APPLICATION OF DERIVATIVES

95. Statements-1: For the circle $(x-1)^{2}+(y-1)^{2}=1$, the tangent at the point $(1,0)$ is the x-axis.

Statements-2: the derivative of a single valued function $y=f(x)$ at $x=a$ is the slope of the tangent drawn to the curve at $\mathrm{x}=\mathrm{a}$.
96. Statements-1: Both $\sin x$, and $\cos x$ are decreasing functions in $\left(\frac{\pi}{2}, \pi\right)$
[Good]
Statements-2: If a differentiable function decreases is an interval (a, b) then its derivative also decreases in (a, b).
97. Statements-1: $e^{\pi}>\pi^{e}$
[Good]
Statements-2: The function $X^{\frac{1}{x}}(x>0)$ has a local maximum at $x=e$
98. Statements-1: Conditions of LMVT fail in $f(x)=|x-1|(x-1)$

Statements-2: $|\mathrm{x}-1|$ is not differentiable at $\mathrm{x}=1$
99. Let $f(x)=\sum_{i=1}^{n}\left(x-x_{i}\right)^{2}$

Statement-1 : Minimum value of $f(x)$ occurs at $x=\frac{\sum x_{i}}{n}$
Statement-2 : Minimum of $f(x)=a x^{2}+b x+c(a>0)$ occurs at $x=-b / 2 a$.
100. Statement-1 : $\alpha^{\beta}>\beta^{\alpha}$, for $2.91<\alpha<\beta$

Statement-2 : $f(x)=\frac{\log _{e} x}{x}$ is a decreasing function for $x>e$.
101. Statement-1 : Total number of critical points of $f(x)=\max .\{1 / 2, \sin x, \operatorname{cox}\}-\pi \leq x \leq \pi$ are 5

Statement-2 : Total number of critical points of $f(x)=\max \{1 / 2, x, \cos x\}-\pi \leq x \leq \pi$ are 2
102. Let $f(x)=5 p^{2}+4(x-1)-x^{2}, x \in R$ and p is a real constant

Statement-1 : If the maximum values of $f(x)$ is 20 , then $p=-2$.
Statement-2 : If the maximum value of $f(x)$ is 20 , then $p=2$.
103. Let $f(x)=\sin ^{-1} x+\cos ^{-1} x+\tan ^{-1} x$ and $x \in[-1,1]$

Statements-1: Range of $f(x)$ is $\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$.
Statements-2: $f(x)$ is an increasing function.
104. Let $f(x)=x^{3}$

Statements-1: $\quad x=0$, in the point of inflexion for $f(x)$
Statements-2: $\quad \mathrm{f}^{\prime \prime}(\mathrm{x})<0$ for $\mathrm{x}<0$ and $\mathrm{f}^{\prime \prime}(\mathrm{x})>0$ for $\mathrm{x}>0$.
105. Suppose $f(x)=\frac{x^{2}}{2}+\ell n x+2 \cos x$

Statements-1: f is an increasing function.
Statements-2: derivative of $f(x)$ with respect to x is always greater than zero.
106. Let $0<x \leq \frac{\pi}{2}$ and $f(x)=\frac{\sin x}{x}$

Statements-1: The minimum value of f is $\frac{2}{\pi}$, attained at $\mathrm{x}=\frac{\pi}{2}$.
Statements-2: $0<\sin \mathrm{x}<\mathrm{x}, \forall \mathrm{x} \in\left(0, \frac{\pi}{2}\right]$.
107. Statements-1: The equation $x^{2}=x \sin x+\cos x$ has only one solution.

Statements-2: The derivative of the function $x^{2}-x \sin x-\cos x$ is $x(2-\cos x)$.
108. Statement-1 : Angle of intersects in between $y=x^{2}$ and $6 y=7-x^{3}$ at $(1,1)$ is $\pi / 4$

Statement-2 : Angle of intersection between any two curve is angle between the tangents at the point of intersection.
109. Statement-1: The curve $y=x^{1 / 3}$ has a point of inflection at $x=0$

Statement-2:A point where $y^{\prime \prime}$ fails to exist can be a point of inflection

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 APPLICATIONS OF DERIVATIVES PART 4 OF 4

110. Let $f(x)$ and $g(x)$ are two positive and increasing function

Statement - 1: If $(f(x)) g(x)$ is decreasing then $f(x)<1$
Statement-2: If $f(x)$ is decreasing then $f^{\prime}(x)<0$ and increasing then $f^{\prime}(x)>0$ for all x.
111. Statement-1 : If $f(0)=0, f^{\prime}(x)=\ln \left(x+\sqrt{1+x^{2}}\right)$, then $f(x)$ is positive for all $x \in R_{0}$

Statements-2: $\mathrm{f}(\mathrm{x})$ is increasing for $\mathrm{x}>0$ and decreasing for $\mathrm{x}<0$.
112. Statements-1: The two curves $y^{2}=4 x$ and $x^{2}+y^{2}-6 x+1=0$ at the point $(1,2)$ intersect orthogonally.

Statements-2: Two curves $y=f(x) \& y=g(x)$ intersect orthogonally at $\left(x_{1} y_{1}\right)$ if $\left(f^{\prime}\left(x_{1}\right) \cdot g^{\prime}\left(\left(x_{1}\right)\right)=-1\right.$.
113. Statements-1: If $27 a+9 b+3 c+d=0$, then the equation $4 a x^{3}+3 b x^{2}+2 c x+d=0$ has atleast one real root lying between $(0,3)$
Statements-2: If $f(x)$ is continuous in $[a, b]$, derivable in (a, b), then at least one point $c \in(a, b)$ such that $f^{\prime}(c)=0$.
114. Statements-1: $f(x)=\{x\}$ has local minima at $x=1$.

Statements-2: $x=$ a will be local minima for $y=f(x)$ provided $\lim _{x \rightarrow a^{-}} f(x)>f(a)$ also

$$
\lim _{x \rightarrow a^{+}} f(x)>f(a) .
$$

115. Statements-1: $\mathrm{f}(\mathrm{x})=\frac{1}{2}-\mathrm{x} ; \quad \mathrm{x}<\frac{1}{2}$

$$
=\left(\frac{1}{2}-\mathrm{x}\right)^{2} ; \mathrm{x} \geq \frac{1}{2} . \text { Mean value theorem is applicable in the interval }[0,1] .
$$

S-2: For application of mean value theorem, $\mathrm{f}(\mathrm{x})$ must be continuous in [0,1$]$ and differentiable in $(0,1)$.
116. Statements-1: For some $0<x_{1}<x_{2}<\pi / 2, \tan ^{-1} x_{2}-\tan ^{-1} x_{1}<x_{2}-x_{1}$

Statements-2: If $\mathrm{f}(\mathrm{x})>\mathrm{f}\left(\mathrm{x}_{1}\right) \Rightarrow \mathrm{x}_{2}>\mathrm{x}_{1}$
function is always increasing
117. Statements-1: The graph of a continuous function $y=f(x)$ has a cusp at point $x=c$ if $f^{\prime \prime}(x)$ has same sign on both sides of c .
Statements-2: The concavity at any point $\mathrm{x}=\mathrm{c}$ depends upon $\mathrm{f}^{\prime \prime}(\mathrm{x})$. If $\mathrm{f}^{\prime \prime}(\mathrm{x})<0$ or $\mathrm{f}^{\prime \prime}(\mathrm{x})>0$ the function is either concave up or concave down.
118. Statements-1: If f be a function defined for all x such that $|f(x)-f(y)|<(x-y)^{2}$ then f is constant

Statements-2: If $\alpha(x)<\beta(x)<\gamma(x)$ for all x and $\lim _{x \rightarrow a} \alpha(x)=\lim _{x \rightarrow a} \gamma(x)=L \Rightarrow \lim _{x \rightarrow a} \beta(x)=L$
119. Statements-1: $f: R \rightarrow R$ be a function such that $f(x)=x^{3}+x^{2}+3 x+\sin x$. Then f is one-one.

Statements-2: $\mathrm{f}(\mathrm{x})$ is neither increasing nor decreasing.
120. Statements-1: If $\alpha \& \beta$ are any two roots of equation $e^{x} \cos x=1$, then the equation $\mathrm{e}^{\mathrm{x}} \sin \mathrm{x}-1=0$ has at least one root in (α, β)
Statements-2: f is continuous in $[\alpha, \beta]$. f is derivable in $(\alpha, \beta) . f(\alpha)=f(\beta)$ then these exists $x \in(\alpha, \beta)$ such that $f^{\prime}(x)=0$
121. Statements-1: The minimum value of the expression $x^{2}+2 b x+c$ is $c-b^{2}$.

Statements-2: The first order derivative of the expression at $x=-b$ is zero and second derivative is always positive.
122. Statements-1: Let $\phi(x)=\sin (\cos x)$ in $\left[0, \frac{\pi}{2}\right]$ then $\phi(x)$ is decreasing in $\left[0, \frac{\pi}{2}\right]$

Statements-2: $\quad \phi^{\prime}(x) \leq 0 \forall x \in\left[0, \frac{\pi}{2}\right]$
123. Statements-1: The function $f(x)=x^{4}-8 x^{3}+22 x^{2}-24 x+21$ is decreasing for every
$x \in(2,3) \cup(-\infty, 1)$
Statements-2: $\mathrm{f}^{\prime}(\mathrm{x})>0$ for the given values of x .
124. Statements-1: For the function $f(x)=x^{x}, x=1 / e$ is a point of local minimum.

Statements-2: $f^{\prime}(x)$ changes its sign from -ve to positive in neighbourhood of $x=1 / e$.
125. Statements-1: Consider the function $f(x)=\left(x^{3}-6 x^{2}+12 x-8\right) e^{x}$ is neither maximum nor minimum let $x=2$

Statements-2: $f^{\prime}(x)=0, f^{\prime \prime}(x)=0, f^{\prime \prime}(x) \neq 0$ at $x=2$
126. Statements-1: Consider the function $\mathrm{f}(\mathrm{x}) \frac{\mathrm{f}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)}{2}<\frac{\mathrm{f}\left(\mathrm{x}_{1}\right)+\mathrm{f}\left(\mathrm{x}_{2}\right)}{2}$

Statements-2: $\mathrm{f}^{\prime}(\mathrm{x})>0, \mathrm{f}^{\prime \prime}(\mathrm{x})>0$ where $\mathrm{x}_{1}<\mathrm{x}_{2}$
127. Consider the following function with regard to the function

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 APPLICATIONS OF DERIVATIVES PART 4 OF 4
$f(x)=\left(x^{3}-6 x^{2}+12 x-8\right) e^{x}$
Statement-1: $\mathrm{f}(\mathrm{x})$ is neither maximum nor minimum at $\mathrm{x}=2$
Statement-2: $\mathrm{f}^{\prime}(\mathrm{x})=0, \mathrm{f}^{\prime \prime}(\mathrm{x})=0, \mathrm{f}^{\prime \prime \prime}(\mathrm{x}) \neq 0$ at $\mathrm{x}=2$.
128. Statements-1: Equation $f(x)=x^{3}+9 x^{2}+2 a x+a^{2}+a+1=0$ has at least one real negative root.

Statements-2: Every equation of odd degree has at least one real root whose sign is opposite to that of its constant term.
95. B
96. C
97. A

ANSWER
102. A
103. A
104. A
98. D
99. A
100. A
101. A
109. A
110. A
111. A
118. A
112.
106. B
107. D
108. D
116. A
117. A
125. A
112. D
113. A
114. A
115. D
123. C
124. A
119. C
120. A
121. A
122. A
126. A
127. A
128. A

Que. from Compt. Exams

1. $\frac{d}{d x} \tan ^{-1}\left[\frac{\cos x-\sin x}{\cos x+\sin x}\right]=\quad$ [AISSE 1985, 87; DSSE 1982,84; MNR 1985; Karnataka CET 2002; RPET 2002, 03]
(a) $\frac{1}{2\left(1+x^{2}\right)}$
(b) $\frac{1}{1+x^{2}}$
(c) 1
(d) -1
2. If $y=\frac{x}{2} \sqrt{a^{2}+x^{2}}+\frac{a^{2}}{2} \log \left(x+\sqrt{x^{2}+a^{2}}\right)$, then $\frac{d y}{d x}=$
[AISSE 1983]
(a) $\sqrt{x^{2}+a^{2}}$
(b) $\frac{1}{\sqrt{x^{2}+a^{2}}}$
(c) $\quad 2 \sqrt{x^{2}+a^{2}}$
(d) $\frac{2}{\sqrt{x^{2}+a^{2}}}$
3. If $y=\cot ^{-1}(\cos 2 x)^{1 / 2}$, then the value of $\frac{d y}{d x}$ at $x=\frac{\pi}{6}$ will be
[IIT 1992]
(a) $\left(\frac{2}{3}\right)^{1 / 2}$
(b) $\left(\frac{1}{3}\right)^{1 / 2}$
(c)
$(3)^{1 / 2}$
(d)
$(6)^{1 / 2}$
4. If $f(x+y)=f(x) . f(y)$ for all x and y and $f(5)=2, f^{\prime}(0)=3$, then $f^{\prime}(5)$ will be [IIT 1981; Karnataka CET 2000; UPSEAT 2002; MP PET 2002; AIEEE 2002]
(a) 2
(b) 4
(c) 6
(d) 8
5. If $x e^{x y}=y+\sin ^{2} x$, then at $x=0, \frac{d y}{d x}=$
[IIT 1996]
(a) -1
(b) -2
(c) 1
(d) 2
6. If $u(x, y)=y \log x+x \log y$, then
$u_{x} u_{y}-u_{x} \log x-u_{y} \log y+\log x \log y=$ [EAMCET 2003]
(a) 0
(b) -1
(c) 1
(d) 2
7. If $y=f\left(\frac{2 x-1}{x^{2}+1}\right)$ and $f^{\prime}(x)=\sin x^{2}$, then $\frac{d y}{d x}=$ [IIT 1982]
(a) $\frac{6 x^{2}-2 x+2}{\left(x^{2}+1\right)^{2}} \sin \left(\frac{2 x-1}{x^{2}+1}\right)^{2}$
(b) $\quad \frac{6 x^{2}-2 x+2}{\left(x^{2}+1\right)^{2}} \sin ^{2}\left(\frac{2 x-1}{x^{2}+1}\right)$
(c) $\frac{-2 x^{2}+2 x+2}{\left(x^{2}+1\right)^{2}} \sin ^{2}\left(\frac{2 x-1}{x^{2}+1}\right)$
(d) $\frac{-2 x^{2}+2 x+2}{\left(x^{2}+1\right)^{2}} \sin \left(\frac{2 x-1}{x^{2}+1}\right)^{2}$
8. If $x=\sec \theta-\cos \theta$ and $y=\sec ^{n} \theta-\cos ^{n} \theta$, then
[IIT 1989]
(a) $\left(x^{2}+4\right)\left(\frac{d y}{d x}\right)^{2}=n^{2}\left(y^{2}+4\right)$
(b) $\quad\left(x^{2}+4\right)\left(\frac{d y}{d x}\right)^{2}=x^{2}\left(y^{2}+4\right)$
(c) $\left(x^{2}+4\right)\left(\frac{d y}{d x}\right)^{2}=\left(y^{2}+4\right)$
(d) None of these
9. If $y=x^{x^{x, \ldots \infty}}$, then $\frac{d y}{d x}=$
[UPSEAT 2004; DCE 2000]

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 APPLICATIONS OF DERIVATIVES PART 4 OF 4
(a) $\frac{y^{2}}{x(1+y \log x)}$
(b) $\frac{y^{2}}{x(1-y \log x)}$
(c) $\frac{y}{x(1+y \log x)}$
(d) $\frac{y}{x(1-y \log x)}$
10. If $y=(x \log x)^{\log \log x}$, then $\frac{d y}{d x}=$

[Roorkee 1981]

(a) $\quad(x \log x)^{\log \log x}\left\{\frac{1}{x \log x}(\log x+\log \log x)+(\log \log x)\left(\frac{1}{x}+\frac{1}{x \log x}\right)\right\}$
(b) $(x \log x)^{x \log x} \log \log x\left[\frac{2}{\log x}+\frac{1}{x}\right]$
(c) $\quad(x \log x)^{x \log x} \frac{\log \log x}{x}\left[\frac{1}{\log x}+1\right]$
(d) None of these
11. $\frac{d}{d x}\left[\tan ^{-1} \frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right]=$

[Roorkee 1980; Karnataka CET 2005]

(a) $\frac{-x}{\sqrt{1-x^{4}}}$
(b) $\frac{x}{\sqrt{1-x^{4}}}$
(c) $\frac{-1}{2 \sqrt{1-x^{4}}}$
(d) $\frac{1}{2 \sqrt{1-x^{4}}}$
12. If $\sqrt{\left(1-x^{6}\right)}+\sqrt{\left(1-y^{6}\right)}=a^{3}\left(x^{3}-y^{3}\right)$, then $\frac{d y}{d x}=$

[Roorkee 1994]

(a) $\frac{x^{2}}{y^{2}} \sqrt{\frac{1-x^{6}}{1-y^{6}}}$
(b) $\frac{y^{2}}{x^{2}} \sqrt{\frac{1-y^{6}}{1-x^{6}}}$
(c) $\frac{x^{2}}{y^{2}} \sqrt{\frac{1-y^{6}}{1-x^{6}}}$
(d) None of these
13. If $y=\sec ^{-1} \frac{2 x}{1+x^{2}}+\sin ^{-1} \frac{x-1}{x+1}$,then $\frac{d y}{d x}$ is equal to
[Pb. CET 2000]
(a) 1
(b) $\frac{x-1}{x+1}$
(c) Does not exist
(d) None of these
14. The derivative of $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ with respect to $\tan ^{-1}\left(\frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}\right)$ at $x=0$, is
(a) $\frac{1}{8}$
(b) $\frac{1}{4}$
(c) $\frac{1}{2}$
(d) 1
15. If $y^{2}=p(x)$ is a polynomial of degree three, then $2 \frac{d}{d x}\left\{y^{3} \cdot \frac{d^{2} y}{d x^{2}}\right\}=$
[IIT 1988; RPET 2000]
(a) $p^{\prime \prime \prime}(x)+p^{\prime}(x)$
(b) $p^{\prime \prime}(x) \cdot p^{\prime \prime \prime}(x)$
(c) $\quad p(x) \cdot p^{\prime \prime \prime}(x)$
(d) Constant
16. Let $f(x)$ and $g(x)$ be two functions having finite non-zero $3^{\text {rd }}$ order derivatives $f^{\prime \prime \prime}(x)$ and $g^{\prime \prime \prime}(x)$ for all, $x \in R$. If $f(x) g(x)=1$ for all $x \in R$, then $\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{g^{\prime \prime \prime}}{g^{\prime}}$ is equal to
(a) $3\left(\frac{f^{\prime \prime}}{g}-\frac{g^{\prime \prime}}{f}\right)$
(b) $3\left(\frac{f^{\prime \prime}}{f}-\frac{g^{\prime \prime}}{g}\right)$
(c) $3\left(\frac{g^{\prime \prime}}{g}-\frac{f^{\prime \prime}}{g}\right)$
(d) $3\left(\frac{f^{\prime \prime}}{f}-\frac{g^{\prime \prime}}{f}\right)$
17. If $I_{n}=\frac{d^{n}}{d x^{n}}\left(x^{n} \log x\right)$, then $I_{n}-n I_{n-1}=$ [EAMCET 2003]
(a) n
(b) $n-1$
(c) n !
(d) $(n-1)$!
18. If $x=\sin t$ and $y=\sin p t$, then the value of $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+p^{2} y$ is equal to
[Pb. CET 2002]
(a) 0
(b) 1
(c)
(d) $\sqrt{2}$
19. Let $f:(0,+\infty) \rightarrow R$ and $F(x)=\int_{0}^{x} f(t) d t$. If $F\left(x^{2}\right)=x^{2}(1+x)$, then $f(4)$ equals
[IIT Screening 2001]
(a) $\frac{5}{4}$
(b) 7
(c) 4
(d) 2
20. The volume of a spherical balloon is increasing at the rate of 40 cubic centrimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 8 centimetre, is
[Roorkee 1983]
(a) $\frac{5}{2} \mathrm{sq} \mathrm{cm} / \mathrm{min}$
(b) $5 \mathrm{sq} \mathrm{cm} / \mathrm{min}$
(c) $10 \mathrm{sq} \mathrm{cm} / \mathrm{min}$
(d) $20 \mathrm{sq} \mathrm{cm} / \mathrm{min}$
21. A man of height 1.8 metre is moving away from a lamp post at the rate of $1.2 \mathrm{~m} / \mathrm{sec}$. If the height of the lamp post be 4.5 metre, then the rate at which the shadow of the man is lengthening is
[MP PET 1989]
(a) $0.4 \mathrm{~m} / \mathrm{sec}$
(b) $0.8 \mathrm{~m} / \mathrm{sec}$
(c) $1.2 \mathrm{~m} / \mathrm{sec}$
(d) None of these

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com

 Phone : 0903903 7779, 9893058881 APPLICATIONS OF DERIVATIVES PART 4 OF 422. The radius of the cylinder of maximum volume, which can be inscribed in a sphere of radius R is
[AMU 1999]
(a) $\frac{2}{3} R$
(b) $\sqrt{\frac{2}{3}} R$
(c) $\quad \frac{3}{4} R$
(d) $\sqrt{\frac{3}{4}} R$
23. The distance travelled s (in metre) by a particle in t seconds is given by, $s=t^{3}+2 t^{2}+t$. The speed of the particle after 1 second will be
[UPSEAT 2003]
(a) $8 \mathrm{~cm} / \mathrm{sec}$
(b) $6 \mathrm{~cm} / \mathrm{sec}$
(c) $2 \mathrm{~cm} / \mathrm{sec}$ (d)
None of these
24. If $y=4 x-5$ is tangent to the curve $y^{2}=p x^{3}+q$ at $(2,3)$, then
[IIT 1994; UPSEAT 2001]
(a) $p=2, q=-7$
(b) $p=-2, q=7$
(c) $\quad p=-2, q=-7$
(d) $\quad p=2, q=7$
25. At what points of the curve $y=\frac{2}{3} x^{3}+\frac{1}{2} x^{2}$, tangent makes the equal angle with axis
[UPSEAT 1999]
(a) $\left(\frac{1}{2}, \frac{5}{24}\right)$ and $\left(-1,-\frac{1}{6}\right)$
(b) $\left(\frac{1}{2}, \frac{4}{9}\right)$ and $(-1,0)$
(c) $\left(\frac{1}{3}, \frac{1}{7}\right)$ and $\left(-3, \frac{1}{2}\right)$
(d) $\left(\frac{1}{3}, \frac{4}{47}\right)$ and $\left(-1,-\frac{1}{3}\right)$
26. If the normal to the curve $y=f(x)$ at the point (3,4) makes an angle $\frac{3 \pi}{4}$ with the positive x-axis then $f^{\prime}(3)$ is equal to
(a) -1
(b) $-\frac{3}{4}$
(c) $\frac{4}{3}$
(d) 1
27. The point(s) on the curve $y^{3}+3 x^{2}=12 y$ where the tangent is vertical (parallel to y-axis), is (are)
[IIT Screening 2002]
(a) $\left(\pm \frac{4}{\sqrt{3}},-2\right)$
(b) $\left(\pm \frac{\sqrt{11}}{3}, 1\right)$
(c) $\quad(0,0)$
(d) $\left(\pm \frac{4}{\sqrt{3}}, 2\right)$
28. Let $f(x)=\int_{0}^{x} \frac{\cos t}{t} d t, x>0$ then $f(x)$ has
(a) Maxima when $n=-2,-4,-6, \ldots .$.
(b) Maxima when $n=-1,-3,-5, \ldots$.
(c) Minima when $n=0,2,4, \ldots$.
(d) Minima when $n=1,3,5 \ldots$
29. If $f(x)=x^{2}+2 b x+2 c^{2}$ and $g(x)=-x^{2}-2 c x+b^{2}$ such that min $f(x)>\max g(x)$, then the relation between b and c is
[IIT Screening 2003]
(a) No real value of b and c
(b) $0<c<b \sqrt{2}$
(c) $|c|<|b| \sqrt{2}$
(d) $|c|>|b| \sqrt{2}$
30. N characters of information are held on magnetic tape, in batches of x characters each; the batch processing time is $\alpha+\beta x^{2}$ seconds; α and β are constants. The optimal value of x for fast processing is
[MNR 1986]
(a) $\frac{\alpha}{\beta}$
(b) $\frac{\beta}{\alpha}$
(c) $\sqrt{\frac{\alpha}{\beta}}$
(d) $\sqrt{\frac{\beta}{\alpha}}$
31. On the interval $[0,1]$, the function $x^{25}(1-x)^{75}$ takes its maximum value at the point
[IIT 1995]
(a) 0
(b) $1 / 2$
(c) $1 / 3$
(d) $\quad 1 / 4$
32. The function $f(x)=\int_{-1}^{x} t\left(e^{t}-1\right)(t-1)(t-2)^{3}(t-3)^{5} d t$ has a local minimum at $x=$

[IIT 1999]

(a) 0
(b) 1
(c) 2
(d) 3
33. The maximum value of $\exp (2+\sqrt{3} \cos x+\sin x)$ is

[AMU 1999]

(a) $\exp (2)$
(b) $\exp (2-\sqrt{3})$
(c)
$\exp (4)$
(d) 1
34. If the function $f(x)=2 x^{3}-9 a x^{2}+12 a^{2} x+1$, where $a>0$ attains its maximum and minimum at p and q respectively such that $p^{2}=q$, then a equals
[AIEEE 2003]
(a) 3
(b) 1
(c) 2
(d) $\frac{1}{2}$
35. The function $f(x)=\frac{\ln (\pi+x)}{\ln (e+x)}$ is

[IIT 1995]

(a) Increasing on $[0, \infty)$
(b) Decreasing on $[0, \infty)$
(c) Decreasing on $\left[0, \frac{\pi}{e}\right)$ and increasing on $\left[\frac{\pi}{e}, \infty\right)$
36. The function $f(x)=\sin ^{4} x+\cos ^{4} x$ increases, if
(a) $0<x<\frac{\pi}{8}$
(b) $\frac{\pi}{4}<x<\frac{3 \pi}{8}$
37. Let $h(x)=f(x)-(f(x))^{2}+(f(x))^{3}$ for every real number x. Then
(a) h is increasing whenever f is increasing
(b)
(c) h is decreasing whenever f is decreasing
(d)
38. In $[0,1]$ Lagrange's mean value theorem is NOT applicable to
(d) Increasing on $\left[0, \frac{\pi}{e}\right)$ and decreasing on $\left[\frac{\pi}{e}, \infty\right)$
[IIT 1999; Pb. CET 2001]
(c) $\frac{3 \pi}{8}<x<\frac{5 \pi}{8}$
(d) $\frac{5 \pi}{8}<x<\frac{3 \pi}{4}$
[IIT 1998]
h is increasing whenever f is decreasing
Nothing can be said in general
[IIT Screening 2003]
(a) $f(x)= \begin{cases}\frac{1}{2}-x, & x<\frac{1}{2} \\ \left(\frac{1}{2}-x\right)^{2}, & x \geq \frac{1}{2}\end{cases}$
(b) $f(x)=\left\{\begin{array}{cc}\frac{\sin x}{x}, & x \neq 0 \\ 1, & x=0\end{array}\right.$
(c) $f(x)=x|x|$
(d) $f(x) \neq x$ |
39. If the function $f(x)=x^{3}-6 a x^{2}+5 x$ satisfies the conditions of Lagrange's mean value theorem for the interval [1, 2] and the tangent to the curve $y=f(x)$ at $x=\frac{7}{4}$ is parallel to the chord that joins the points of intersection of the curve with the ordinates $x=1$ and $x=2$. Then the value of a is
[MP PET 1998]
(a) $\frac{35}{16}$
(b) $\frac{35}{48}$
(c)
(d) $\frac{5}{16}$
40. Let $f(x)=\left\{\begin{array}{ll}x^{\alpha} \ln x, & x>0 \\ 0, & x=0\end{array}\right\}$, Rolle's theorem is applicable to f for $x \in[0,1]$, if $\alpha=$
[IIT Screening 2004]
(a) -2
(b) -1
(c) 0
(d) $\frac{1}{2}$

Que. from Compt. Exams

1	d	2	a	3	a	4	c	5	c
6	c	7	d	8	a	9	b	10	a
11	a	12	c	13	c	14	b	15	c
16	b	17	d	18	a	19	c	20	c
21	b	22	b	23	a	24	a	25	a
26	d	27	d	28	b,d	29	d	30	c
31	d	32	b,d	33	c	34	c	35	b
36	b	37	a, c	38	a	39	b	40	d

For 39 Years Que. of IIT-JEE (Advanced)

\& 15 Years Que. of AIEEE (JEE Main)

we have already distributed a book

