Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Hence the limit value of $f(x)$ from left of $x=1$ should either be greater than or equal to the value of function at $\mathrm{x}=1$.

$$
\begin{array}{ll}
& \lim _{x \rightarrow 1^{-}} f(x) \geq f(1) \\
\Rightarrow \quad & -1+\frac{\left(b^{3}-b^{2}+b-1\right)}{\left(b^{2}+3 b+2\right)}>-1 \quad \Rightarrow \quad \frac{\left(b^{2}+1\right)(b-1)}{(b+1)(b+2)} \geq 0
\end{array}
$$

$$
\Rightarrow \quad b \in(-2,1) \cup[1,-\infty)
$$

Note: If $x=a$ happens to be a boundary point of the function, then compare the value of $f(a)$ with appropriate values in either the left or right neighbourhood of $x=a$.

Local Maxima

Local Minima

From these figure we can see that boundary points are almost always points of local maxima/

B. Global Maxima/ Minima

Global maximum or minimum value of $f(x), x \in[a, b]$ basically refers to the greatest value and least value of $f(x)$ over that interval mathematically
(i) If $f(c) \geq f(x)$ for $\forall x \in[a, b]$ then $f(c)$ is called global maximum or absolute maximum value of $f(\mathrm{x})$.

Similarly if $f(d) \leq f(x) \forall x \in[a, b]$ then $f(d)$ is called global minimum or absolute minimum value
(ii) $\quad \begin{aligned} & \text { Similarly if } f(d) \leq f(x) \forall x \in[a, ~ b] ~ t h e n ~\end{aligned}(d)$ is
For example consider the graph of function

$f(x)$ has local maxima at $x=c, e, b$ and localminima at $x=a, d$, f. It can also be easily seen that $f(b)$ is the greatest value and hence global maximum and similarly $f(d)$ is global minimum.
Also be careful about the fact that a function has global maximum or minimum value when it actually achieves these values.
Let us take graph of function as $f(x)=\left\{\begin{array}{cc}2 x-1 & 1 \leq x<2 \\ 4-x & 2 \leq x \leq 4\end{array}\right.$

This function has local minima at $x=1,4$ and at $x=2$, it is a monotonically decreasing function and hence neither maximum nor minimum.
$f(4)=0$, which the global minimum value but global maximum value is not defined. The value of function can be made as close to 3 as we may please.

Also consider graph of another function as shown $f(x) \begin{cases}3-2 x & 0 \leq x<1 \\ 1 & 1 \leq x<2 \\ x-1 & 2 \leq x \leq 3\end{cases}$

$f(x)$ has local maxima at $x=0,3$ and $f(0)=3$ value 1 over this interval which is global minimum although note that $f(x)$ does not has local minima at $x=1,2$.

Self Practice Problems

1. In each of following case identify if $x=a$ is point of local maxima, minima or neither of them
(i)

Ans
(ii) Neither maxima nor minima
(iv) Neither maxima nor minima

2. If $f(x)=\left\{\begin{array}{cc}(x+\lambda)^{2} & x<0 \\ \cos x & x \geq 0\end{array}\right.$, find possible values of λ such that $f(x)$ has local maxima at $x=0$. Ans. $\lambda \in[-1,1)$
3. Draw the graph of function $f(x)=2|x-2|+5|x-3|(x \in R)$. Also identify points of local Maxima/Minima
and also global Maximum/Minimum values
4. Examine the graph of following functions in each case identify the points of global maximum/minimum and local maximum / minimum.
from graph we can see that $x=1$ is a point of local mixima where as $x=0,2$ are points of local minima.
Example : If $f(x)=x^{3}+a x^{2}+b x+c$ has extreme values at $x=-1$ and $x=3$. Find a, b, c.

(iii)

Ans. (i) Local maxima at $x=2$, Local minima at $x=3$, Global maxima at $x=2$
(ii) Local minima at $x=-1$, No point of Global minima, no point of local or Global maxima (iii) Local \& Global maxima at $x=1$, Local \& Global minima at $x=0$.
C. II ${ }^{\text {nd }}$ Fundamental Theorem
Following points should be examined for maxima/minima in an interval.

Points where $f^{\prime}(x)=0$
2. Points where $f^{\prime}(x)$ does not exists
3.

> Boundary points of interval (only when the interval is closed).
Example : Find the possible points of Maxima/Minima for $f(x)=\left|x^{2}-2 x\right|(x \in R)$
$f(x)= \begin{cases}x^{2}-2 x & x \geq 2 \\ 2 x-x^{2} & x<x<2 \\ x^{2}-2 x & x \leq 0\end{cases}$
$f^{\prime}(x)= \begin{cases}(2(x-1) & x>2 \\ 2\left(1-x^{2}\right) & 0<x<2 \\ 2(x-1) & x<0\end{cases}$
$f^{\prime}(x)=0$ at $x=1$ and $f^{\prime}(x)$ does not exist at $x=0,2$. Thus these are the possible critical points.
$f(x)=\left|x^{2}-2 x\right|$

Extreme values basically mean maximum or minimum values, since $f(x)$ is differentiable function $f^{\prime}(-1)=0=f^{\prime}(3)$
$f^{\prime}(x)=3 x^{2}+2 a x+b$
$f^{\prime}(3)=27+6 a+b=0$
$f^{\prime}(-1)=3-2 a+b=0 \quad \Rightarrow \quad a=-3, b=-9, c \in R$

D Critical Points

All those points in the interior of an interval where $f^{\prime}(x)$ is either equal to zero or does not exist are called critical points.
Example:
Find the critical points of the function $f(x)=4 x^{3}-6 x^{2}-24 x+9$ if (i) $x \in[0,3]$ (ii) $x \in[-3,3]$
(iii) $x \in[-1,2]$.
Solution. $\quad f^{\prime}(x)=12\left(x^{2}-x-2\right)$
$\begin{array}{ll}f^{\prime}(x)=0 & =12(x-2) \\ (x+1) \\ \Rightarrow & x=-1 \text { or } 2\end{array}$

Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.
(i) if $x \in[0,3], x=2$ is the critical point.
(ii) if $x \in[-3,3]$, then we have two critical points $x=-1,2$.
(iii) If $x \in[-1,2]$, then no critical point as both $x=1$ and $x=2$ become boundary points.

Note: Critical points are always interior points of an interval.

D. Test for Maxima/ Minima

Upto now we have been able to identity exactly which points should be examined for finding the extreme values of a function. Let as now consider the various tests by which we can separate the critical points into points of local maxima or minima.

1. $\quad I^{\text {st }}$ derivative Test
(i)
If $f^{\prime}(x)$ changes sign from negative to positive while passing through $x=a$ from left to right then $x=a$ is a point of local maxima
(ii) If $f^{\prime}(x)$ changes sign from positive to negative while passing through $x=$ a from left to
right then $x=a$ is a point of local minima.
(iii) If $f^{\prime}(x)$ does not changes its sign about $x=a$ then $x=a$ is neither a point of maxima nor minima.
Note: This test is applicable only for continuous functions. If $f(x)$ is discontinuous at $x=a$, then use of $I^{\text {st }}$ fundamental theorem is advisable for investigating maxima/minima.
Example : \quad Find the points of maxima or minima of $f(x)=x^{2}(x-2)^{2}$.
Solution.
$f(x)=x^{2}(x-2)^{2}$
$f^{\prime}(x)=4 x(x-1)(x-2)$
$f^{\prime}(x)=0 \quad x=0,1,2$
examining the sign change of $f^{\prime}(x)$

Hence $x=1$ Minima is point Mat Maxima
Note : In case of continuous functions points of maxima and minima are alternate.
Example : Find the points of Maxima/Minima of $f(x)=x^{3}-12 x$ also draw the graph of this functions.

For tracing the graph let usfind maximum and minimum values of $f(x)$.

x	$f(x)$
2	-16
-2	+16

Solution. By graph of the function $f(x)=x^{3}-12 x$ we can easily see that minimum value of $f(x)$ is -16 and maximum value is 11 .
We can use $I^{\text {nd }}$ fundamental theorem. The possible points of maxima/minima are critical points and the boundary points.
for $\quad x \in[-1,3]$ and $f(x)=x^{3}-12 x$
$x=2$ is the only critical points.
Hence points of local maxima/minima are $x=-1,2$, 3 . Examining the value of $f(x)$ at these points we can find greatest and least values.

x	$f(x)$
-1	11
2	-16
3	-9

Minima $f(x)=-16 \& \operatorname{Maxima} f(x)=11$.
Example:
Show that $f(x)=\left(x^{3}-6 x^{2}+12 x-8\right)$ does not have any point of local maxima or minima.
Solution.

$$
\begin{aligned}
& f(x)=x^{3}-6 x^{2}+12 x-8 \\
& f^{\prime}(x)=3\left(x^{2}-4 x+4\right) \\
& f^{\prime}(x)=3(x-2)^{2} \quad \Rightarrow \quad x=2 \\
& f^{\prime}(x)=0 \quad \Rightarrow \quad
\end{aligned}
$$

Example : Let $f(x)=\left\{\begin{array}{ll}x^{3}+x^{2}-10 x & x<0 \\ 3 \sin x & x \geq 0\end{array}\right.$. Examine the behaviour of $f(x)$ at $x=0$.

Solution. $f(x)$ is continuous at $x=0$.

$f^{\prime}(x)= \begin{cases}3 x^{2}+2 x-10 & x<0 \\ 3 \cos x & x>0\end{cases}$
$f^{\prime}\left(0^{+}\right)=3$ and $f^{\prime}\left(0^{-}\right)=-10$ thus $f(x)$ is non-diff. at $x=0 \quad \Rightarrow \quad x=0$ is a critical point.
Also derivative changes sign from negative to positive. So $x=0$ is a point of local minima.
Example: $\quad \operatorname{Let} f(x)=x^{3}+3(a-7) x^{2}+3\left(a^{2}-9\right) x-1$. If $f(x)$ has positive point of maxima, then find possible value of 'a'.
Solution. $\quad f^{\prime}(x)=3\left[x^{2}+2(a-7) x+\left(a^{2}-9\right)\right]=0$
Let α, β be roots of $f^{\prime}(x)=0$ and let α be the smaller root. Examining sign change of $f^{\prime}(x)$.

Maxima occurs at smaller root α which has to be positive. This basically implies that both of roots $f^{\prime}(x)=0$ must be positive.

Applying location of roots
(ii)

from (i), (ii) and (iii)

$$
a \in(-\infty,-3)
$$

Self Practice Problems :

$$
\left(3, \frac{29}{7}\right)
$$

1. Let $f(x)=2 x^{3}-9 x^{2}+12 x+6$

Find the possible points of Maxima/Minima of $f(x)$ for $x \in R$.
Find the number of critical points of $f(x)$ for $x \in[0,2]$.
(iii) Discuss absoluble Maxima/Minima value of $f(x)$ for $x \in[0,2]$
(iv) Prove that for $x \in(1,3)$, the function does not has a Global maximum.
Ans. (i)
$x=1,2$
$1(x=1)$
$f(0)=6$ i
(iii)
$f(0)=6$ is
is the
lobal minimum, $f(1)=11$

Let $f(x)=\sin x(1+\cos x) ; x \in(0,2 \pi)$. Find th
critical points are points of Maxima/Minima.
Ans. 3 critical point $x=\frac{\pi}{3}, \pi, \frac{5 \pi}{3}$
Local maxima at $x=\frac{\pi}{3}$, Local minima at $x=\frac{5 \pi}{3}$.
3. Let $f(x)=\frac{x}{2}+\frac{2}{x}$. Find local maximum and local minimum value of $f(x)$. Can you explain this discrepancy of locally minimum value being greater than locally maximum value.
$\begin{array}{ll}\text { Ans. Local maxima at } x=-2 & f(-2)=-2 \\ & f(2)=2 .\end{array}$
4. Find the points of local Maxima or Minima of following functions
(i)
$f(x)=(x-1)^{3}(x+2)^{2}$
$f(x)=x^{3}+x^{2}+x+1$
(ii) $f(x)=\sin 2 x-x$
(iil) $f(x)=x^{3}+x^{2}+x+1$.

Ans. (i) Maxima at $x=-2$, Minima at $x=0$
(ii) Maxima at $\mathrm{x}=\mathrm{n} \pi+\frac{\pi}{6}$; Minima at $\mathrm{x}=\mathrm{n} \pi-\frac{\pi}{6}$
(iii) No point of local maxima or minima.
2. II ${ }^{\text {nd }}$ derivative Test

If $f(x)$ is continuous function in the neighbourhood of $x=0$ such that $f^{\prime}(x)=0$ and $f^{\prime \prime}(a)$ exists then
we can predict maxima or minima at $x=0$ by examining the sign of $f^{\prime \prime}(a)$
$\begin{array}{ll}\text { (i) } & \text { If } f^{\prime \prime}(a)>0 \text { then } x=a \text { is a point of local minima. } \\ \text { (ii) } & \text { If } f^{\prime \prime}(a)<0 \text { then } x=a \text { is a point of local maxima. } \\ \text { (iii) } & \text { If } f^{\prime \prime}(a)=0 \text { then second derivative test does not } g\end{array}$
(iii) If $f^{\prime \prime}(a)=0$ then second derivative test does not gives use conclusive results.

Example : Find the points of local maxima or minima for $f(x)=\sin 2 x-x, x \in(0, \pi)$.
Solution. $f(x)=\sin 2 x-x$
$f^{\prime}(x)=2 \cos 2 x-1$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com $f^{\prime \prime}(x)=-4 \sin 2 x$

$$
\begin{array}{lll}
f^{\prime \prime}\left(\frac{\pi}{6}\right)<0 & \Rightarrow & \text { Maxima at } x=\frac{\pi}{6} \\
f^{\prime \prime}\left(\frac{5 \pi}{6}\right)>0 & \Rightarrow & \text { Minima at } x=\frac{5 \pi}{6}
\end{array}
$$

3. $n^{\text {th }}$ derivative test

(i) $f^{n}(a)>0 \quad \Rightarrow \quad$ Minima

Neither Maxima nor Minima at $\mathrm{x}=\mathrm{a}$
(ii) $f^{n}(\mathrm{a})<0 \quad \Rightarrow \quad$ Maxima

Example: Find points of local maxima or minima of $f(x)=x^{5}-5 x^{2}+5 x^{3}-1$

$$
\begin{array}{ll}
& f^{\prime}(x)=x^{5}-5 x^{2}+5 x^{3}-1 \\
& f^{\prime}(x)=5 x^{2}(x-1)(x-3) \\
& f^{\prime}(x)=0 \\
& f^{\prime \prime}(x)=10 x\left(2 x^{2}-6 x+3\right) \\
\text { Now, } & f^{\prime \prime}(1)<0,1,3 \\
& f^{\prime \prime}(3)>0 \quad \Rightarrow \quad \text { Maxima at } x=1 \\
\text { and, } & f^{\prime \prime}(0)=0 \quad \text { Minima at } x=3 \\
\text { so, } & f^{\prime \prime \prime}(x)=30\left(2 x^{\prime}-4 x+1\right) \\
& f^{\prime \prime \prime}(0)=30 \quad \text { Neither maxima nor minima at } x=0
\end{array}
$$

Note : It was very convenient to check maxima/minima at first step by examining the sign change of $f^{\prime}(x)$ no sign change of $f^{\prime}(x)$ at $x=0$ $f^{\prime}(x)=5 x^{2}(x-1)(x-3)$

E. Application of Maxima/ mi/Minima to Problems

Example : Find two positive numbers x and y such that $x+y=60$ and $x y^{3}$ is maximum

So $\quad x=15$ and $y=45$.
Rectangles are inscribe inside a semi-circle of radius r. Find the rectangle with maximum area.
Let sides of rectangle be x and y.
$\Rightarrow \quad A=x y$.
Here x and y are not independent variables and are related by pythogoreas theorem with r.

$$
\begin{aligned}
& \frac{x^{2}}{4}+y^{2}=r^{2} \Rightarrow y=\sqrt{r^{2}-\frac{x^{2}}{4}} \\
& \Rightarrow \quad A(x)=x \sqrt{r^{2}-\frac{x^{2}}{4}} \\
& \Rightarrow \quad A(x)=\sqrt{x^{2} r^{2}-\frac{x^{4}}{4}} \\
& \text { Let } \quad f(x)=r^{2} x^{2}-\frac{x^{4}}{4} ; \quad x \in(0, r)
\end{aligned}
$$

$A(x)$ is maximum when $f(x)$ is maximum
Hence $f^{\prime}(x)=x\left(2 r^{2}-x^{2}\right)=0$
$\Rightarrow \quad x=r \sqrt{2}$
also $\quad f^{\prime}\left(r \sqrt{2^{+}}\right)<0 \quad$ and $\quad f^{\prime}\left(r \sqrt{2^{-}}\right)>0$
confirming at $f(x)$ is maximum when $x=r \sqrt{2} \& y=\frac{r}{\sqrt{2}}$.
Aliter Let use choose coordinate system with origin as centre of circle

$$
\begin{array}{ll}
\Rightarrow & A=2(r \cos \theta)(r \sin \theta) \\
\Rightarrow & A=r^{2} \sin 2 \theta \quad \theta \in\left(0, \frac{\pi}{2}\right)
\end{array}
$$

Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Clearly A is maximum when $\theta=\frac{\pi}{4}$

$$
\Rightarrow \quad x=r \sqrt{2} \quad \text { and } \quad y=\frac{r}{\sqrt{2}}
$$

Example: A sheet of area $40 \mathrm{~m}^{2}$ in used to make an open tank with square base. Find the dimensions of the base such that volume of this tank is maximum.
$\underset{\sim}{0}$ Solution. Let length of base be xm and height be ym.

$$
v=x^{2} y
$$

again x and y are related to surface area of this tank which is equal to $40 \mathrm{~m}^{2}$.
$\Rightarrow \quad x^{2}+4 x y=40$

$$
y=\frac{40-x^{2}}{4 x} \quad x \in(0, \sqrt{40}) \quad \Rightarrow \quad V(x)=x^{2}\left(\frac{40-x^{2}}{4 x}\right)
$$

maximizing volume,

$$
V(x)=\frac{\left(40 x-x^{3}\right)}{4}
$$

and

$$
V^{\prime}(x)=\frac{\left(40-3 x^{2}\right)}{4}=0 \quad \Rightarrow \quad x=\sqrt{\frac{40}{3}} m
$$

$$
\begin{aligned}
& \mathrm{V}^{\prime \prime}(\mathrm{x})=-\frac{3 \mathrm{x}}{2} \quad \Rightarrow \quad \mathrm{~V}^{\prime \prime}\left(\frac{\sqrt{40}}{3}\right) \\
& \text { ning that volume is maximum at } \mathrm{x}=\frac{\sqrt{40}}{3} \mathrm{~m} .
\end{aligned}
$$

Example : If a right circular cylinder is inscribed in a given cone. Find the dimensions of the cylinder such that its volume is maximum.
Solution. Let x be the radius of cylinder and y be its height $\mathrm{V}=\pi \mathrm{x}^{2} \mathrm{y}$

$$
v^{\prime}(x)=\frac{\pi h}{r} x(2 r-3 x)
$$

$$
v^{\prime}(x)=0 \quad \text { and } \quad v^{\prime}\left(\frac{2 r}{3}\right)>0
$$

1. Volume of a cuboid $=\ell$ bh.
2. Volume of cube $=a^{3}$
3. Volume of a cone $=\frac{1}{3} \pi r^{2} h$.
4. Curved surface area of cone $=\pi r \ell(\ell=$ slant height $)$
5. Curved surface of a cylinder $=2 \pi$ rh.
6. Volume of a sphere $=\frac{4}{3} \pi r^{3}$.
7. Area of a circular sector $=\frac{1}{2} r^{2} \theta$, when θ is in radians.
8. Volume of a prism $=$ (area of the base) \times (height).
9. Lateral surface of a prism = (perimeter of the base) \times (height).
10. Total surface of a prism $=$ (lateral surface) +2 (area of the base)
(Note that lateral surfaces of a prism are all rectangle).
11. Volume of a pyramid $=\frac{1}{3}$ (area of the base) \times (height).

Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.
16. Curved surface of a pyramid $=\frac{1}{2}$ (perimeter of the base) \times (slant height).
(Note that slant surfaces of a pyramid are triangles).

Note: Above concept is very useful because such problems become very lengthily by making perimeter as a function of position of P and then minimizing it.
Self Practice Problems :

1. Find the two positive numbers x and y whose sum is 35 and the product $x^{2} y^{5}$ maximum.

Ans. $\quad x=25, y=10$.
2. A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the slops to form a box. What should be the side of the square to be cut off such that Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
volume of the box is maximum possible.
Ans. 3 cm
3. Prove that a fight circular cylinder of given surface area and maximum volume is such that the height is equal to the diameter of the base.
6. Two towns A and B are situated on the same side of a straight road at distances a and b respectively perpendiculars drawn from A and B meet the road at point C and d respectively. The distance between C and D is C. A hospital is to be built at a point P on the road such that the distance APB is minimum. Find
position of P. Ans. P is at distance of $\frac{a c}{a+b}$ from c.
F. Points of Inflection

For continuous function $f(x)$, If $f^{\prime \prime}\left(x_{0}\right)=0$ or doesnot exist at points where $f^{\prime}\left(x_{0}\right)$ exists and if $f^{\prime \prime}(x)$ changes sign when passing through $x=x_{0}$ then x_{0} is called a point of inflection. At the point of inflection, the curve changes its concavity i.e.
(i) If $f^{\prime \prime}(x)<0, x \in(a, b)$ then the curve $y=f(x)$ is convex in (a, b)

(ii) If $f^{\prime \prime}(x)>0, x \in(a, b)$ then the curve $y=f(x)$ is concave in (a, b)

Example : Find the points of inflection of the function $f(x)=\sin ^{2} x \quad x \in[0,2 \pi]$
$\begin{array}{ll}\text { Solution. } & f(x)=\sin ^{2} x \\ & f^{\prime}(x)=\sin 2 x\end{array}$
$f^{\prime}(x)=\sin 2 x$
$f^{\prime \prime}(x)=2 \cos 2 x$
$\prime \prime(0)=0 \quad \Rightarrow \quad x=\frac{\pi}{4}, \frac{3 \pi}{4}$
both these points are inflection points as sing of $f^{\prime \prime}(x)$ change but $f^{\prime}(x)$ does not changes about these points.

Example : Find the inflection point of $f(x)^{2}=3 x^{4}-4 x^{3}$. Also draw the graph of $f(x)$ giving due importance to maxima, minima and concavity.
Solution. $\quad f(x)=3 x^{4}-4 x^{3}$

$$
\begin{array}{ll}
f^{\prime}(x)=12 x^{3}-12 x^{2} \\
f^{\prime}(x)=12 x^{2}(x-1) & \\
f^{\prime}(x)=0 \quad \Rightarrow \quad x=0,1
\end{array}
$$

examining sign change of $f^{\prime}(x)$
thus $x=1$ is a point of local minima
$f^{\prime \prime}(x)=12\left(3 x^{2}-2 x\right)$
$f^{\prime \prime}(x)=12 x(3 x-2)$
$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad x=0, \frac{2}{3}$.
Again examining sign of $f^{\prime \prime}(x)$
thus $x=0, \frac{2}{3}$ are the inflection points

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone :09039037779, 09893058881.
Hence the graph of $f(x)$ is

TANGENT \& NORMAL

THINGS TO REMEMBER :

The value of the derivative at $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{\mathrm{l}}\right)$ gives the slope of the tangent to the curve at P. Symbolically
$\left.\mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)=\frac{d y}{d x}\right]_{x_{1} y_{1}}=$ Slope of tangent at
$\mathrm{P}\left(\mathrm{x}_{1} \mathrm{y}_{1}\right)=\mathrm{m}$ (say).
II Equation of tangent at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is ;
$\left.y-y_{1}=\frac{d y}{d x}\right]_{x_{1} y_{1}}\left(x-x_{1}\right)$.
III Equation of normal at $\left(x_{1}, y_{1}\right)$ is ;

NOTE :

$$
\left.y-y_{1}=-\frac{1}{\frac{d y}{d x}}\right]_{x_{1} y_{1}}\left(x-x_{1}\right)
$$

1. The point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{\mathrm{y}}\right)$ will satisfy the equation of the curve $\&$ the equation of tangent $\&$ normal line.
2. If the tangent at any point P on the curve is parallel to the axis of x then $d y / d x=0$ at the point P.
3. If the tangent at any point on the curve is parallel to the axis of y, then $d y / d x=\infty$ or $d x / d y=0$.
4. If the tangent at any point on the curve is equally inclined to both the axes then $\mathrm{dy} / \mathrm{dx}= \pm 1$.
5. If the tangent at any point makes equal intercept on the coordinate axes then $\mathrm{dy} / \mathrm{dx}=-1$.
6. Tangent to a curve at the point $P\left(x_{1}, y_{1}\right)$ can be drawn even through dy/dx at P does not exist.
7. e.g. $x=0$ is a tangent to $y=x^{2 / 3}$ at $(0,0)$.
8. If a curve passing through the origin be given by a rational integral algebraic equation, the equation of the tangent (or tangents) at the origin is obtained by equating to zero the terms of the lowest degree in the equation. e.g. If the equation of a curve be $x^{2}-y^{2}+x^{3}+3 x^{2} y-y^{3}=0$, the tangents at the origin are given by $x^{2}-y^{2}=0$ i.e. $x+y=0$ and $x-y=0$.
IV Angle of intersection between two curves is defined as the angle between the 2 tangents drawn to the 2 curves at their point of intersection. If the angle between two curves is 90° every where then they are called ORTHOGONAL curves.
$\begin{array}{ll}\text { (a) Length of the tangent }(P T)=\frac{y_{1} \sqrt{1+\left[\mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)\right]^{2}}}{\mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)} & \text { (b) Length of Subtangent }(\mathrm{MT})=\frac{\mathrm{y}_{1}}{\mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)} \\ \begin{array}{ll}\text { (c) Length of Normal }(\mathrm{PN})=\mathrm{y}_{1} \sqrt{1+\left[\mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)\right]^{2}} & \text { (d) Length of Subnormal }(\mathrm{MN})=\mathrm{y}_{1} \mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)\end{array}\end{array}$
Differentials:
The differential of a function is equal to its derivative multiplied by the differential of the independent variable. Thus if, $y=\tan x$ then $d y=\sec ^{2} x d x$.
In general $d y=f^{\prime}(x) d x$.
Note that: $d(c)=0$ where ' c ' is a constant.
$d(u+v-w)=d u+d v-d w \quad d(u v)=u d v+v d u$
Note :1 with the dependent variable ' y 'i.e. $\Delta \mathrm{y} \neq \mathrm{dy}$.
9. The relation $d y=f^{\prime}(x) d x$ can be written as $\frac{d y}{d x}=f^{\prime}(x)$; thus the quotient of the differentials of ' y ' and ' x ' is equal to the derivative of 'y' w.r.t. 'x': RCISERI
Q. 1 Find the equations of the tangents drawn to the curve $y^{2}-2 x^{3}-4 y+8=0$ from the point $(1,2)$.
Q. 2 Find the point of intersection of the tangents drawn to the curve $x^{2} y=1-y$ at the points where it is intersected by the curve $\mathrm{xy}=1-\mathrm{y}$.
Q. 3 Find all the lines that pass through the point $(1,1)$ and are tangent to the curve represented parametrically as
Q. 4 In the curve $\mathrm{x}^{\mathrm{a}} \mathrm{y}^{\mathrm{b}}=\mathrm{K}^{\mathrm{a}+\mathrm{b}}$, prove that the portion of the tangent intercepted between the coordinate axes is
Q. 5 A straight line is drawn through the origin and parallel to the tangent to a curve
$\frac{x+\sqrt{a^{2}-y^{2}}}{a}=\ln \left(\frac{a+\sqrt{a^{2}-y^{2}}}{y}\right)$ at an arbitary point M. Show that the locus of the point P of intersection of the straight line through the origin \& the straight line parallel to the x -axis \& passing throughthe point M is $x^{2}+y^{2}=a^{2}$.
Q. 6 Prove that the segment of the tangent to the curve $y=\frac{a}{2} \ln \frac{a+\sqrt{a^{2}-x^{2}}}{}-\sqrt{a^{2}-x^{2}}$ contained between Successful People Replace the words like; "wish", "try" \& ${ }^{2}$ shoald ${ }^{\text {shaith-"IXVVill". Ineffective People don't. }}$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com the y-axis \& the point of tangency has a constant length.
Q. 7 A function is defined parametrically by the equations
E $\quad f(t)=x=\left[\begin{array}{lll}2 t+t^{2} \sin \frac{1}{t} & \text { if } t \neq 0 \\ 0 & \text { if } t=0\end{array} \quad\right.$ and $g(t)=y=\left[\begin{array}{ll}\frac{1}{t} \sin t^{2} & \text { if } t \neq 0 \\ 0 & \text { if } t=0\end{array}\right.$

Find the equation of the tangent and normal at the point for $t=0$ if exist.
Q. 8 Find all the tangents to the curve $\mathrm{y}=\cos (\mathrm{x}+\mathrm{y}),-2 \pi \leq \mathrm{x} \leq 2 \pi$, that are parallel to the line $\mathrm{x}+2 \mathrm{y}=0$.
(a) Find the value of n so that the subnormal at any point on the curve $x y^{n}=a^{n+1}$ may be constant.
(b) Show that in the curve $y=a \cdot \ln \left(x^{2}-a^{2}\right)$, sum of the length of tangent $\&$ subtangent varies as the product of the coordinates of the point of contact.
Q. 10 Prove that the segment of the normal to the curve $x=2 a \sin t+a \sin t \cos ^{2} t ; y=-a \cos ^{3} t$ contained between the co-ordinate axes is equal to 2 a .
Q. 11 Show that the normals to the curve $x=a(\cos t+t \sin t) ; y=a(\sin t-t \cos t)$ are tangent lines to the circle $x^{2}+y^{2}=a^{2}$.
Q. 12 The chord of the parabola $y=-a^{2} x^{2}+5 a x-4$ touches the curve $y=\frac{1}{1-x}$ at the point $x=2$ and is bisected by that point. Find 'a'.
Q. 13 If the tangent at the point $\left(x_{1}, y_{1}\right)$ to the curve $x^{3}+y^{3}=a^{3}(a \neq 0)$ meets the curve again in $\left(x_{2}, y_{2}\right)$ then show that $\frac{x_{2}}{x_{1}}+\frac{y_{2}}{y_{1}}=-1$.
Q. 14 Determine a differentiable function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ which satisfies $\mathrm{f}^{\prime}(\mathrm{x})=[\mathrm{f}(\mathrm{x})]^{2}$ and $\mathrm{f}(0)=-\frac{1}{2}$. Find also the
Q. 15 If $p_{1} \& p_{2}$ be the lengths of the perpendiculars from the origin on the tangent \& normal respectively at any point (x, y) on a curve, then show that $\left.\begin{array}{l}p_{1}=|x \sin \Psi-y \cos \Psi| \\ p_{2}=|x \cos \Psi+y \sin \Psi|\end{array}\right]$ where $\tan \Psi=\frac{d y}{d x}$. If in the above case, the curve be $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ then show that: $4 p_{1}{ }^{2}+p_{2}{ }^{2}=a^{2}$.
Q. 16 The curve $\mathrm{y}=a \mathrm{x}^{3}+b x^{2}+c x+5$, touches the x -axis at $\mathrm{P}^{2}(-2,0) \&$ cuts the y -axis at a point Q where its gradient is 3 . Find $\mathrm{a}, \mathrm{b}, \mathrm{c}$.
Q. 17 The tangent at a variable point P of the curve $y=x^{2}-x^{3}$ meets it again at Q. Show that the locus of the
Q. 18 Show that the distance from the origin of the normal at any point of the curve $x=a e^{\theta}\left(\sin \frac{\theta}{2}+2 \cos \frac{\theta}{2}\right) \& y=a e^{\theta}\left(\cos \frac{\theta}{2}-2 \sin \frac{\theta}{2}\right)$ is twice the distance of the tangent at the point from the origin.
Q. 19 Show that the condition that the curves $x^{2 / 3}+y^{2 / 3}=c^{2 / 3} \&\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=\mathbf{1}$ may touch if $c=a+b$.
Q. 20 The graph of a certain function f contains the point $(0,2)$ and has the property that for each number ' p ' the line tangent to $\mathrm{y}=f(\mathrm{x})$ at $(\mathrm{p}, f(\mathrm{p}))$ intersect the x -axis at $\mathrm{p}+2$. Find $f(\mathrm{x})$.
Q. 21 A curve is given by the equations $\mathrm{x}=\mathrm{at}{ }^{2} \& \mathrm{y}=\mathrm{at} \mathrm{t}^{3}$. A variable pair of perpendicular lines through the origin ' O ' meet the curve at $\mathrm{P} \& \mathrm{Q}$. Show that the locus of the point of intersection of the tangents at $\mathrm{P} \& \mathrm{Q}$ is $4 \mathrm{y}^{2}$ $=3 a x-a^{2}$.
Q.22(a) Show that the curves $\frac{x^{2}}{a^{2}+K_{1}}+\frac{y^{2}}{b^{2}+K_{1}}=1 \& \frac{x^{2}}{a^{2}+K_{2}}+\frac{y^{2}}{b^{2}+K_{2}}=1$ intersect orthogonally.
(b) Find the condition that the curves $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1 \& \frac{x^{2}}{a^{\prime}}+\frac{y^{2}}{b^{\prime}}=1$ may cut orthogonally.
Q. 23 Show that the angle between the tangent at any point 'A' of the curve $\ln \left(x^{2}+y^{2}\right)=C \tan ^{-1} \frac{y}{x}$ and the line joining A to the origin is independent of the position of A on the curve.
Q. 24 For the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$, show that $|z|^{2}+3 p^{2}=a^{2}$ where $z=x+i y \& p$ is the length of the perpendicular from $(0,0)$ to the tangent at (x, y) on the curve.
Q. 25 A and B are points of the parabola $\mathrm{y}=\mathrm{x}^{2}$. The tangents at A and B meet at C. The median of the triangle ABC from C has length ' m ' units. Find the area of the triangle in terms of ' m '.

EXERCISE-2

Q. 3 A particle moves along the curve $6 y=x^{3}+2$. Find the points on the curve at which the y coordinate is changing 8 times as fast as the x coordinate.
Q. 4 An inverted cone has a depth of $10 \mathrm{~cm} \&$ a base of radius 5 cm . Water is poured into it at the rate of $1.5 \mathrm{~cm}^{3} / \mathrm{min}$. Find the rate at which level of water in the cone is rising, when the depth of water is 4 cm .
A water tank has the shape of a right circular cone with its vertex down. Its altitude is 10 cm and the radius of the base is 15 cm . Water leaks out of the bottom at a constant rate of $1 \mathrm{cu} . \mathrm{cm} / \mathrm{sec}$. Water is poured into the tank at a constant rate of $\mathrm{Ccu} . \mathrm{cm} / \mathrm{sec}$. Compute C so that the water level will be rising at the rate of $4 \mathrm{~cm} /$ sec at the instant when the water is 2 cm deep.
Q. 6 Sand is pouring from a pipe at the rate of $12 \mathrm{cc} / \mathrm{sec}$. The falling sand forms a cone on the ground in such a cone increasing when the height is 4 cm .
Q. 7 An open Can of oil is accidently dropped into a lake; assume the oil spreads over the surface as a circular disc of uniform thickness whose radius increases steadily at the rate of $10 \mathrm{~cm} / \mathrm{sec}$. At the moment when the radius is 1 meter, the thickness of the oil slick is decreasing at the rate of $4 \mathrm{~mm} / \mathrm{sec}$, how fast is it decreasing when the radius is 2 meters.
Q. $8 \quad$ When the radius is 2 meters. through a tiny hole at the vertex at the bottom. When the slant height of the water is 4 cm , find the rate of decrease of the slant height of the water.
Q. 9 An air force plane is ascending vertically at the rate of $100 \mathrm{~km} / \mathrm{h}$. If the radius of the earth is R Km , how fast the area of the earth, visible from the plane increasing at 3 min after it started ascending. Take visible area A $=\frac{2 \pi R^{2} h}{R+h}$ Where his the height of the plane in kms above the earth.
Q. 10 A variable $\triangle \mathrm{ABC}$ in the xy plane has its orthocentre at vertex ' B ', a fixed vertex ' A ' at the origin and the increasing when $\mathrm{t}=\frac{7}{2} \mathrm{sec}$.
Q. 11 A circular ink blot grows at the rate of $2 \mathrm{~cm}^{2}$ per second. Find the rate at which the radius is increasing after $2 \frac{6}{11}$ seconds. Use $\pi=\frac{22}{7}$.
Q. 12 Water is flowing out at the rate of $6 \mathrm{~m}^{3} / \mathrm{min}$ from a reservoir shaped like a hemispherical bowl of radius $\mathrm{R}=$ 13 m . The volume of water in the hemispherical bowl is given by $V=\frac{\pi}{3} \cdot y^{2}(3 R-y)$ when the water is y meter deep. Find
(a) At what rate is the water level changing when the water is 8 m deep.
(a) At what rate is the water level changing when the water is 8 m deep.
(b) At what rate is the radius of the water surface changing when the water is 8 m deep.
Q. 13 If in a triangle $A B C$, the side ' c ' and the angle ' C ' remain constant, while the remaining elements are changed slightly, show that $\frac{d a}{\cos A}+\frac{d b}{\cos B}=0$.
(a) Find the radius of the sphere as a function of time t.
(b) At what time t will the volume of the sphere be 27 times its volume at $t=0$.
Q. 15 Use differentials to a approximate the values of; (a) $\sqrt{25.2}$ and (b) $\sqrt[3]{26}$.

EXERCISE-3

Q. $1 \quad$ Find the acute angles between the curves $y=\left|x^{2}-1\right|$ and $y=\left|x^{2}-3\right|$ at their point of intersection.
Q. 2 Find the equation of the straight line which is tangent at one point and normal at another point ofthe curve, $\mathrm{x}=3 \mathrm{t}^{2}, \mathrm{y}=2 \mathrm{t}^{3}$.
[REE 2000 (Mains) 5 out of 100]
Q. 3 If the normal to the curve, $\mathrm{y}=\mathrm{f}(\mathrm{x})$ at the point $(3,4)$ makes an angle $\frac{3 \pi}{4}$ with the positive x -axis. Then f^{\prime}
(3) $=$
(A) -1
(B) $-\frac{3}{4}$
(C) $\frac{4}{3}$
(D) 1
Q. 4 The point(s) on the curve $y^{3}+3 x^{2}=12 y$ where the tangent is vertical, is(are) [JEE 2002 (Scr.), 3]
(A) $\left(\pm \frac{4}{\sqrt{3}},-2\right)$
(B) $\left(\pm \sqrt{\frac{11}{3}}, 1\right)$
(C) $(0,0)$
(D) $\left(\pm \frac{4}{\sqrt{3}}, 2\right)$
Q. $5 \quad$ Tangent to the curve $y=x^{2}+6$ at a point $P(1,7)$ touches the circle $x^{2}+y^{2}+16 x+12 y+c=0$ at a point Q. Then the coordinates of Q are
(A) $(-6,-11)$
(B) $(-9,-13)$ 른 (C) $-10-15)$
(D) $(-6,-7)$

PART - (A) Only one correct option

1. Water is poured into an inverted conical vessel of which the radius of the base is 2 m and height 4 m , at the rate of 77 litre/minute. The rate at which the water level is rising at the instant when the depth is

(A) $10 \mathrm{~cm} / \mathrm{min}$
(B) $20 \mathrm{~cm} / \mathrm{min}$
(C) $40 \mathrm{~cm} / \mathrm{min}$
(D) none

Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
2. The area of the triangle formed by the positive x-axis and the normal and the tangent to the circle $x^{2}+y^{2}=4$ at $(1, \sqrt{3})$ is
(A) $3 \sqrt{3}$ sq. units
(B) $2 \sqrt{3}$ sq. units
(C) $4 \sqrt{3}$ sq. units
(D) $\sqrt{3}$ sq. units
3. The line which is parallel to x-axis and crosses the curve $y=\sqrt{x}$ at an angle of $\frac{\pi}{4}$ is
(A) $y=-1 / 2$
(B) $x=1 / 2$
(C) $y=1 / 4$
(D) $y=1 / 2$
4. If at any point on a curve the subtangent and subnormal are equal, then the tangent is equal to
(A) oridinate
(B) $\sqrt{2}$ ordinate
(C) $\sqrt{2 \text { (ordinate) }}$
(D) none of these
5. If curve $y=1-a x^{2}$ and $y=x^{2}$ intersect orthogonally then the value of a is
(A) $1 / 2$
(B) $1 / 3$
(C) 2
(D) 3
6. For a curve $\frac{(\text { length of normal })^{2}}{(\text { length of tangent })^{2}}$ is equal to
(B) (subtangent) / (subnormal)
(A) (subnormal) / (subtangent)
(D) none of these
(C) subnormal/(subtangent) ${ }^{2}$
7.

If the tangent at each point of the curve $y=\frac{2}{3} x^{3}-2 a x^{2}+2 x+5$ makes an acute angle with the positive direction of x-axis, then
(A) $a \geq 1$
(B) $-1 \leq \mathrm{a} \leq 1$
(C) $a \leq-1$
(D) none of these
8.

Equation of normal drawn to the graph of the function defined as $f(x)=\frac{\sin x^{2}}{x}, x \neq 0$ and $f(0)=0$ at the origin
is:
(A) $x+y=0$
(B) $x-y=0$
(C) $y=0$
(D) $x=0$
9. All points on the curve $y^{2}=4 a\left(x+a \sin \frac{x}{a}\right)$ at which the tangents are parallel to the axis of x, lie on a
(A) circle
(B) parabola
(C) line
(D) none of these
10. The point(s) of intersection of the tangents drawn to the curve $x^{2} y=1-y$ at the points where it is intersected by the curve $x y=1-y$ is/are given by:
(A) $(0,-1)$
(B) $(0,1)$
(C) $(1,1)$
(D) none of these
11. The ordinate of $y=(a / 2)\left(e^{x a}+e^{-x / a}\right)$ is the geometric mean of the length of the normal and the quantity:
(A) $a / 2$
(B) a
(C) e
(D) none of these
12. The curve
(B) $\mathrm{p}=-3$
(C) no volual for:
(D) $p= \pm 3$
13. If the area of the triangle included between the axes and any tangent to the curve $x^{n} y=a^{n}$ is constant, then n is equal to
(A) 1
(B) 2
(C) $3 / 2$
(D) $1 / 2$
14. A curve with equation of the form $y=a x^{4}+b x^{3}+c x+d$ has zero gradient at the point $(0,1)$ and also touches the x-axis at the point $(-1,0)$ then the values of x for which the curve has a negative gradient are:
(A) $x>-1$
(B) $x<1$
(C) $x<-1$
(D) $-1 \leq x \leq 1$
15. If the tangent at P of the curve $y^{2}=x^{3}$ intersects the curve again at Q and the straight lines $O P, O Q$ make angles α, β with the x-axis, where ' O ' is the origin, $\operatorname{then} \tan \alpha / \tan \beta$ has the value equal to:
(A) -1
(B) -2
(C) 2
(D) $\sqrt{2}$

PART - (B) One or more than one correct options

16. Consider the curve $f(x)=x^{1 / 3}$, then
(B) the equation of normal at $(0,0)$ is $y=0$ (C) normal to the curve does not exist at (0, 0) \quad (D) $f(x)$ and its inverse meet at exactly 3 points.
17. The equation of normal to the curve $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2(n \in N)$ at the point with abscissa equal to 'a' can be:
(A) $a x+b y=a^{2}-b^{2}$
(B) $a x+b y=a^{2}+b^{2}$
(C) $a x-b y=a^{2}-b^{2}$
(D) $b x-a y=a^{2}-b^{2}$
18. If the line, $a x+b y+c=0$ is a normal to the curve $x y=2$, then:
(A) a <0, b >0
(B) $a>0, b<0$
(C) $a>0, b>0$
(D) a <0, b <0
19. In the curve $x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$, at point $(2,-1)$
(B) slope of tangent $=6 / 7$
(A) length of subtangent is $7 / 6$.
(D) none of these
20. If $y=f(x)$ be the equation of a parabola which is touched by the line $y=x$ at the point where $x=1$. Then
(A) $f^{\prime}(1)=1$
(B) $f^{\prime}(0)=f^{\prime}(1)$
(C) $2 f(0)=1-f^{\prime}(0)$
(D) $f(0)+f^{\prime}(0)+f^{\prime \prime}(0)=1$
21. If the tangent to the curve $2 y^{3}=a x^{2}+x^{3}$ at the point (a, a) cuts off intercepts α, β on co-ordinate axes, where $\alpha^{2}+\beta^{2}=61$, then the value of ' a ' is equal to:
(A) 20
(B) 25
(C) 30
(D) -30
22. The curves $a x^{2}+b y^{2}=1$ and $A x^{2}+B y^{2}=1$ intersect orthogonally, then
(A) $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~A}}=\frac{1}{\mathrm{~b}}+\frac{1}{B}$
(B) $\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~A}}=\frac{1}{\mathrm{~b}}-\frac{1}{\mathrm{~B}}$
(C) $\frac{1}{a}+\frac{1}{b}=\frac{1}{B}-\frac{1}{A}$
(D) $\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~b}}=\frac{1}{\mathrm{~A}}-\frac{1}{\mathrm{~B}}$
23. Find the parameters a, b, c if the curve $y=a x^{2}+b x+c$ is to pass through the point $(1,2)$ and is to be tangent to the line $y=x$ at the origin.
24. If the tangent at $(1,1)$ on $y^{2}=x(2-x)^{2}$ meets the curve again at P, then find coordinates of P
25. If the relation between subnormal $S N$ and subtangent $S T$ at any point S on the curve by ${ }^{2}=(x+a)^{3}$ is
$p(S N)=q(S T)^{2}$, then find value of $\frac{p}{q}$ in terms of b and a.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
4. In the curve $x=a\left(\cos t+\log \tan \frac{1}{2} t\right), y=a \sin t$, show that the portion of the tangent between the point 5 of contact and the x-axis is of constant length.
6. The length x of rectangle is decreasing at a rate of $3 \mathrm{~cm} / \mathrm{min}$ and the width y is increasing at the rate of 2
$\mathrm{~cm} / \mathrm{min}$. when $x=10 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$, find the rates of changes of (i) the perimeter, and (ii) the area of the

A particle moves along the curve $6 y=x^{3}+2$. Find the points on the curve at which the y coordinate is changing 8 times as fast as the x coordinate.
9. Show that the normal to any point of the curve $x=a(\cos t+t \sin t), y=a(\sin t-t \cos t)$ is at a constant distance from the origin.
10. Show that the condition, that the curves $x^{2 / 3}+y^{2 / 3}=c^{2 / 3}$ and $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ may touch,
11. Find the equation of axes of the conic $5 x^{2}+4 x y+2 y^{2}=1$.
12. Find the abscissa of the point on the curve, $x y=(c+x)^{2}$ the normal at which cuts off numerically equal intercepts from the axes of co-ordinates.
13. In the curve $x^{a} y^{b}=K^{a+b}$, prove that the portion of the tangent intercepted between the coordinate axes is divided at its point of contact into segments which are in a constant ratio. (All the constants being positive).
14. The tangent to curve $y=x-x^{3}$ at point P meets the curve again at Q. Prove that one point of trisection of PQ lies on y-axis. Find locus of other point of trisection
15. A straight line is drawn through the origin and parallel to the tangent to a curve
$\frac{x+\sqrt{a^{2}-y^{2}}}{a}=\ln \left(\frac{a+\sqrt{a^{2}-y^{2}}}{y}\right)$
of the straight line \& the straight line parallel to the x-axis \& passing through the point M is $x^{2}+y^{2}=a^{2}$.
Find the possible values of a such that the inequality $3-x^{2}>|x-a|$ has atleast one negative solution.
Consider the family of circles $x^{2}+y^{2}=r^{2}, 2<r<5$. In the first quadrant, the common tangents to a circle of this family and the ellipse $4 x^{2}+25 y^{2}=100$ meets the co-ordinate axes at A and B, then find the equation of the locus of the mid-point of $A B$.
[IIT-1999]
18. Let T, T, be two tangents drawn from $(-2,0)$ onto the circle $C: x^{2}+y^{2}=1$. Determine the circles touching C and having $\mathrm{T}_{1}, \mathrm{~T}_{2}$ as their pair of tangents. Further; find the equations of all possible common tangents to these circles, when taken two at a time.
[IIT - 1999]
An inverted cone of height H and radius R is pointed at bottom. It is filled with a volatile liquid completely. If the rate of evaporation is directly proportional to the surface area of the liquid in contact with air (constant of proportionality $\mathrm{k}>0$). Find the time in which whole liquid evaporates.
[IIT - 2003, 4]
20. If $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\left(x_{1}-x_{2}\right)^{2}$, for all $x_{1}, x_{2} \in$ R. Find the equation of tengent to the curve $y=f(x)$ at the point $(1,2)$.

DEFINITIONS :

1. A function $f(x)$ is called an Increasing Function at a point $x=a$ if in a sufficiently small neighbourhood around $x=$ a we have $\left.\begin{array}{l}f(a+h)>f(a) \text { and } \\ f(a-h)<f(a)\end{array}\right\}$ increasing; Similarly decreasing if $\left.\begin{array}{rl}f(a+h) & <\mathrm{f}(\mathrm{a}) \text { and } \\ \mathrm{f}(\mathrm{a}-\mathrm{h}) & >\mathrm{f}(\mathrm{a})\end{array}\right\}$ decreasing.
A differentiable function is called increasing in an interval (a, b) if it is increasing at every point within the interval (but not necessarily at the end points). A function decreasing in an interval
2. (a, b) is similarly defined.
3. A function which in a given interval is increasing or decreasing is called "Monotonic" in that interval.
4. Tests for increasing and decreasing of a function at a point :

If the derivative $f^{\prime}(x)$ is positive at a point $x=a$, then the function $f(x)$ at this point is increasing. If it is negative, then the function is decreasing. Even if $\mathrm{f}^{\prime}(\mathrm{a})$ is not defined, f can still be increasing or decreasing.

Note: If $f^{\prime}(a)=0$, then for $x=$ a the function may be still increasing or it may be decreasing as shown. It has to be identified by a seperate rule. e.g. $f(x)=x^{3}$ is increasing at every point.
Note that, $\mathbf{d y} / \mathbf{d x}=\mathbf{3} \mathbf{x}^{2}$.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

5. Tests for Increasing \& Decreasing of a function in an interval :

Sufficiency Test : If the derivative function $f^{\prime}(x)$ in an interval (a, b) is every where positive, then the function $f(x)$ in this interval is Increasing ;
If $f^{\prime}(x)$ is every where negative, then $f(x)$ is Decreasing.
General Note :
(1) If a function is invertible it has to be either increasing or decreasing.
(2) If a function is continuous the intervals in which it rises and falls may be separated by points at which its derivative fails to exist.
(3) If f is increasing in $[a, b]$ and is continuous then $f(b)$ is the greatest and $f(c)$ is the least value of f in $[a, b]$.

Similarly if f is decreasing in $[a, b]$ then $f(a)$ is the greatest value and $f(b)$ is the least value.
(a) ROLLE'S THEOREM :

Let $\mathrm{f}(\mathrm{x})$ be a function of x subject to the following conditions :
(i) $f(x)$ is a continuous function of x in the closed interval of $a \leq x \leq b$.
(ii) $\mathrm{f}^{\prime}(\mathrm{x})$ exists for every point in the open interval $\mathrm{a}<\mathrm{x}<\mathrm{b}$.
(iii) $f(a)=f(b)$.

Then there exists at least one point $\mathrm{x}=\mathrm{c}$ such that $\mathrm{a}<\mathrm{c}<\mathrm{b}$ where $\mathrm{f}^{\prime}(\mathrm{c})=0$.
Note that if f is not continuous in closed [a, b] then it may lead to the adjacent graph where all the 3 conditions of Rolles will be valid but the assertion will not be true in (a, b).
(b) LMVT THEOREM :

(i) $f(x)$ is a continuous function of x in the closed interval of $a \leq x \leq b$.
(ii) $\mathrm{f}^{\prime}(\mathrm{x})$ exists for every point in the open interval $\mathrm{a}<\mathrm{x}<\mathrm{b}$.
(iii) $f(\mathrm{a}) \neq \mathrm{f}(\mathrm{b})$.

Then there exists at least one point $x=c$ such that $a<c<b$ where $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
Geometrically, the slope of the secant line joining the curve at $x=a \& x=b$ is equal to the slope of the tangent line drawn to the curve at $\mathrm{x}=\mathrm{c}$. Note the following :
2. Rolles theorem is a special case of LMVT since
$f(a)=f(b) \Rightarrow f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=0$.
Note : Now $[f(b)-f(a)]$ is the change in the function f as x changes from a to b so that $[f(b)-f(a)] /(b-a)$ is the average rate of change of the function over the interval $[\mathrm{a}, \mathrm{b}]$. Also f ' (c) is the actual rate of change of the function for $\mathrm{x}=\mathrm{c}$. Thus, the theorem states that the average rate of change of a function over an interval is also the actual rate of change of the function at some point of the interval. In particular, for instance, the average velocity of a particle over an interval of time is equal to the velocity at some instant belonging to the interval.
This interpretation of the theorem justifies the name "Mean Value" for the theorem.
Application Of Rolles Theorem For Isolating The Real Roots Of An Equation f(x)=0
Suppose $\mathrm{a} \& \mathrm{~b}$ are two real numbers such that ;
(i) $f(x)$ \& its first derivative $f^{\prime}(x)$ are continuous for $a \leq x \leq b$.
(ii) $f(a) \& f(b)$ have opposite signs.
(iii) $f^{\prime}(x)$ is different from zero for all values of x between $a \& b$.

Then there is one \& only one real root of the equation $f(x)=0$ between a \& b.

EXERCISE-6

Q. 1 Find the intervals of monotonocity for the following functions \& represent your solution set on thenumber line.
(a) $f(x)=2$. $e^{x^{2}-4 x}$
(b) $f(x)=e^{x / x}$
(c) $f(x)=x^{2} e^{-x}$
(d) $f(x)=2 x^{2}-\ln |x|$
Also plot the graphs in each case.
Q. $2 \quad$ Let $f(\mathrm{x})=1-\mathrm{x}-\mathrm{x}^{3}$. Find all real values of x satisfying the inequality, $1-f(\mathrm{x})-f^{3}(\mathrm{x})>f(1-5 \mathrm{x})$
Q. 3 Find the intervals of monotonocity of the function
(a) $f(x)=\sin x-\cos x$ in $x \in[0,2 \pi]$
(b) $\quad \mathrm{g}(\mathrm{x})=2 \sin \mathrm{x}+\cos 2 \mathrm{x}$ in $(0 \leq \mathrm{x} \leq 2 \pi)$.
Q. 4 Show that, $x^{3}-3 x^{2}-9 x+20$ is positive for all values of $x>4$.

Q. 16 If $f(x)=2 e^{x}-a e^{-x}+(2 a+1) x-3$ monotonically increases for every $x \in R$ then find the range of values of
Q. 17 Construct the graph of the function $f(x)=-\left|\frac{x^{2}-9}{x+3}-x+\frac{2}{x-1}\right|$ and comment upon the following
(a) Range of the function,
(b) Intervals of monotonocity,
(c) Point(s) where fis continuous but not diffrentiable,
(d) Point(s) where f fails to be continuous and nature of discontinuity.
(e) Gradient of the curve where f crosses the axis of y.
Q. 18 Prove that, $x^{2}-1>2 x \ln x>4(x-1)-2 \ln x$ for $x>1$.
Q. 19 Prove that $\tan ^{2} x+6 \ln \sec x+2 \cos x+4>6 \sec x$ for $x \in\left(\frac{3 \pi}{2}, 2 \pi\right)$.
$\begin{array}{ll}\text { O. Q. } 20 & \text { If } \mathrm{ax}^{2}+(\mathrm{b} / \mathrm{x}) \geq \text { c for all positive } \mathrm{x} \text { where } \mathrm{a}>0 \& \mathrm{~b}>0 \text { then show that } 27 \mathrm{ab}^{2} \geq 4 \mathrm{c}^{3} \\ \text { O. } \\ \text { Q. } 21 & \text { If } 0<\mathrm{x}<1 \text { prove that } \mathrm{y}=\mathrm{x} \ln \mathrm{x}-\left(\mathrm{x}^{2} / 2\right)+(1 / 2) \text { is a function such that } \mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}>0 \text {. Deduce }\end{array}$ that $x \ln x>\left(x^{2} / 2\right)-(1 / 2)$.
Q. 22 Prove that $0<\mathrm{x}$. $\sin \mathrm{x}-(1 / 2) \sin ^{2} \mathrm{x}<(1 / 2)(\pi-1)$ for $0<\mathrm{x}<\pi / 2$.
Q. 23 Show that $\mathrm{x}^{2}>(1+\mathrm{x})[\ln (1+\mathrm{x})]^{2} \forall \mathrm{x}>0$.
Q. 24 Find the set of values of x for which the inequality $\ln (1+x)>x /(1+x)$ is valid.
Q. 25 If $b>a$, find the minimum value of $\left|(x-a)^{3}+\left|(x-b)^{3}\right|, x \in R\right.$.
EXERCISE-7
Q. 1 Verify Rolles throrem for $\mathrm{f}(\mathrm{x})=(\mathrm{x}-\mathrm{a})^{\mathrm{m}}(\mathrm{x}-\mathrm{b})^{\mathrm{n}}$ on $[\mathrm{a}, \mathrm{b}] ; \mathrm{m}$, n being positive integer.
Q. 2 Let $f:[a, b] \rightarrow R$ be continuous on $[a, b]$ and differentiable on (a, b). If $f(a)<f(b)$, then show that $\mathrm{f}^{\prime}(\mathrm{c})>0$ for some $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$.
Q. 3 Let $f(x)=4 x^{3}-3 x^{2}-2 x+1$, use Rolle's theorem to prove that there exist $\mathrm{c}, 0<\mathrm{c}<1$ such that $f(c)=0$.

