ are
	(a) $\frac{-3-\sqrt{5}}{2}, \frac{-3+\sqrt{5}}{2}, \frac{3}{2}$	$\frac{3-\sqrt{5}}{2}$, $\frac{3+\sqrt{5}}{2}$	(b)	$\frac{-5+\sqrt{3}}{2}$, $\frac{-3}{2}$	$\frac{+\sqrt{5}}{2}$, $\frac{3+}{2}$	$\frac{\sqrt{5}}{2}$, $\frac{3-\sqrt{5}}{2}$

	(c) $\frac{3-\sqrt{5}}{2}$, $\frac{3+\sqrt{5}}{2}$, $\frac{-3-2}{2}$	$\frac{\sqrt{5}}{2}$, $\frac{5+\sqrt{3}}{2}$	(d)	- 3 - √5	$\overline{5}, -3 + $	5,3-√5	, 3 + √5 [IIT 1996]
15.	If $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3} \right)$	$+\cos x \cos\left(x+\frac{\pi}{3}\right)$ and $g\left(x+\frac{\pi}{3}\right)$	$\left(\frac{5}{4}\right) = 1$, the	en (<i>gof</i>)(<i>x</i>) =		[IIT 1996]
	(a) -2	(b) -1	(c)	2	(d)	1	
16.	If $g(f(x)) = \sin x $ and $f(g(x))$	$(\sin \sqrt{x})^2$, then [IIT 1]	998]				
	(a) $f(x) = \sin^2 x, g(x) = \sqrt{x}$	(b) $f(x) = \sin x, g(x) =$	<i>x</i>	(c) $f(x) =$	$= x^2, g(x)$	$= \sin \sqrt{x}$	(d) f and g cannot be determined
17.	If $f(x) = 3x + 10$, $g(x) = x^2$	-1 , then $(fog)^{-1}$ is equal to		[UPSEAT	[2001]		
	(a) $\left(\frac{x-7}{3}\right)^{1/2}$	(b) $\left(\frac{x+7}{3}\right)^{1/2}$	(c)	$\left(\frac{x-3}{7}\right)$	1/2	(d)	$\left(\frac{x+3}{7}\right)^{1/2}$
18.	If $f: R \to R$ and $g: R \to R$	are defined by $f(x) = 2x + 3$	and $g(x) =$	$x^{2} + 7$, t	hen the va	lues of x s	such that $g(f(x)) = 8$ are
	(a) 1, 2	(b) -1, 2	(c)	-1,-2	(d)	1, -2	[EAMCET 2000, 03]
19.	$\lim_{x\to 1} (1-x) \tan\left(\frac{\pi x}{2}\right) =$			[IIT 1978	, 84; RPEI	Г 1997, 200	1; UPSEAT 2003; Pb. CET 2003]
	(a) $\frac{\pi}{2}$	(b) <i>π</i>	(c)	$\frac{2}{\pi}$	(d)	0	
20.	True statement for $\lim_{x \to 0} \frac{\sqrt{1+x}}{\sqrt{2+3x}}$	$\frac{\overline{x} - \sqrt{1 - x}}{3x - \sqrt{2 - 3x}}$ is		[BIT Ran	ichi 1982]		
	(a) Does not exist	(b) Lies between 0 and $\frac{1}{2}$	(c)	Lies betw	veen $\frac{1}{2}$ a	nd 1	(d) Greater then 1
21.	$\lim_{x \to \infty} \frac{x^n}{e^x} = 0 \text{ for}$	[IIT 1	992]				
	(a) No value of n	(b) n is any whole number	(c)	<i>n</i> = 0 or	nly	(d)	n = 2 only
22.	$\lim_{n\to\infty}\sin[\pi\sqrt{n^2+1}] =$						
	(a) ∞	(b) 0	(c)	Does not	exist	(d)	None of these
23.	If [.] denotes the greatest integ	ger less than or equal to x, the	en the value	of $\lim_{x \to 1} (1 -$	-x + [x -	1] + [1 - x])) is
	(a) 0	(b) 1	(c)	-1	(d)	None of	these
24.	The values of a and b such that	$\lim_{x \to 0} \frac{x(1 + a\cos x) - b\sin x}{x^3}$	=1, are	[Roorkee	1996]		
	(a) $\frac{5}{2}, \frac{3}{2}$	(b) $\frac{5}{2}, -\frac{3}{2}$	(c)	$-\frac{5}{2}, -\frac{3}{2}$	<u>3</u> 2	(d)	None of these
25.	If $\lim_{x \to a} \frac{a^x - x^a}{x^x - a^a} = -1$, then	[EAMCET 2	2003]				
	(a) <i>a</i> = 1		(c)	a = e	(d)	None of	these
26.	If $x_1 = 3$ and $x_{n+1} = \sqrt{2 + x_n}$,	$n \ge 1$, then $\lim_{n \to \infty} x_n$ is equal to	to				
	(a) -1	(b) 2	(c)	$\sqrt{5}$	(d)	3	
27.	The value of $\lim_{x \to \frac{\pi}{2}} \frac{\int_{\pi/2}^{x} t dt}{\sin(2x - \pi)}$	is [MP PET 1	[998]				
	(a) ∞	(b) $\frac{\pi}{2}$	(c)	$\frac{\pi}{4}$	(d)	$\frac{\pi}{8}$	

	The $\lim_{x\to 0} (\cos x)^{\cot x}$ is [RPET 1999](a)–1(b)0c)1(d) None of these									
28.	The integer <i>n</i> for which $\lim_{x\to 0^+} \frac{1}{x}$	$\frac{(\cos x - 1)(\cos x - e^x)}{x^n}$ is a final	nite non-zer	o number	is		[IIT Scre	ening 2002]		
	(a) 1	(b) 2	(c)	3	(d)	4				
29.	If f is strictly increasing funct	ion, then $\lim_{x \to 0} \frac{f(x^2) - f(x)}{f(x) - f(0)}$ is	equal to			[IIT Scr	eening 2004]		
	(a) 0	(b) 1	(c)	-1	(d)	2				
30.	If $f(x) = \begin{cases} x^2 - 3, 2 < x < 3 \\ 2x + 5, 3 < x < 4 \end{cases}$,	the equation whose roots are	$\lim_{x\to 3^-} f(x)$ and	nd $\lim_{x\to 3^+} f($	(x) is			[Orissa JEE 2004]		
	(a) $x^2 - 7x + 3 = 0$	(b) $x^2 - 20x + 66 = 0$		(c)	<i>x</i> ² – 17	x+66 =	0 (d) x ² -	18x + 60 = 0		
31.	The function $f(x) = [x] \cos \left[\frac{2}{x}\right]$	$\left[\frac{x-1}{2}\right]\pi$, where [.] denotes the	e greatest in	teger fun	ction, is di	scontinuo	us at	[IIT 1995]		
	(a) All x	(b) No x	(c)	All inte	ger points	(d)	x which	is not an integer		
32.	Let $f(x)$ be defined for all x :	> 0 and be continuous. Let f((x) satisfy f	$\left(\frac{x}{y}\right) = f(x)$	() – <i>f</i> (y) for	r all <i>x</i> , y a	nd <i>f(e)</i> = 1	, then [IIT 1995]		
	(a) $f(x) = \ln x$	(b) $f(x)$ is bounded	(c)	$f\left(\frac{1}{x}\right)$	$\rightarrow 0$ as $x -$	→ 0	(d)	$x f(x) \rightarrow 1$ as $x \rightarrow 0$		
33.	The value of p for which the	e function $f(x) = \begin{cases} \frac{(4^x - 1)^2}{\sin \frac{x}{p} \log 2} \\ 12(x) \end{cases}$	$\frac{1)^{3}}{1 + \frac{x^{2}}{3}}, x \neq (\log 4)^{3}, x =$	≐ 0 may be	e continuo	us at $x =$	0 , is	[Orissa JEE 2004]		
	(a) 1	(b) 2	(c) 3	(d)	None of	these				
34.	The function $f(x) = [x]^2 - [x]^2$							[IIT 1999]		
35.	(a) All integers If $f(x) = \begin{cases} xe^{-\left(\frac{1}{ x } + \frac{1}{x}\right)}, & x \neq 0\\ 0, & x = 0 \end{cases}$	(b) All integers except 0 a , then $f(x)$ is [AIEEE		All inte	gers excep	t O	(d)	All integers except 1		
	(a) Continuous as well as dif		(b)	Continu	ous for all	x but not	differentia	ble at $x = 0$		
	(c) Neither differentiable not	r continuous at $x = 0$	(d)	Discont	inuous eve	ery where				
36.	Let $f(x) = \frac{1 - \tan x}{4x - \pi}, x \neq \frac{\pi}{4}$,	$x \in \left[0, \frac{\pi}{2}\right]$, If $f(x)$ is continued	nuous in $\begin{bmatrix} 0, \end{bmatrix}$	$\left[\frac{\pi}{2}\right]$, then	$f\left(\frac{\pi}{4}\right)$ is	[AIEEE	2004]			
	(a) -1	2	(c)	$-\frac{1}{2}$	(d)	1				
37.	Let $g(x) = x$. $f(x)$, where $f(x)$	$=\begin{cases}x\sin\frac{1}{x}, & x \neq 0\\0, & x = 0\end{cases}$ at $x = 0$		[IIT Scr	eening 199	4; UPSEA	Г 2004]			
38.	 (a) g is differentiable but g' i (c) Both f and g are different The function f(x) = max[(1 - 	tiable	(b) (d)	0		°	not continuous			
50.	(a) Continuous at all points	(b)Differentiable at all				ll points e	vcentat v	= 1 and x = -1		
	(d) Continuous at all points(d) Continuous at all points et all point		-			in Ponies e				
39.	The function $f(x) = x + x $	-1 is		[RPET]	1996; Kuru	kshetra Cl	EE 2002]			
	(a) Continuous at $x = 1$, but	t not differentiable at $x = 1$	(b)	Both co	ontinuous a	nd differe	ntiable at	<i>x</i> = 1		
			11							

(d)

(c) Not continuous at x = 1

Not differentiable at x = 1

ANSWER: Imp. Que. From Competitive exams

1	а	2	d	3	С	4	d	5	d
6	b	7	а	8	b	9	d	10	d
11	d	12	d	13	d	14	а	15	d
16	а	17	а	18	С	19	С	20	b
21	b	22	b	23	С	24	С	25	а
26	b	27	С	28	С	29	С	30	С
31	С	32	С	33	а	34	d	35	d
36	b	37	С	38	a,b	39	a,c	40	а

For 39 Years Que. of IIT-JEE (Advanced) & 15 Years Que. of AIEEE (JEE Main) we have already distributed a book