

jfor /eko/kZ zlsk I nety hj. Mant thegkt

STUDY PACKAGE

Subject: Mathematics Topic : Continuity \& Diffrentiability Available Online : www.MathsBySuhag.com

 Index
 1. Theory
 2. Short Revision
 3. Exercise (Ex. $1+5=6$)
 4. Assertion \& Reason
 5. Que. from Compt. Exams
 6. 39 Yrs. Que. from IIT-J EE(Advanced)
 7. 15 Yrs. Que. from AIEEE (J EE Main)

Student's Name : \qquad
Class
Roll No.
Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal邕: 0903903 7779, 98930 58881, WhatsApp 9009260559 www.TekoClasses.com
www.MathsBySuhag.com

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com Continuity

1. A function $f(x)$ is said to be continuous at $x=c$,
if $\operatorname{Limit}_{x \rightarrow c} f(x)=f(c)$. Symbolically f is continuous at
$x=c$ if $\operatorname{Limit}_{h \rightarrow 0} f(c-h)=\operatorname{Limit}_{h \rightarrow 0} f(c+h)=f(c)$.
i.e. LHL at $x=c=R H L$ at $x=c$ equals value of ' f ' at $x=c$.

If a function $f(x)$ is continuous at $x=c$ the graph of $f(x)$ at the corresponding point $\{c f(c)\}$ will not be broken. But if $f(x)$ is discontinuous at $x=c$ the graph will be broken at the corresporiding point.

(i)

(iii)

(ii)

(iv)
((i), (ii) and (iii) are discontinuous at $\mathrm{x}=\mathrm{c}$)
((iv) is continuous at $\mathrm{x}=\mathrm{c}$)

A function f can be discontinuous due to any of the following three reasons:
(i) $\quad \operatorname{Limit}_{x \rightarrow 0} f(x)$ does not exist i.e. $\operatorname{Limit}_{x \rightarrow c^{-}} f(x) \neq \operatorname{Limit}_{x \rightarrow c^{+}} f(x)$
(ii) $f(x)$ is not defined at $x=c$
[figure (ii)]
(iii) $\operatorname{Limit}_{x \rightarrow c} f(x) \neq f(c)$

Geometrically, the graph of the function will exhibit a break at $x=c$.
Solved Example \# 1 Find whether $f(x)$ is continuous or not at $x=1$

> [figure (i)]
[figure (iii)]
$f(x)=\sin \frac{\pi x}{2} ; x<1$
$=[\mathrm{x}]$
$x \geq 1$
$f(x)=\left\{\begin{array}{cll}\sin \frac{\pi x}{2} & \forall & x<1 \\ {[x]} & \forall & x \geq 1\end{array}\right.$ for continuity at $x=1$, we determine, $f(1), \lim _{x \rightarrow 1^{-}} f(x)$ and $\lim _{x \rightarrow 1^{+}} f(x)$.
Now, $f(1)=[1]=1$

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \sin \frac{\pi x}{2}=\sin \frac{\pi}{2}=1
$$

and

$$
\lim _{x \rightarrow+^{+}} f(x)=\lim _{x \rightarrow+^{+}}[x]=1
$$

so

$$
f(1)=\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow+^{+}} f(x)
$$

$\therefore \quad \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=1$

$\stackrel{+}{0}$ Self practice problems :

If possible find value of λ for which $f(x)$ is continuous at $x=\frac{\pi}{2}$

$$
\begin{aligned}
f(x) & =\frac{1-\sin x}{1+\cos 2 x}, & & x<\frac{\pi}{2} \\
& =\lambda & & x=\frac{\pi}{2} \\
& =\frac{\sqrt{2 x-\pi}}{\sqrt{4+\sqrt{2 x-\pi}}-2} & & x>\frac{\pi}{2}
\end{aligned}
$$

Answer discontinuous
$\perp 2$. Find the values of a and b such that the function

$$
\begin{aligned}
f(x) & =x+a \sqrt{2} \sin x \quad ; & & 0 \leq x<\frac{\pi}{4} \\
& =2 x \cot x+b & & \frac{\pi}{4} \leq x \leq \frac{\pi}{2}
\end{aligned}
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
$=a \cos 2 x-b \sin x$
$\frac{\pi}{2}<x \leq \pi \quad$ is continuous at $\frac{\pi}{4}$ and $\frac{\pi}{2}$

Answer

$$
a=\frac{\pi}{6}, b=\frac{-\pi}{12}
$$

$$
\text { If } \begin{aligned}
f(x) & =(1+a x)^{\frac{1}{x}} & & x<0 \\
& =b & & x=0 \\
& =\frac{(x+c)^{\frac{1}{3}}-1}{x} & & x>0
\end{aligned}
$$

Types of Discontinuity :

(a) Removable Discontinuity

In case $\underset{x \rightarrow c}{\operatorname{Limit}} f(x)$ exists but is not equal to $f(c)$ then the function is said to have a removable $\frac{\infty}{\infty}$ discontinuity. In this case we can redefine the function such that $\operatorname{Limit}_{x \rightarrow c} f(x)=f(c)$ \& make it ${ }_{n}^{\infty}$ continuous at $\mathrm{x}=\mathrm{c}$.
Removable type of discontinuity can be further classified as :
(i) Missing Point Discontinuity:

Where $\underset{x \rightarrow a}{\text { Limit }} f(x)$ exists finitely but $f(a)$ is not defined.
e.g. $f(x)=\frac{(1-x)\left(9-x^{2}\right)}{(1-x)}$ has a missing point discontinuity at $x=1$.
(ii) Isolated Point Discontinuity:

Where $\underset{x \rightarrow a}{\operatorname{Limit}} f(x)$ exists \& $f(a)$ also exists but;

$$
\operatorname{Limit}_{x \rightarrow a} f(x) \neq f(a) . \text { e.g. } f(x)=\frac{x^{2}-16}{x-4}, x \neq 4 \& f(4)=9 \text { has a break at } x=4
$$

(b) Irremovable Discontinuity: In case $\operatorname{Limit}_{x \rightarrow c} f(x)$ does not exist then it is not possible to make the function continuous by redefining it. However if both the limits (i.e. L.H. L. \& R.H.L.) are finite, then discontinuity is said to be of first kind otherwise it is non-removable discontinuity of second kind.
Irremovable type of discontinuity can be further classified as:
(i) Finite discontinuity e.g.f $f(x)=x-[x]$ at all integral x.
(ii) Infinite discontinuity e.g. $f(x)=\frac{1}{x-4}$ or $g(x)=\frac{1}{(x-4)^{2}}$ at $x=4$.
(iii) Oscillatory discontinuity e.g. $f(x)=\sin \frac{1}{x}$ at $x=0$.

In all these cases the value of $f(a)$ of the function at $x=a$ (point of discontinuity) may or may not exist but $\underset{x \rightarrow a}{\operatorname{Limit}}$ does not exist.
(c) Discontinuity of $I^{\text {st }}$ kind
(d) If L.H.L. and R.H.L both exist finitely then discontinuity is said to be of $I^{\text {st }}$ kind
(d) Discontinuity of $\mathrm{II}^{\text {nd }}$ kind

If either L.H.L. or R.H.L does not exist then discontinuity is said to be of $\mathrm{II}^{\text {nd }}$ kind
(e) Point functions defined at single point only are to be treated as discontinuous.
eg. $f(x)=\sqrt{1-x}+\sqrt{x-1}$ is not continuous at $x=1$.

Solved Example \# 2

If $f(x)=x \quad x<1$
then check if $f(x)$ is continuous at $x=1$ or not if not, then comment on the type of discontinuity.
Solution

$$
f(x)=\left\{\begin{array}{lll}
x & \forall & x<1 \\
x^{2} & \forall & x>1
\end{array}\right.
$$

$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x=1$
and $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} x^{2}=1$
$\therefore \quad \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow \rightarrow^{+}} f(x)=$ finite
$\underset{\sim}{\text { U }} \quad$ and $f(x)$ is discontinuous at $x=1$ and this discontinuity is removable missing point discontinuity
LSelf practice problems:
4.
$\begin{aligned} f(x) & =x, & & x<1 \\ & =x^{2} & & x>1\end{aligned}$
$=2 \quad . \quad x=1 \quad$ which type of discontinuity is there \quad Answer isolated point discontinuity
5. $\quad f(x)=x \quad ; \quad x<1$

Answer non removable of Ist kind

3. Jump of discontinuity

In case of non-removable discontinuity of the first kind the non-negative difference between the value of the RHL at $x=c \&$ LHL at $x=c$ is called, the Jump of discontinuity. Jump of discontinuity $=\mid$ RHL - LHL

NOTE : A function having a finite number of jumps in a given interval is called a Piece Wise Continuous or Sectionally Continuous function in this interval. For e.g. $\{x\},[x]$
Solved Example \# $3 \quad f(x)=\cos ^{-1}\{\cot x\} \quad x<\frac{\pi}{2}$
$=\pi[x]-1 \quad x \geq \frac{\pi}{2} \quad$ Find jump of discontinuity.
Ans. $=\frac{\pi}{2}-1$
Sol. $f(x)=\left\{\begin{array}{ccc}\cos ^{-1}\{\cot x\} & \text { if } & x<\frac{\pi}{2} \\ \pi[x]-1 & \text { if } & x \geq \frac{\pi}{2}\end{array}\right.$
$\lim _{x \rightarrow \frac{\pi^{-}}{2}} f(x)=\lim _{x \rightarrow \frac{\pi^{-}}{2}} \quad \cos ^{-1}\{\cot x\}$
$=\cos ^{-1}\left\{0^{+}\right\}$
$=\cot ^{-1} 0=\frac{\pi}{2}$
$\lim _{x \rightarrow \frac{\pi^{+}}{2}} f(x)=\lim _{x \rightarrow \frac{\pi^{+}}{2}} \pi[x]-1=\pi-1$

Continuity in an Interval :
(a) A function f is said to be continuous in (a, b) if f is continuous at each \& every point $\in(a, b)$.
(b) A function f is said to be continuous in a closed interval $[\mathrm{a}, \mathrm{b}]$ if:
(i) $\quad f$ is continuous in the open interval (a, b) \&
(ii) f is right continuous at 'a' i.e. $\operatorname{Limit}_{x \rightarrow a^{+}} f(x)=f(a)=a$ finite quantity.

צ
(iii) f is left continuous at ' b ' i.e. $\operatorname{Limith}_{x \rightarrow b^{-}} f(x)=f(b)=a$ finite quantity.

๙
(c) All Polynomials, Trigonometrical functions, Exponential and Logarithmic functions are continuous.
in their domains.
(d) Continuity of $\{f(x)\}$ and $[f(x)]$ should be checked at all points where $f(x)$ becomes integer.
(e) Continuity of $\operatorname{sgn}(f(x)$) should be checked at the points where $f(x)=0$ (if $f(x)$ is constanly equal to 0 when $\mathrm{x} \rightarrow \mathrm{a}$ then $\mathrm{x}=\mathrm{a}$ is not a point of discontinuity)
(f) Continuity of a function should be checked at the points where definition of a function changes.
>Solved Example \# 5 If $f(x)=[\sin \pi x]$ $0 \leq x<1$
$=\operatorname{Sgn}\left(x-\frac{5}{4}\right)\left\{x-\frac{2}{3}\right\} \quad 1 \leq x \leq 2, \quad$ where $\{$.$\} represents fractional function$ then comment on the continuity of function in the interval [0, 2].
Solution(i) Continuity should be checked at the end-points of intervals of each definition i.e. $x=0,1,2$
(ii) For [$\sin \pi x]$, continuity should be checked at all values of x at which $\sin \pi x \in I$
i.e. $\quad x=0, \frac{1}{2}$
(iii) For sgn $\left(x-\frac{5}{4}\right)\left\{x-\frac{2}{3}\right\}$, continuity should be checked when $x-\frac{5}{4}=0$ (as $\operatorname{sgn}(x)$ is

$$
\text { discontinuous at } x=0 \text {) } \quad \text { i.e. } x=\frac{5}{4} \text { and when } x-\frac{2}{3} \in I
$$

i.e. $\quad x=\frac{5}{3}(a s\{x\}$ is discontinuous when $x \in I)$
$\therefore \quad$ overall discontinuity should be checked at $\mathrm{x}=0, \frac{1}{2}, 1, \frac{5}{4}, \frac{5}{3}$ and 2 check the discontinuity your self.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Answer discontinuous at $x=\frac{1}{2}, 1 \frac{5}{4}, \frac{5}{3}$
Self practice problems :
6. If $f(x)=\operatorname{sgn}\left(\left\{x-\frac{1}{2}\right\}\right)[\ln x] 1<x \leq 3$
$=\left\{x^{2}\right\} \quad 3<x \leq 3.5$
Find the point where the continuity of $\bar{f}(x)$ should be checked.
Ans. $\left\{1, \frac{3}{2}, \frac{5}{2}, \mathrm{e}, 3, \sqrt{10}, \sqrt{11}, \sqrt{12}, 3.5\right\}$
If $f \& g$ are two functions which are continuous at $x=c$ then the functions defined by:
$F_{1}(x)=f(x) \pm g(x) ; F_{2}(x)=K f(x)$, K any real number ; $F_{3}(x)=f(x) \cdot g(x)$ are also continuous at $x=c$.
Further, if $g(c)$ is not zero, then $F_{4}(x)=\frac{f(x)}{g(x)}$ is also continuous at $x=c$.
page 5 of 23
Note: (i) If $f(x)$ is continuous $\& g(x)$ is discontinuous at $x=$ a then the product function $\phi(x)=f(x) \cdot g(x)$ may be continuous but sum or difference function $\phi(x)=f(x) \pm g(x)$ will necessarily be discontinuous at $x=a$. e.g.
$f(x)=x \& g(x)=\left[\begin{array}{cc}\sin \frac{\pi}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$
(ii) If $f(x)$ and $g(x)$ both are discontinuous at $x=$ a then the product function $\phi(x)=f(x) \cdot g(x)$ is not necessarily be discontinuous at $x=a$. e.g.
$f(x)=g(x)=\left[\begin{array}{cc}1 & x \geq 0 \\ -1 & x<0\end{array}\right.$

Solved Example \# 6 If $f(x)=[\sin (x-1)]-\{\sin (x-1)\}$
Comment on continuity of $f(x)$ at $x=\frac{\pi}{2}+1$
Solution $\quad f(x)=[\sin (x-1)]-\{\sin (x-1)\}$
Let $g(x)=[\sin (x-1)]+\{\sin (x-1\} \stackrel{y}{=} \sin (x-1)$
which is continuous at $x=\frac{\pi}{2}+1$
as $[\sin (x-1)]$ and $\{\sin (x-1)\}$ both are discontinuous at $x=\frac{\pi}{2}+1$
At most one of $f(x)$ or $g(x)$ can be continuous at $x=\frac{\pi}{2}+1$
As $g(x)$ is continuous at $x=\frac{\pi}{2}+1$, there fore, $f(x)$ must be discontinuous
Alternatively, check the continuity of $f(x)$ by evaluling $\lim _{x \rightarrow \frac{\pi^{+}}{2}} f(x)$ and $f\left(\frac{\pi}{2}+1\right)$
If f is continuous at $x=c \& g$ is continuous at $x=f(c)$ then the composite $g[f(x)]$ is continuous at $x=c$. eg. $f(x)=\frac{x \sin x}{x^{2}+2} \& g(x)=|x|$ are continuous at $x=0$, hence the composite (gof) $(x)=\left|\frac{x \sin x}{x^{2}+2}\right|$ will also be continuous at $x=0$.
Solved Example \# 7 If $f(x)=\frac{x+1}{x-1}$ and $g(x)=\frac{1}{x-2}$, then discuss the continuity of $f(x), g(x)$ and fog (x).
$f(x)=\frac{x+1}{x-1}$
$f(x)$ is a rational function it must be continuous in its domain
and f is not defined at $\mathrm{x}=1 \quad \therefore \quad \mathrm{f}$ is discontinuous at $\mathrm{x}=1$
$g(x)=\frac{1}{x-2}$
$g(x)$ is also a rational function. It must be continuous in its domain and fog is not defined at $x=2$
$\dot{\square} \quad g$ is discontinuous at $x=2$
Now fog (x) will be discontinuous at
$\begin{array}{lll}\begin{array}{ll}\text { (i) } & x=2 \\ \text { (ii) } & g(x)=1 \\ \text { if } & g(x)=1\end{array} & \begin{array}{l}\text { (point of discontinuity of } g(x) \text {) } \\ \Rightarrow\end{array} & \frac{1}{x-2}=1\end{array} \quad \Rightarrow \quad x=3$ (when $g(x)=$ point of discontinuity of $f(x)$)

$\therefore \quad$ discontinuity of $f \circ g(x)$ should be checked at $x=2$ and $x=3$
at $x=2$
$f \circ g(x)=\frac{\frac{1}{x-2}+1}{\frac{1}{x-2}-1}$
fog (2) is not defined

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
$\lim _{x \rightarrow 2} f \circ g(x)=\lim _{x \rightarrow 2} \frac{\frac{1}{x-2}+1}{\frac{1}{x-2}-1}=\lim _{x \rightarrow 2} \frac{1+x-2}{1-x+2}=1$
$\therefore \underset{\text { fog }}{(3)=\text { not defined }}(x)$ is discontinuous at $x=2$ and it is removable discontinuity at $\mathrm{x}=3$
thsBySuhag.com
$\lim _{x \rightarrow 3^{+}} f \circ g(x)=\lim _{x \rightarrow 3^{+}} \frac{\frac{1}{x-2}+1}{\frac{1}{x-2}-1}=\infty$
$\lim _{x \rightarrow 3^{-}} f \circ g(x)=\lim _{x \rightarrow 3^{-}} \frac{\frac{1}{\frac{x-2}{1}+1}}{\frac{1}{x-2}-1}=-\infty$
fog (x) is discontinuous at $x=3$ and it is non removable discontinuity of $I I^{\text {nd }}$ kind.
Self practice problems :
$f(x)=\left\{\begin{array}{ll}1+x^{3}, & x<0 \\ x^{2}-1, & x \geq 0\end{array} \quad g(x)= \begin{cases}(x-1)^{\frac{1}{3}} & x<0 \\ (x+1)^{\frac{1}{2}}, & x \geq 0\end{cases}\right.$
Then defined fog (x) and comment the continuity of $\operatorname{gof}(x)$ at $x=1$

$\infty \quad$ Ans. [fog(x) $=x, x \in R$ gof (x) is discontinous at $x=0,1]$

$\begin{array}{ll}\text { E7. Intermediate Value Theorem : } \\ 0 & \text { A function } f \text { which is continuous in }[a, b] \text { poss } \\ 0 & \text { (i) If } f(a) \& f(b) \text { possess opposite signs, } \\ f(x)=0 \text { in the open interval }(a, b) \text {. }\end{array}$
$\begin{array}{ll}\text { OSolution } & (x-a)(x-c)+2(x-b)(x-d)=0 \\ \text { (v) } & f(x)=(x-a)(x-c)+2(x-b)(x-d) \\ f(a)=(a-a)(a-c)+2(a-b)(a-d)=+v e\end{array}$
website: www.Te
$f(a)=(a-a)(a-c)+2(a-b)(a-d)=+v e$
$f(b)=(b-a)(b-c)+0=-v e$
$f(b)=(b-a)(b-c)+0=-v e$
$f(d)=(d-a)(d-c)+0=+v e$
A function f which is continuous in $[a, b]$ possesses the following properties:
(i) If $f(a) \& f(b)$ possess opposite signs, then there exists at least one solution of the equation
(ii) If K is any real number between $f(a) \& f(b)$, then there exists at least one solution of the

ve th

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
with ∞ becomes ∞ 仿 Self practice problems :
9. $f(x)=\operatorname{Lim}_{n \rightarrow \infty}(1+x)^{n}$

Hence if $t \in[0, x]$, $\sin t$ will attain its maximum value at $t=x$.
$\therefore \quad f(x)=\sin x$ if $x \in\left[0, \frac{\pi}{2}\right]$
if $x \in\left(\frac{\pi}{2}, 2 \pi\right]$ and $t \in[0, x]$
then $\sin t$ will attain its maximum value when $t=\frac{\pi}{2}$
$f(x)=\sin \frac{\pi}{2}=1$ if $x \in\left(\frac{\pi}{2}, 2 \pi\right]$

Short Revesion (CONTINUITY)

Things To Remember :

1. A function $f(x)$ is said to be continuous at $x=c$, if Limit $f(x)=f(c)$. Symbolically
In case $\underset{x \rightarrow c}{\operatorname{Limit}} f(x)$ exists but is not equal to $f(c)$ then the function is said to have a removable discontinuity
or discontinuity of the first kind. In this case we can redefine the function such that $\underset{x \rightarrow c}{\operatorname{Limit}} f(x)=f(c) \&$ make it continuous at $x=c$. Removable type of discontinuity can be further classified as :
a) Missing Point Discontinuity : Where Limit $f(x)$ exists finitely but $f(a)$ is not defined.
e.g. $\mathrm{f}(\mathrm{x})=\frac{(1-\mathrm{x})\left(9-\mathrm{x}^{2}\right)}{(1-\mathrm{x})}$ has a missing point discontinuity at $\mathrm{x}=1$, and $\mathrm{f}(\mathrm{x})=\frac{\sin \mathrm{x}}{\mathrm{x}}$ has a missing point discontinuity at $\mathrm{x}=0$ Isolated Point Discontinuity : Where $\underset{x \rightarrow a}{\operatorname{Limit}} f(x)$ exists $\& f(a)$ also exists but; $\underset{x \rightarrow a}{\operatorname{Limit}} \neq f(a)$.
e.g. $f(x)=\frac{x^{2}-16}{x-4}, x \neq 4 \& f(4)=9$ has an isolated point discontinuity at $x=4$.
Similarly $f(x)=[x]+[-x]=\left[\begin{array}{rl}0 & \text { if } x \in I \\ 0 & \text { has an isolated point discontinuity at all } x \in I \text {. } \\ \hline & \text { if } x \in I\end{array}\right.$
@Type-2: (Non - Removable type of discontinuities)
$f(x)$ is not defined at $x=c$
Limit $f(x) \neq f(c)$

$\mathrm{Geometr}^{x \rightarrow c} \boldsymbol{c}$. at $\mathrm{x}=1,2$ and 3 .

immediate neighbourhood of $\mathrm{x}=\mathrm{a}$, not necessarily at $\mathrm{x}=\mathrm{a}$.

Reasons of discontinuity:
Limit $f(x)$ does not exist
$\mathrm{x} \rightarrow \mathrm{c}$
i.e. $\operatorname{Limit}_{x \rightarrow c^{-}} f(x) \neq \underset{x \rightarrow c^{+}}{\operatorname{Limit}} f(x)$
f is continuous at $x=c$ if $\operatorname{Limit} f(c-h)=\operatorname{Limit} f(c+h)=f(c)$.
i.e. LHL at $x=c=R H L$ at $x=0$ equals Value of ' f ' at $x=c$.
i.e. LHL at $x=c=$ RHL at $x=c$ equals Value or $x=a$ is meaningful only if the function is fefined
It should be noted that continuity of a function at $x=a$ is meaningful only if the function is defined in the
In case $\underset{x \rightarrow c}{\operatorname{Limit}} f(x)$ does not exist then it is not possible to make the function continuous by redefining it. $\Upsilon^{\text {® }}$ Such discontinuities are known as non - removable discontinuity or discontinuity of the 2 nd kind. Non-removable type of discontinuity can be further classified as :
 (note that $\mathrm{f}\left(0^{+}\right)=0 ; \mathrm{f}\left(0^{-}\right)=1$)
(b) Infinite discontinuity e.g. $f(x)=\frac{1}{x-4}$ or $g(x)=\frac{1}{(x-4)^{2}}$ at $x=4 ; f(x)=2^{\tan x}$ at $x=\frac{\pi}{2}$ and $f(x)=\frac{\cos x}{x} \frac{\pi}{\leftrightharpoons}$ at $\mathrm{x}=0$.
Oscillatory discontinuity e.g. $f(x)=\sin \frac{1}{x}$ at $x=0$.
In all these cases the value of $f(a)$ of the function at $x=a(p)$ innt of discontinuity) may or may notexist but Limit does not exist.
$\underset{\sim}{\mathrm{x} \rightarrow \mathrm{a}} \mathrm{Note}$: From the adjacent graph note that

- f is continuous at $\mathrm{x}=-1$
- fhas isolated discontinuity at $\mathrm{x}=1$
- f has missing point discontinuity at $\mathrm{x}=2$
- f has non removable (finite type)
discontinuity at the origin.

4. In case of dis-continuity of the second kind the non-negative difference between the value of the RHL at $\mathrm{x}=\mathrm{c}$ \& LHL at $\mathrm{x}=\mathrm{c}$ is called The Jump Of Discontinuity. Afunction having a finite number of jumps in a given interval I is called a Piece Wise Continuous or Sectionally Continuous function in this interval.
5.All Polynomials, Trigonometrical functions, exponential \& Logarithmic functions are continuous in their domains. Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
6. If f \& g are two functions that are continuous at $\mathrm{x}=\mathrm{c}$ then the functions defined by:
$\mathrm{F}_{1}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \pm \mathrm{g}(\mathrm{x}) ; \quad \mathrm{F}_{2}(\mathrm{x})=\mathrm{Kf}(\mathrm{x}), \mathrm{K}$ any real number $; \mathrm{F}_{3}(\mathrm{x})=\mathrm{f}(\mathrm{x}) . \mathrm{g}(\mathrm{x})$ are also continuous at $x=c$. Further, if $g(c)$ is not zero, then $F_{4}(x)=\frac{f(x)}{g(x)}$ is also continuous at $x=c$.

The intermediate value theorem:

Suppose $f(x)$ is continuous on an interval I, and a and b are any two points of I. Then if y_{0} is a number between $f(a)$ and $f(b)$, their exists a number c between a and b such that
$\mathrm{f}(\mathrm{c})=\mathrm{y}_{0}$.

Note Very Carefully That :
$\sum^{(b)} \quad$ If $f(x)$ and $g(x)$ both are discontinuous at $x=$ a then the product function $\phi(x)=f(x) \cdot g(x)$ is not necessarily be discontinuous at $\mathrm{x}=\mathrm{a}$. e.g.
あ $\quad f(x)=-g(x)=\left[\begin{array}{rr}1 & x \geq 0 \\ -1 & x<0\end{array}\right.$
O(c) Point functions are to be treated as discontinuous. eg. $f(x)=\sqrt{1-x}+\sqrt{x-1}$ is not continuous at $x=1$
$\mathscr{\mathcal { D }}(\mathbf{d})$ A Continuous function whose domain is closed must have a range also in closed interval.

(iii) fis left continuous at ' \mathbf{b} ' i.e. $\operatorname{Limit}_{x \rightarrow b} f(x)=f(b)=$ a finite quantity.

Note that a function f which is continuous in $[a, b]$ possesses the following properties:
. 8
(i) If $f(a) \& f(b)$ possess opposite signs, then there exists at least one solution of the equation $f(x)=0$ in the
(ii) If K is any real number between $\mathrm{f}(\mathrm{a}) \& \mathrm{f}(\mathrm{b})$, then there exists at least one solution of the equation $f(x)=K$ in the open inetrval (a, b).
${\underset{O}{0}}_{8}$. \quad Single Point Continuity:
Functions which are continuous only at one point are said to exhibit single point continuity e.g. $f(x)=\left[\begin{array}{cc}x & \text { if } \\ x \in Q \\ -x & \text { if } \\ x \notin Q\end{array}\right.$ and $g(x)=\left[\begin{array}{ll}x & \text { if } \\ 0 & x \in Q \\ 0 & \text { if } \\ x \notin Q\end{array}\right.$ are both continuous only at $x=0$. EXERCISE-1 1. Let $f(x)=\left[\begin{array}{l}\frac{\ln \cos \mathrm{x}}{\sqrt[4]{1+\mathrm{x}^{2}}-1} \text { if } \mathrm{x}>0 \\ \frac{\mathrm{e}^{\sin 4 \mathrm{x}}-1}{\ln (1+\tan 2 \mathrm{x})} \text { if } \mathrm{x}<0\end{array}\right.$

Is it possible to define $\mathrm{f}(0)$ to make the function continuous at $\mathrm{x}=0$. If yes what is the value off (0), if not then indicate the nature of discontinuity.
$\underset{\sim}{\amalg}$
$\underset{\sim}{\amalg}$
Ш 2. \quad Suppose that $f(x)=x^{3}-3 x^{2}-4 x+12$ and $h(x)=\left[\begin{array}{cc}\frac{f(x)}{x-3} & , x \neq 3 \\ K & , x=3\end{array}\right.$ then
(a) find all zeros of $f(\mathrm{x})$
(b) find the value of K that makes h continuous at $\mathrm{x}=3$
(c) using the value of K found in (b), determine whether h is an even function.

Q 3. Let $y_{n}(x)=x^{2}+\frac{x^{2}}{1+x^{2}}+\frac{x^{2}}{\left(1+x^{2}\right)^{2}}+$ \qquad

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
and $y(x)=\operatorname{Limit}_{n \rightarrow \infty} y_{n}(x)$
Discuss the continuity of $y_{n}(x)(n=1,2,3 \ldots \ldots . . . n)$ and $y(x)$ at $x=0$
Q 4. Draw the graph of the function $f(x)=x-\left|x-x^{2}\right|,-1 \leq x \leq 1 \&$ discuss the continuity or discontinuity of fin the interval $-1 \leq x \leq 1$.

Find the values of $\& f(2)$ in order that $f(x)$ may be continuous at $x=2$.
(a) evaluate $\mathrm{h}(\mathrm{g}(2))$
(b) If $f(x)=\left[\begin{array}{ll}g(x), & x \leq 1 \\ h(x), & x>1\end{array}\right.$, find 'a' so that f is continuous.
7. Let $f(x)=\left[\begin{array}{ll}1+x, & 0 \leq x \leq 2 \\ 3-x & , 2<x \leq 3\end{array}\right.$. Determine the form of $g(x)=f[f(x)]$ \& hence find the point of
8. Let $[x]$ denote the greatest integer function $\& f(x)$ be defined in a neighbourhood of 2 by

Use squeeze play theorem to prove that f is continuous at $\mathrm{x}=0$.
Determine the values of ' a ' $\&$ ' b ', if f is continuous at $\mathrm{x}=\pi / 2$.
Q. $11 \begin{array}{ll}\text { Let } f(x)=x+2, & -4 \leq x \leq 0 \\ 0 & =2 \leq x^{2}\end{array}$
then find $f(f(x))$, domain of $f(f(x))$ and also comment upon the continuity of $f(f(x))$.
Q 12. Let $f(x)=\left\{\begin{array}{ll}1+x^{3}, & x<0 \\ x^{2}-1, & x \geq 0\end{array} ; g(x)=\left\{\begin{array}{ll}(x-1)^{1 / 3}, & x<0 \\ (x+1)^{1 / 2}, & x \geq 0\end{array}\right.\right.$. Discuss the continuity of $g(f(x))$.
Determine a \& b so that f is continuous at $x=\frac{\pi}{2} \cdot f(x)=\left[\begin{array}{lll}\frac{1-\sin ^{3} x}{3 \cos ^{2} x} & \text { if } & x<\frac{\pi}{2} \\ a & \text { if } & x=\frac{\pi}{2} \\ \frac{b(1-\sin x)}{(\pi-2 x)^{2}} & \text { if } & x>\frac{\pi}{2}\end{array}\right.$
Determine the values of $\mathrm{a}, \mathrm{b} \& \mathrm{c}$ for which the function $\mathrm{f}(\mathrm{x})=\left[\begin{array}{lll}\frac{\sin (a+1) x+\sin x}{x} & \text { for } & x<0 \\ \frac{c}{} & \text { for } & x=0 \\ \frac{\left(x+b x^{2}\right)^{1 / 2}-x^{1 / 2}}{b x^{3 / 2}} & \text { for } & x>0\end{array}\right.$ is continuous at $\mathrm{x}=0$.
Q. 15 If $f(x)=\frac{\sin 3 x+A \sin 2 x+B \sin x}{x^{5}}(x \neq 0)$ is cont. at $x=0$. Find A\&B. Also find $f(0)$. Do not use series expansion or L'Hospital's rule.
 graph of the function for $x \in[0,6]$. Also indicate the nature of discontinuities if any.
Q. 17 If $\mathrm{f}(\mathrm{x})=\mathrm{x}+\{-\mathrm{x}\}+[\mathrm{x}]$, where $[\mathrm{x}]$ is the integral part \& $\{\mathrm{x}\}$ is the fractional part of x . Discuss the continuity of f in $[-2,2]$.
Q. $18 \quad$ Find the locus of (a, b) for which the function $f(x)=\left[\begin{array}{ccr}a x-b & \text { for } & x \leq 1 \\ 3 x & \text { for } & 1<x<2 \\ b x^{2}-a & \text { for } & x \geq 2\end{array}\right.$

Let $g(x)=\operatorname{Lim}_{n \rightarrow \infty} \frac{x^{n} f(x)+h(x)+1}{2 x^{n}+3 x+3}, x \neq 1$ and $g(1)=\operatorname{Lim}_{x \rightarrow 1} \frac{\sin ^{2}\left(\pi \cdot 2^{x}\right)}{\ln \left(\sec \left(\pi \cdot 2^{x}\right)\right)}$ be a continuous function at $x=1$, find the value of $4 g(1)+2 f(1)-h(1)$. Assume that $f(x)$ and $h(x)$ are continuous at $x=1$. If $g:[a, b]$ onto $[a, b]$ is continous show that there is some $c \in[a, b]$ such that $g(c)=c$.
The function $f(x)=\left(\frac{2+\cos x}{x^{3} \sin x}-\frac{3}{x^{4}}\right)$ is not defined at $x=0$. How should the function be defined at $x=0$ to make it continuous at $x=0$. Use of expansion of trigonometric functions and L'Hospital's rule is not allowed.
$f(x)=\frac{a^{\sin x}-a^{\tan x}}{\tan x-\sin x}$ for $x>0$
$=\frac{\ln \left(1+\mathrm{x}+\mathrm{x}^{2}\right)+\ln \left(1-\mathrm{x}+\mathrm{x}^{2}\right)}{\sec \mathrm{x}-\cos \mathrm{x}}$ for $\mathrm{x}<0$, if f is continuous at $\mathrm{x}=0$, find ' a ' now if $g(x)=\ln \left(2-\frac{x}{a}\right) \cdot \cot (x-a)$ for $x \neq a, a \neq 0, a>0$. If g is continuous $a t x=a$ then show that $g\left(e^{-1}\right)=-e$.
(a) Let $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$ for all x, y \& if the function $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$, then show that $\mathrm{f}(\mathrm{x})$ is continuous at all x .
If $f(x \cdot y)=f(x) \cdot f(y)$ for all x, y and $f(x)$ is continuous at $x=1$. Prove that $f(x)$ is continuous for all x except at $\mathrm{x}=0$. Given $\mathrm{f}(1) \neq 0$.
$\mathrm{g}(\mathrm{X})=\underset{\mathrm{n} \rightarrow \infty}{\operatorname{Limit}}$

$=\mathrm{k}$ for $\mathrm{x}=\frac{\pi}{4} \quad$ and the domain of $\mathrm{g}(\mathrm{x})$ is $(0, \pi / 2)$.
where [] denotes the greatest integer function.
Given $f(x)=\sum_{r=1}^{n} \tan \left(\frac{x}{2^{r}}\right) \sec \left(\frac{x}{2^{r-1}}\right) ; r, n \in N$

Find the value of k, if possible, so that $g(x)$ is continuous at $x=\pi / 4$. Also state the points of discontinuity of $g(x)$ in $(0, \pi / 4)$, if any.

$$
\mathrm{f}(\mathrm{x})
$$

(a) it is continuous every where except when $x=-1$, (b) $\operatorname{Lim}_{x \rightarrow \infty} h(x)=\infty$ and (c) $\operatorname{Lim}_{x \rightarrow-1} h(x)=\frac{1}{2}$.

Find $\operatorname{Lim}_{x \rightarrow 0}(3 h(x)+f(x)-2 g(x))$
orex

Let f be continuous on the interval $[0,1]$ to R such that $\mathrm{f}(0)=\mathrm{f}(1)$. Prove that there exists a point c in
$\left[0, \frac{1}{2}\right]$ such that $\mathrm{f}(\mathrm{c})=\mathrm{f}\left(\mathrm{c}+\frac{1}{2}\right)$
Consider the function $g(x)=\left[\begin{array}{ll}\frac{1-a^{x}+x a^{x} \ell n a}{a^{x} x^{2}} & \text { for } x<0 \\ \frac{2^{x} a^{x}-x \ell n 2-x \ell n a-1}{x^{2}} & \text { for } x>0\end{array}\right.$ where $a>0$.
Without using , L'Hospital's rule or power series, find the value of 'a' \& $\mathrm{g}(0)$ ' so that the function $\mathrm{g}(\mathrm{x})$ is continuous at $\mathrm{x}=0$.

Q. 29 Let $f(x)=\left[\begin{array}{ll}\frac{\left(\frac{\pi}{2}-\sin ^{-1}\left(1-\{x\}^{2}\right)\right) \cdot \sin ^{-1}(1-\{x\})}{\sqrt{2}\left(\{x\}-\{x\}^{3}\right)} & \text { for } x \neq 0 \\ \frac{\pi}{2} & \text { for } x=0\end{array} \quad\right.$ where $\{x\}$ is the fractional part of $x .!$

Consider another function $\mathrm{g}(\mathrm{x})$; such that
$g(x)=f(x) \quad$ for $x \geq 0$
$=2 \sqrt{2} f(x)$ for $x<0 \quad$ Discuss the continuity of the functions $f(x) \& g(x)$ at $x=0$.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Q. 30 Discuss the continuity of f in $[0,2]$ where $f(x)=\left[\begin{array}{ll}|4 x-5|[x] & \text { for } x>1 \\ {[\cos \pi x]} & \text { for } x \leq 1\end{array}\right.$; where $[x]$ is the greatest integer not greater than x. Also draw the graph.

EXERCISE-2

(Objective Questions)

${ }^{\mathrm{O}} \mathrm{Q}$ Q 1. State whether True or False.

(A) $\tan (f(x)) \& \frac{1}{f(x)}$ are both continuous
(B) $\tan (f(x)) \& \frac{1}{f(x)}$ are both discontinuous
(C) $\tan (\mathrm{f}(\mathrm{x})) \& \mathrm{f}^{-1}(\mathrm{x})$ are both continuous
(D) $\tan (f(x))$ is continuous but $\frac{1}{f(x)}$ is not
(d) ' f ' is a continuous function on the real line. Given that
$x^{2}+(f(x)-2) x-\sqrt{3} \cdot f(x)+2 \sqrt{3}-3=0$. Then the value of $f(\sqrt{3})$
(A) can not be determined
(B) is $2(1-\sqrt{3})$
(C) is zero
(D) is $\frac{2(\sqrt{3}-2)}{\sqrt{3}}$
(e) $\begin{aligned} & \text { If } f(x)=\operatorname{sgn}(\cos 2 x-2 \sin x+3) \text {, where } \operatorname{sgn} \text { () is the signum function, then } f(x) \\ & \begin{array}{lll}\text { (A) is continuous over its domain } \\ \text { (C) has isolated point discontinuity } & \text { (B) has a missing point discontinuity }\end{array} \\ & \text { (D) has irremovable discontinuity. }\end{aligned}$

$$
f(1)=0
$$

then
(A) fis continuous at $\mathrm{x}=1$
(B) f has a finite discontinuity at $\mathrm{x}=1$
(C) f has an infinite or oscillatory discontinuity at $\mathrm{x}=1$.
(D) f has a removable type of discontinuity at $\mathrm{x}=1$.

Given $f(x)=\frac{[\{|x|\}] \mathrm{e}^{x^{2}}\{[x+\{x\}]\}}{\left(e^{\mathrm{x}^{x^{2}}}-1\right) \operatorname{sgn}(\sin x)}$ for $x \neq 0$

$$
=0 \quad \text { for } x=0
$$

of 23
where $\{x\}$ is the fractional part function; $[x]$ is the step up function and $\operatorname{sgn}(x)$ is the signumfunction of x then, $\mathrm{f}(\mathrm{x})$
(A) is continuous at $\mathrm{x}=0$
(B) is discontinuous at $\mathrm{x}=0$
(C) has a removable discontinuity at $\mathrm{x}=0$
(D) has an irremovable discontinuity at $\mathrm{x}=0$
(i) Consider $f(x)=$

$$
\frac{\ln \left(\mathrm{e}^{\left(x^{2}\right.}+2 \sqrt{\{x\}}\right)}{\tan \sqrt{x}} \text { for } 0<x<1
$$

where [*] \& $\{*\}$ are the greatest integer function \& fractional part function respectively, then
(A) $\mathrm{f}(0)=\ln 2 \Rightarrow \mathrm{f}$ is continuous at $\mathrm{x}=0$
(B) $\mathrm{f}(0)=2 \Rightarrow$ fis continuous at $\mathrm{x}=0$
(C) $\mathrm{f}(0)=\mathrm{e}^{2} \Rightarrow \mathrm{f}$ is continuous at $\mathrm{x}=0$
(D) fhas an irremovable discontinuity at $\mathrm{x}=0$

Consider $\mathrm{f}(\mathrm{x})=\frac{\sqrt{1+\mathrm{x}}-\sqrt{1-\mathrm{x}}}{\{\mathrm{x}\}} \quad \mathrm{x} \neq 0$
$-\frac{\pi}{4}<x<0$

then, which of the following holds good.
where $\{x\}$ denotes fractional part function.
(A) ' h ' is continuous at $\mathrm{x}=0$
(B) ' h ' is discontinuous at $\mathrm{x}=0$
(C) $f(g(x))$ is an even function
(D) $f(x)$ is an even function
(k) The function $f(x)=[x] \cdot \cos \frac{2 x-1}{2} \pi$, where $[\cdot]$ denotes the greatest integer function, is discontinuous at
(A) all x
(C) no x
(B) all integer points
(D) x which is not an integer

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

Q. 2 Let $\mathrm{f}(\mathrm{x})$ be a continuous function defined for $1 \leq \mathrm{x} \leq 3$. If $\mathrm{f}(\mathrm{x})$ takes rational values for all x and $\mathrm{f}(2)=10$, then $\mathrm{f}(1.5)=$ \qquad .
[JEE '97, 2]
Q. 3 The function $f(x)=[x]^{2}-\left[x^{2}\right]$ (where $[y]$ is the greatest integer less than or equal to y), is discontinuous at :

Ш(a) Let $\mathrm{f}^{\prime}{ }_{+}(\mathrm{a})=\mathrm{p} \& \mathrm{f}^{\prime}(\mathrm{a})=\mathrm{q}$ where p \& q are finite then :
$\stackrel{\sim}{\sim} \quad$ (i) $\quad \begin{aligned} & \mathrm{p}=\mathrm{q} \Rightarrow \mathrm{f} \text { is } \text { derivable at } \mathrm{x}=\mathrm{a} \Rightarrow \mathrm{f} \text { is continuous at } \mathrm{x}=\mathrm{a} \text {. } \\ & \stackrel{\mathrm{p}}{\mathrm{L}} \neq \mathrm{q} \Rightarrow \mathrm{f} \text { is not derivable at } \mathrm{x}=\mathrm{a} .\end{aligned}$
It is very important to note that f may be still continuous at $x=a$.
In short, for a function f :
Differentiability \Rightarrow Continuity $; \quad$ Continuity $\Rightarrow \nRightarrow$ derivability;
Non derivibality \Rightarrow discontinuous $\quad ; \quad$ But discontinuity \Rightarrow Non derivability

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
(b) If a function f is not differentiable but is continuous at $\mathrm{x}=$ a it geometrically implies a sharp corner at $\mathrm{x}=\mathrm{a}$.
3. Derivability Over An Interval: $f(x)$ is said to be derivable over an interval if it is derivable at each \& every point of the interval $f(x)$ is said to be derivable over the closed interval $[a, b]$ if :
(i) for the points a and b, $\mathrm{f}^{\prime}(\mathrm{a}+) \& \mathrm{f}^{\prime}(\mathrm{b}-)$ exist \&

OQ. 1 Discuss the continuity \& differentiability of the function $f(x)=\sin x+\sin |x|, x \in R$. Draw a rough sketch $\omega^{\text {D }}$ of the graph of $\mathrm{f}(\mathrm{x})$.
©
Q. 2
Examine the continuity and differentiability of $f(x)=|x|+|x-1|+|x-2| x \in R$.
Also draw the graph of $f(x)$.
© Q. 3 Given a function $f(\mathrm{x})$ defined for all real x , and is such that $f(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})<6 \mathrm{~h}^{2}$ for all real h and x. Show that $f(\mathrm{x})$ is constant.

(

is derivable at $x=1$. Find the values of $a \& b$.
$\sim_{\text {© }}^{\sim}$ Q. 10 Let $f(x)$ be defined in the interval $[-2,2]$ such that $f(x)=\left[\begin{array}{lr}-1, & -2 \leq x \leq 0 \\ x-1, & 0<x \leq 2\end{array} \quad \&\right.$ 응 $\mathrm{g}(\mathrm{x})=\mathrm{f}(|\mathrm{x}|)+|\mathrm{f}(\mathrm{x})|$. Test the differentiability of $\mathrm{g}(\mathrm{x})$ in $(-2,2)$.
$\stackrel{\text { © }}{0} \mathrm{Q} .11$ Given $\mathrm{f}(\mathrm{x})=\cos ^{-1}\left(\operatorname{sgn}\left(\frac{2[\mathrm{x}]}{3 \mathrm{x}-[\mathrm{x}]}\right)\right)$ where $\operatorname{sgn}($.$) denotes the signum function \& [.] denotes the greatest$ integer function. Discuss the continuity \& differentiability of $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}= \pm 1$.
$f(x)=\left[\begin{array}{ll}x[x] & , \\ (x-1)[x], & 2 \leq x \leq 2\end{array}\right.$ where $[x]=$ greatest integer less than or equal to x.

$\stackrel{\amalg}{\underset{\sim}{\amalg}}$ Test the differentiability of $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=0$.
Q. 14 Discuss the continuity \& the derivability in $[0,2]$ of $f(x)=\left[\begin{array}{ll}|2 x-3|[x] & \text { for } x \geq 1 \\ \sin \frac{\pi x}{2} & \text { for } x<1\end{array}\right.$ where [] denote greatest integer function.
Q. 15 If $f(x)=-1+|x-1|,-1 \leq x \leq 3 ; g(x)=2-|x+1|,-2 \leq x \leq 2$, then calculate $(f \circ g)(x) \&(g o f)(x)$. Draw their graph. Discuss the continuity of (fog)(x) at $x=-1 \&$ the differentiability

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com of (gof) (x) at $x=1$.
Q. $16 \quad$ The function: $f(x)=\left[\begin{array}{ll}a x(x-1)+b & \text { when } x<1 \\ x-1 & \text { when } 1 \leq x \leq 3 \\ \mathrm{px}^{2}+q x+2 & \text { when } x>3\end{array}\right.$

Find the values of the constants a, b, p, q so that
$f(x)$ is continuous for all x
(ii) $\mathrm{f}^{\prime}(1)$ does not exist
(iii) $\mathrm{f}^{\prime}(\mathrm{x})$ is continuous at $\mathrm{x}=3$

Examine the function, $f(x)=x \cdot \frac{a^{1 / x}-a^{-1 / x}}{a^{1 / x}+a^{-1 / x}}, x \neq 0(a>0)$ and $f(0)=0$ for continuity and existence of the derivative at the origin.
Q. 18 Discuss the continuity on $0 \leq \mathrm{x} \leq 1 \&$ differentiability at $\mathrm{x}=0$ for the function.
$f(x)=x \cdot \sin \frac{1}{x} \sin \frac{1}{x \cdot \sin \frac{1}{x}}$ where $x \neq 0, x \neq 1 / r \pi \& f(0)=f(1 / r \pi)=0$, $r=1,2,3, \ldots \ldots \ldots$.
$f(x)=\left[\begin{array}{lll}1-x & , & (0 \leq x \leq 1) \\ x+2 & , & (1<x<2) \\ 4-x & , & (2 \leq x \leq 4)\end{array}\right.$ Discuss the continuity \& differentiability of
$\infty \quad y=f[f(x)]$ for $0 \leq x \leq 4$.
${\underset{\text { OU }}{\text { O. }}}_{\text {E. } 20}$ Consider the function, $f(\mathrm{x})=\left[\begin{array}{cc}\mathrm{x}^{2}\left|\cos \frac{\pi}{2 \mathrm{x}}\right| & \text { if } \mathrm{x} \neq 0 \\ 0 & \text { if } \mathrm{x}=0\end{array}\right.$
(a) Show that $f^{\prime}(0)$ exists and find its value
(b) Show that $f^{\prime}\left(\frac{1}{3}\right)$ does not exist.
(c) For what values of $\mathrm{x}, f^{\prime}(\mathrm{x})$ fails to exist.
Q. 21 Discuss the continuity \& the derivability of ' f ' where $f(x)=$ degree of $\left(u^{x^{2}}+u^{2}+2 u-3\right)$ at $x=\sqrt{2}$. $\operatorname{Lim}_{x \rightarrow 0} \frac{f(\mathrm{x})-f(\mathrm{kx})}{\mathrm{x}}=\alpha$, where $\mathrm{k} \in(0,1)$ then compute $\mathrm{f}^{\prime}\left(0^{+}\right)$and $\mathrm{f}^{\prime}\left(0^{-}\right)$, and comment upon the differentiability of f at $\mathrm{x}=0$.

$\varrho_{0} \mathrm{Q} .25$ A function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ where R is a set of real numbers satisfies the equation
$\mathrm{f}\left(\frac{\mathrm{x}+\mathrm{y}}{3}\right)=\frac{\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})+\mathrm{f}(0)}{3}$ for all x, y in R . If the function is differentiable at $\mathrm{x}=0$ then show that it is. differentiable for all x in R .

EXERCISE-5

Fill in the blanks:

$\operatorname{Limit}_{h \rightarrow 0} \frac{f\left(3+h^{2}\right)-f\left(\left(3-h^{2}\right)\right.}{2 h^{2}}=$ \qquad —.
$f(x)=|\sin x| \& g(x)=x^{3}$ then $f[g(x)]$ is \qquad \& \qquad at $\mathrm{x}=0$. (State continuity and derivability)
\qquad . For the function $\mathrm{f}(\mathrm{x})=\left[\begin{array}{ll}\frac{\mathrm{x}}{1+\mathrm{e}^{1 / x}}, & , x \neq 0 \\ 0 & , x=0\end{array}\right.$, the derivative from the right, $\mathrm{f}^{\prime}\left(0^{+}\right)=$ \qquad $\&$ the derivative山 from the left, $\mathrm{f}^{\prime}\left(0^{-}\right)=$ \qquad .
$\underset{\sim}{\underset{\sim}{\sim}} \mathrm{Q} .5$ The number of points at which the function $\mathrm{f}(\mathrm{x})=\max .\{\mathrm{a}-\mathrm{x}, \mathrm{a}+\mathrm{x}, \mathrm{b}\},-\infty<\mathrm{x}<\infty, 0<\mathrm{a}<\mathrm{b}$ cannot be differentiable is \qquad nati.

Select the correct alternative : (only one is correct)

Q. $6 \quad$ Let $f(x)=\frac{|x|}{\sin x}$ for $x \neq 0 \& f(0)=1$ then,
(A) $f(x)$ is conti. \& diff. at $x=0$
(B) $f(x)$ is continuous \& not derivable at $x=0$
(C) $\mathrm{f}(\mathrm{x})$ is discont. \& not diff. at $\mathrm{x}=0$
(D) none

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

山	(A) continuous no where
$\stackrel{\sim}{\sim}$	(C) differentiable no where in its domain
■Q. 22	If $f(x)=x^{2} \cdot \sin (1 / x), x \neq 0$ and $f(0)=0$ th

(D) Not differentiable at $x=0$
(A) $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$
(B) $f(x)$ is derivable at $x=0$
(C) $\mathrm{f}^{\prime}(\mathrm{x})$ is continuous at $\mathrm{x}=0$
(D) $\mathrm{f}^{\prime \prime}(\mathrm{x})$ is not derivable at $\mathrm{x}=0$
Q. 23 A function which is continuous \& not differentiable at $x=0$ is :
(A) $f(x)=x$ for $x<0 \& f(x)=x^{2}$ for $x \geq 0$
(B) $\mathrm{g}(\mathrm{x})=\mathrm{x}$ for $\mathrm{x}<0 \& \mathrm{~g}(\mathrm{x})=2 \mathrm{x}$ for $\mathrm{x} \geq 0$
(C) $h(x)=x|x| x \in R$
(D) $K(x)=1+|x|, x \in R$
Q. 24 If $\operatorname{Sin}^{-1} x+|y|=2 y$ then y as a function of x is :
(A) defined for $-1 \leq \mathrm{x} \leq 1$
(B) continuous at $\mathrm{x}=0$
(C) differentiable for all x
(D) such that $\frac{d y}{d x}=\frac{1}{3 \sqrt{1-x^{2}}}$ for $-1<x<0$

Let $f(x)=\operatorname{Cosx} \& H(x)=\left[\begin{array}{ll}\operatorname{Min}[f(t) / 0 \leq t \leq x] & \text { for } 0 \leq x \leq \frac{\pi}{2} \\ \frac{\pi}{2}-x & \text { for } \frac{\pi}{2}<x \leq 3\end{array}\right.$, then
(A) $\mathrm{H}(\mathrm{x})$ is cont. \& deri. in $[0,3]$
(B) $\mathrm{H}(\mathrm{x})$ is cont. but not deri. at $\mathrm{x}=\pi / 2$
(C) $\mathrm{H}(\mathrm{x})$ is neither cont. nor deri. at $\mathrm{x}=\pi / 2$
(D) Max. value of $\mathrm{H}(\mathrm{x})$ in $[0,3]$ is 1

EXERCISE-6

Let $h(x)=\min \left\{x, x^{2}\right\}$, for every real number of x. Then :
(A) h is cont. for all x
(B) h is diff. for all x
(C) $\mathrm{h}^{\prime}(\mathrm{x})=1$, for all $\mathrm{x}>1$
(D) h is not diff. at two values of x .
∞
[JEE'98, 2]

[REE '98, 6]
The function $\mathrm{f}(\mathrm{x})=\left(\mathrm{x}^{2}-1\right)\left|\mathrm{x}^{2}-3 \mathrm{x}+2\right|+\cos (|\mathrm{x}|)$ is NOT differentiable at :
(A) -1
(B) 0
(C) 1
(D) 2
[JEE '99, 2 (out of 200)]
Q. $5 \quad$ Let $f: R \rightarrow R$ be any function. Define $g: R \rightarrow R$ by $g(x)=|f(x)|$ for all x. Theng is
(A) onto if fis onto
(C) continuous if f is continuous
(B) one one if f is one one
(D) differentiable if f is differentiable.
[JEE 2000, Screening, 1 out of 35]
\sum Discuss the continuity and differentiability of the function,

[JEE'97, 5]

Where a and b are non negative real numbers. Determine the composite function gof. If (gof) (x) is continuous for all real x, determine the values of a and b. Further, for these values of a and b, is gof differentiable at $\mathrm{x}=0$? Justify your answer.
[JEE 2002, 5 out of 60]
Q. 12 If a function $\mathrm{f}:[-2 \mathrm{a}, 2 \mathrm{a}] \rightarrow \mathrm{R}$ is an odd function such that $\mathrm{f}(\mathrm{x})=\mathrm{f}(2 \mathrm{a}-\mathrm{x})$ for $\mathrm{x} \in[\mathrm{a}, 2 \mathrm{a}]$ and the left hand derivative at $x=a$ is 0 then find the left hand derivative at $x=-a$.
[JEE 2003, Mains-2 out of 60]
Q. 13 (a) The function given by $\mathrm{y}=||\mathrm{x}|-1|$ is differentiable for all real numbers except the points
(A) $\{0,1,-1\}$
(B) ± 1
(C) 1
(D) -1
(b) If $f(x)$ is a continuous and differentiable function and $f\left(\frac{1}{n}\right)=0, \forall n \geq 1$ and $n \in I$, then
(A) $f(x)=0, x \in(0,1]$
(B) $\mathrm{f}(0)=0, \mathrm{f}^{\prime}(0)=0$
(C) $\mathrm{f}^{\prime}(\mathrm{x})=0=\mathrm{f}^{\prime \prime}(\mathrm{x}), \mathrm{x} \in(0,1]$
(D) $f(0)=0$ and $\mathrm{f}^{\prime}(0)$ need not to be zero
[JEE 2005 (Screening), 3 + 3]
(c) If $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| £\left(x_{1}-x_{2}\right)^{2}$, for all x_{1}, x_{2} ÎR. Find the equation of tangent to the curve $y=f(x)$ at the point (1,2).
[JEE 2005 (Mains), 2]
Q. 14 If $f(x)=\min .\left(1, x^{2}, x^{3}\right)$, then
(A) $f(x)$ is continuous $\forall x \in R$
(B) $\mathrm{f}^{\prime}(\mathrm{x})>0, \square \forall \mathrm{x}>1$
(C) $\mathrm{f}(\mathrm{x})$ is not differentiable but continuous $\forall \mathrm{x} \in \mathrm{R}$
(D) $f(x)$ is not differentiable for two values of x

EXERCISE-7 (Continuity)

Part : (A) Only one correct option
The value of $f(0)$, so that the function, $f(x)=\frac{\sqrt{\left(a^{2}-a x+x^{2}\right)}-\sqrt{\left(a^{2}+a x+x^{2}\right)}}{\sqrt{(a+x)}-\sqrt{(a-x)}}(a>0)$ becomes continuous for all x , is given by :
(A) a $\sqrt{\mathrm{a}}$
(B) \sqrt{a}
(C) $-\sqrt{a}$
(D) $-a \sqrt{a}$

The value of R which makes $f(x)=\left\{\begin{array}{ll}\sin (1 / x) & , x \neq 0 \\ R & , x=0\end{array}\right.$ continuous at $x=0$ is:

(A) 8

(B) 1
(C) -1
(D) None of these

A function $f(x)$ is defined as below $f(x)=\frac{\cos (\sin x)-\cos x}{x^{2}}, x \neq 0$ and $f(0)=a$ $f(x)$ is continuous at $x=0$ if a equals
(A) 0
(B) 4
(C) 5
(D) 6
(A) e
(B) 1
(C) 0
(D) none of these
$f(x)=\left\{\begin{array}{cl}\frac{\sqrt{(1+p x)}-\sqrt{(1-p x)}}{x} & ,-1 \leq x<0 \\ \frac{2 x+1}{x-2} & , 0 \leq x \leq 1\end{array}\right.$ is continuous in the interval $[-1,1]$, then ' p ' is equal to:
(A) -1
(B) $-1 / 2$
(C) $1 / 2$
(D) 1

Let $f(x)=\left|\left(x+\frac{1}{2}\right)[x]\right|$ when $-2 \leq x \leq 2$. where [.] represents greatest integer function. Then
(A) $f(x)$ is continuous at $x=2$
(B) $f(x)$ is continuous at $x=1$
(C) $f(x)$ is continuous at $x=-1$
(D) $f(x)$ is discontinuous at $x=0$
The set of all points for which
$f(x)=\frac{|x-3|}{|x-2|}+\frac{1}{[1+x]}$ where [.] represents greatest integer function is continuous is
(A) R
(B) $\mathrm{R}-[-1,0]$
(C) $R-(\{2\} \cup[-1,0])$
(D) $R-\{(-1,0) \cup n, n \in I\}$

The function $f(x)=[x] \cos \left[\frac{(2 x-1)}{2}\right] \pi$, , [.] denotes the greatest integer function) is dicontinuous at:
(A) all x
(B) $x=n / 2, n \in I-\{1\}$
(C) no x
(D) x which is not an integer

Bhopal Phone : 0903903 7779,

Let $[x]$ denote the integral part of $x \in R$ and $g(x)=x-[x]$. Let $f(x)$ be any continuous function with $\mathrm{f}(0)=\mathrm{f}(1)$ then the function $\mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$:
(A) has finitely many discontinuities
(B) is continuous on R
(C) is discontinuous at some $\mathrm{x}=\mathrm{c}$
(D) is a constant function.
10. The function $f(x)$ is defined by $f(x)=\left\{\begin{array}{cc}\log _{(4 x-3)}\left(x^{2}-2 x+5\right) & \text { if } \frac{3}{4}<x<1 \& x>1 \\ 4 & \text { if } x=1\end{array}\right.$
(A) is continuous at $x=1$

Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of Țhese Packages \& Learn by Video Tuțorials on www.MathsBySuhag.com
(B) is discontinuous at $\mathrm{x}=1$ since $\mathrm{f}\left(1^{+}+\right.$) does not exist though $\mathrm{f}\left(1^{-}\right)$exists
(C) is discontinuous at $x=1$ since $f\left(1^{-}\right)$does not exist though $f\left(1^{+}\right)$exists
(D) is discontinuous since neither $f\left(1^{-}\right)$nor $f\left(1^{+}\right)$exists.
11. Let $f(x)=\frac{1-\sin x}{(\pi-2 x)^{2}} \cdot \frac{\ln (\sin x)}{\ln \left(1+\pi^{2}-4 \pi x+4 x^{2}\right)} x \neq \frac{\pi}{2}$. The value of $f\left(\frac{\pi}{2}\right)$ so that the function is continuous

E at $x=\pi / 2$ is
(A) $1 / 16$
(B) $1 / 32$
(C) $-1 / 64$
(D) $1 / 128$

Let $f(x)=\left[\begin{array}{rl}x^{2} & \text { if } x \text { is irrational } \\ 1 & \text { if } x \text { is rational }\end{array}\right.$ then:
(A) $f(x)$ is discontinuous for all x
(B) discontinuous for all x except at $x=0$
(C) discontinuous for all x except at $x=1$ or -1 (D) none of these

A $f(x)=\left[x^{2}\right]-[x]^{2}$, where $[$. $]$ denotes the greatest integer function. Then
(B) $f(x)$ is discontinuous only at $x=0,1$
(C) $\quad f(x)$ is continuous only at $x=1$
(D) none of these
14. Let $f(x)$ be a continuous function defined for $1 \leq x \leq 3$. If $f(x)$ takes rational values for all x and $f(2)=10$
$\begin{array}{llll}\text { (A) } 7.5 & \text { (B) } 10 & \text { (C) } 8 & \text { (D) none of these }\end{array}$
15. Let $f(x)=\operatorname{Sgn}(x)$ and $g(x)=x\left(x^{2}-5 x+6\right)$. The function $f(g(x))$ is discontinuous at
(A) infinitely many points
(B) exactly one point
(C) exactly three points
(D) no point
16. The function $f(x)=\left[x^{2}\left[\frac{1}{x^{2}}\right]\right], x \geq 0$, is [.] represents the greatest integer less than or equal to x
(A) continuous at $x=1$
(B) continuous at $x=-1$
(C) discontinuous at infinitely many points
(D) continuous at $x=-1$
7. The function f defined by $f(x)=\lim _{t \rightarrow \infty}\left\{\frac{(1+\sin \pi x)^{t}-1}{(1+\sin \pi x)^{t}+1}\right\}$ is
(A) everywhere continuous
(B) discontinuous at all integer values of x
(C) continuous at $\mathrm{x}=0$
(D) none of these
18. If $[x]$ and $\{x\}$ represent integral and fractional parts of a real number x, and $f(x)=\frac{a^{2|x|+\{x\}}-1}{2[x]+\{x\}}, x=0$, $f(0)=\log _{s} a$, where $a>0, a \neq 1$, then
(A) $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$
(B) $f(x)$ has a removable discontinuity at $x=0$
(C) $\lim _{x \rightarrow 0}$
$f(x)$ does not exist
(D) none of these

Part : (B) May have more than one options correct
If $f(x)=\sqrt{x}$ and $g(x)=x-1$, then
(A) fog is continuous on $[0, \infty)$
(B) gof is continuous on $[0, \infty$)
(C) fog is continuous on $[1, \infty)$
(D) none of these
is continuous at $\mathrm{x}=0$ if
(A) $m \geq 0$
(B) $m>0$
(C) $\mathrm{m}<1$
(D) $m \geq 1$

Let $f(x)=\frac{1}{[\sin \mathrm{x}]}$ ([.] denotes the greatest integer function) then
(A) domain of $f(x)$ is $(2 n \pi+\pi, 2 n \pi+2 \pi) \cup\{2 n \pi+\pi / 2\}$
(B) $f(x)$ is continuous when $x \in(2 n \pi+\pi, 2 n \pi+2 \pi)$
(C) $f(x)$ is continuous at $x=2 n \pi+\pi / 2$
(D) $f(x)$ has the period 2π
22. Let $f(x)=[x]+\sqrt{x-[x]}$, where $[x]$ denotes the greatest integer function. Then
(A) $f(x)$ is continuous on R^{+}
(B) $f(x)$ is continuous on R
(C) $f(x)$ is continuous on $R-I$
(D) discontinuous at $x=1$
23. Let $f(x)$ and $g(x)$ be defined by $f(x)=[x]$ and $g(x)=\left\{\begin{array}{ll}0, & x \in I \\ x^{2}, & x \in R-I\end{array}\right.$ (where [.] denotes the greatest integer function) then
(A) $\quad \lim _{x \rightarrow 1} g(x)$ exists, but g is not continuous at $x=1$
(B) $\quad \lim _{x \rightarrow 1} f(x)$ does not exist and f is not continuous at $x=1$
(C) gof is continuous for all x
(D) fog is continuous for all x

Ш24. Which of the following function(s) defined below has/have single point continuity.
(A) $f(x)=\left[\begin{array}{ll}1 & \text { if } x \in Q \\ 0 & \text { if } x \notin Q\end{array}\right.$
(B) $g(x)=\left[\begin{array}{cc}x & \text { if } x \in Q \\ 1-x & \text { if } x \notin Q\end{array}\right.$
(C) $h(x)=\left[\begin{array}{ll}x & \text { if } x \in Q \\ 0 & \text { if } x \notin Q\end{array}\right.$
(D) $k(x)=\left[\begin{array}{cc}x & \text { if } x \in Q \\ -x & \text { if } x \notin Q\end{array}\right.$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

EXERCISE-8

1. Discuss the continuity of the function, $f(x)$ at $x=3$, if
If $f(x)=\frac{\sin 3 x+A \sin 2 x+B \sin x}{x^{5}}(x \neq 0)$ is continuous at $x=0$. Find A \& B. Also find $f(0)$.
Let $[x]$ denote the greatest integer function \& $f(x)$ be defined in a neighbourhood of 2 by

Find the values of A \& $f(2)$ in order that $f(x)$ may be continuous at $x=2$.
Let $f(x+y)=f(x)+f(y)$ for all $x y$ and if the function $f(x)$ is continuous at $x=0$, then show that $f(x)$ is $\dot{x}^{\text {- }}$ continuous at all x.
2. If $f(x)=\sin x$ and $g(x)=\left\{\begin{array}{ll}\max ^{m}\{f(t) ; 0 \leq t \leq x, 0 \leq x \leq 2 \\ 3 x-4 & ; x>2\end{array}\right.$, then discuss the continuity of $g(x) \forall x \geq 0$.
,CONTI NUI TY, DI FFRENTI ABI LI TY)
for 34 Yrs. Que. of IIT-JEE
\&
10 Yrs. Que. of AI EEE
we have distributed already a book
Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.
©Q1. $\quad f\left(0^{+}\right)=-2 ; f\left(0^{-}\right)=2$ hence $f(0)$ not possible to define
气Q 2. (a) $-2,2,3$ (b) $K=5$ (c) even
UQ 3. $y_{n}(x)$ is continuous at $x=0$ for all n and $y(x)$ is dicontinuous at $x=0$

(a) $4-3 \sqrt{2}+a$, (b) $a=3$
$g(x)=2+x$ for $0 \leq x \leq 1,2-x$ for $1<x \leq 2,4-x$ for $2<x \leq 3$,
($\quad \mathrm{g}$ is discontinuous at $\mathrm{x}=1 \& \mathrm{x}=2$
$\mathrm{A}=1 ; \mathrm{f}(2)=1 / 2$
Q 9. $a=0 ; b=-1$
Q 8.
$f(f(x))$ is continuous and domain of $f(f(x))$ is $[-4, \sqrt{6}]$
gof is dis-cont. at $x=0,1 \&-1$
3. $a=1 / 2, b=4$

Q14. $\mathrm{a}=-3 / 2, \mathrm{~b} \neq 0, \mathrm{c}=1 / 2$
Q 15. $A=-4, B=5, f(0)=1$
Q 16. discontinuous at $\mathrm{x}=1,4 \& 5$
Q 17. discontinuous at all integral values in $[-2,2]$
ळQ 18. locus $(\mathrm{a}, \mathrm{b}) \rightarrow \mathrm{x}, \mathrm{y}$ is $\mathrm{y}=\mathrm{x}-3$ excluding the points where $\mathrm{y}=3$ intersects it.

Q 25. $\mathrm{k}=0 ; \mathrm{g}(\mathrm{x})=\left[\begin{array}{lll}\ell \mathrm{n}(\tan \mathrm{x}) & \text { if } & 0<x \\ 0 & \text { if } & \frac{\pi}{4} \leq x \\ 0 & \mathrm{~g}(\mathrm{x})=4(\mathrm{x}+1) \text { and limit }=-\frac{39}{4}\end{array}\right.$
Q 5. P not possible.
$\sum_{i} Q 28 . a=\frac{1}{\sqrt{2}}, g(0)=\frac{(\ln 2)^{2}}{8}$
SQ29. $\mathrm{f}\left(0^{+}\right)=\frac{\pi}{2} ; \mathrm{f}\left(0^{-}\right)=\frac{\pi}{4 \sqrt{2}} \Rightarrow \mathrm{f}$ is discont. at $\mathrm{x}=0$; $g(0)=g(0)=g(0)=\pi / 2 \rightarrow g$ is cont. at $x=0$
(a) false; (b) false ; (c) false ; (d) false ; (e) false ; (f) true ; (g) false ; (h) true
(a) $\mathrm{c}= \pm 1$; (b). $\mathrm{x} \pm 1,-1 \& \mathrm{x}=0 ;$ (c). $1 ;$ (d). $\mathrm{a}=\frac{\pi}{6}, \mathrm{~b}=-\frac{\pi}{12}$ (e). $1 / 2$
(a) D (b). B, C (c). C, D
(d). B
(e). C (f). A
(g). B
(h) A(i) D (j) A
(k) C

EXERCISE-3

DIFFERENTIABILITY EXERCISE-4

$\stackrel{\text { 山 }}{\sim}$ Q 1. $f(x)$ is conti. but not derivable at $x=0 \quad$ Q 2. conti. $\forall x \in R$, not diff. at $x=0,1 \& 2$
EXERCISE-2
$\mathrm{R}-[-1,0)$; discontinuous for all integral values in domain except at zero

Discontinuous at $\mathrm{x}=1 ; \mathrm{f}\left(1^{+}\right)=1$ and $\mathrm{f}\left(1^{-}\right)=-1$

ШQ 4. conti. but not diff.at $x=0$; diff. \& conti. at $x=\pi / 2$
Q 7. f is cont. but not diff. at $\mathrm{x}=0$
Q 9. $a=1 / 2, b=3 / 2$

Q 5. conti. but not diff. at $x=0$
Q 8. $\mathrm{f}^{\prime}\left(1^{+}\right)=3, \mathrm{f}^{\prime}\left(1^{-}\right)=-1$
Q 10. not derivable at $x=0$ \& $x=1$

Q 11. f is cont. \& derivable at $\mathrm{x}=-1$ but f is neither cont. nor derivable at $\mathrm{x}=1$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Q 12. discontinuous \& not derivable at $x=1$, continuous but not derivable at $x=2$
Q 13. not derivable at $x=0$
Q 14. f is conti. at $\mathrm{x}=1,3 / 2 \&$ disconti. at $\mathrm{x}=2$, f is not diff. at $\mathrm{x}=1,3 / 2,2$ ÉQ. 21 continuou
© $\mathbf{Q} .23 \mathrm{f}(\mathrm{x})=\mathrm{e}^{2 \mathrm{x}}$
Q. 52
Q. 9 D
Q. 13 D
Q. 13 D
Q. 21 B, D
Q. 25 A, D
 $\sum_{\infty} Q .20$ (a) $f^{\prime}(0)=0$, (b) $f^{\prime}\left(\frac{1^{-}}{3}\right)=-\frac{\pi}{2}$ and $f^{\prime}\left(\frac{1^{+}}{3}\right)=\frac{\pi}{2}$, (c) $x=\frac{1}{2 n+1} n \in I$ Q. $22 \mathrm{f}^{\prime}(0)=\frac{\alpha}{1-\mathrm{k}}$

$$
\text { Q. } 24 f(x)=x \Rightarrow f(10)=10
$$

EXERCISE-5

Continuity EXERCISE-7

9. B
10. D
11. C
12. C
13. D
14. B
15. C
16. C
17. B
18. C
19. $B C$ 20. $B D$
$\stackrel{\amalg}{\underset{\sim}{\amalg}}$
$f(x)$ is conti. \& diff. at $x=1 ; f(x)$ is not conti. \& not diff. at $x=2$

EXERCISE-6

Q. 30
Q. 7 B
Q. 11 A
Q. 15 A, B, D
Q. 19 B, D
Q. 23 A, B, D
Q. $4 \mathrm{f}^{\prime}\left(0^{+}\right)=0, \mathrm{f}^{\prime}\left(0^{-}\right)=1$
Q. 2 conti. \& diff.
Q. 12 D
Q. 10 B
Q. 14 A
Q. 16 A, C
Q. 20 A, B, C
Q. $24 \mathrm{~A}, \mathrm{~B}, \mathrm{D}$
conti. but not derivable at $x=1$, neither cont. nor deri. at $x=-1$
Q. 2

A, C, D
Q. 6 Discont. hence not deri. at $\mathrm{x}=1 \&-1$. Cont. \& deri. at $\mathrm{x}=0$
6. Discontinuous
7. $A=-4, B=5, f(0)=1$
8. $A=1 ; f(2)=1 / 2$
9. $f(x)$ is discontinuous at natural multiples of π
13. continuous for all $x \geq 0$ except at $x=2$

