APPLICATION OF DERIVATIVES

- **95.** Statements-1: For the circle $(x 1)^2 + (y 1)^2 = 1$, the tangent at the point (1, 0) is the x-axis. Statements-2: the derivative of a single valued function y = f(x) at x = a is the slope of the tangent drawn to the curve at x = a.
- 96. Statements-1: Both sin x, and cos x are decreasing functions in $\left(\frac{\pi}{2}, \pi\right)$

[Good]

Statements-2: If a differentiable function decreases is an interval (a, b) then its derivative also decreases in (a, b).

97. Statements-1: $e^{\pi} > \pi^e$ [Good]

Statements-2: The function $x^{\overline{x}}$ (x > 0) has a local maximum at x = e

- **98.** Statements-1: Conditions of LMVT fail in f(x) = |x 1| (x 1)Statements-2: |x - 1| is not differentiable at x = 1
- **99.** Let $f(x) = \sum_{i=1}^{n} (x x_i)^2$

100.

Statement–1 : Minimum value of f(x) occurs at $x = \frac{\sum x_i}{n}$

Statement-2 : Minimum of $f(x) = ax^2 + bx + c$ (a > 0) occurs at x = -b/2a. **Statement-1 :** $\alpha^{\beta} > \beta^{\alpha}$, for 2.91 < $\alpha < \beta$

Statement–2 : $f(x) = \frac{\log_e x}{x}$ is a decreasing function for x > e.

- **101.** Statement-1 : Total number of critical points of $f(x) = \max \{1/2, \sin x, \cos \} \pi \le x \le \pi$ are 5 Statement-2 : Total number of critical points of $f(x) = \max \{1/2, x, \cos x\} - \pi \le x \le \pi$ are 2
- **102.** Let $f(x) = 5p^2 + 4(x 1) x^2$, $x \in R$ and p is a real constant **Statement-1 :** If the maximum values of f(x) is 20, then p = -2. **Statement-2 :** If the maximum value of f(x) is 20, then p = 2.
- 103. Let $f(x) = \sin^{-1} x + \cos^{-1} x + \tan^{-1} x$ and $x \in [-1, 1]$ Statements-1: Range of f(x) is $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$.

Statements-2: f(x) is an increasing function.

- **104.** Let $f(x) = x^3$ **Statements-1:** x = 0, in the point of inflexion for f(x)**Statements-2:** f''(x) < 0 for x < 0 and f''(x) > 0 for x > 0.
- 105. Suppose $f(x) = \frac{x^2}{2} + ln x + 2\cos x$

Statements-1: f is an increasing function. **Statements-2:** derivative of f(x) with respect to x is always greater than zero.

106. Let
$$0 < x \le \frac{\pi}{2}$$
 and $f(x) = \frac{\sin x}{x}$

Statements-1: The minimum value of f is $\frac{2}{\pi}$, attained at $x = \frac{\pi}{2}$.

Statements-2: $0 < \sin x < x, \forall x \in \left(0, \frac{\pi}{2}\right].$

- **107.** Statements-1: The equation $x^2 = x \sin x + \cos x$ has only one solution.
- **Statements-2:** The derivative of the function $x^2 x \sin x \cos x \operatorname{is} x(2 \cos x)$.
- **108.** Statement-1 : Angle of intersects in between $y = x^2$ and $6y = 7 x^3$ at (1, 1) is $\pi/4$ Statement-2 : Angle of intersection between any two curve is angle between the tangents at the point of intersection.
- **109.** Statement 1 : The curve $y = x^{1/3}$ has a point of inflection at x = 0Statement – 2 : A point where y" fails to exist can be a point of inflection

- 110. Let f(x) and g(x) are two positive and increasing function Statement – 1 : If (f(x)) g(x) is decreasing then f(x) < 1Statement – 2 : If f(x) is decreasing then f'(x) < 0 and increasing then f'(x) > 0 for all x.
- 111. Statement 1: If f(0) = 0, $f'(x) = \ln (x + \sqrt{1 + x^2})$, then f(x) is positive for all $x \in R_0$ Statements-2: f(x) is increasing for x > 0 and decreasing for x < 0.
- 112. Statements-1: The two curves $y^2 = 4x$ and $x^2 + y^2 6x + 1 = 0$ at the point (1, 2) intersect orthogonally.
 - **Statements-2:** Two curves y = f(x) & y = g(x) intersect orthogonally at $(x_1 y_1)$ if $(f'(x_1),g'((x_1)) = -1$.
- **113.** Statements-1: If 27a + 9b + 3c + d = 0, then the equation $4ax^3 + 3bx^2 + 2cx + d = 0$ has at least one real root lying between (0, 3)
- Statements-2: If f(x) is continuous in [a, b], derivable in (a, b), then at least one point $c \in (a, b)$ such that f'(c)=0. 114. Statements-1: $f(x) = \{x\}$ has local minima at x = 1.

Statements-2: x = a will be local minima for y = f(x) provided $\lim_{x \to a} f(x) > f(a)$ also

 $\lim_{x\to a^+} f(x) > f(a).$

115. Statements-1: $f(x) = \frac{1}{2} - x$; $x < \frac{1}{2}$

 $=\left(\frac{1}{2}-x\right)^2$; $x \ge \frac{1}{2}$. Mean value theorem is applicable in the interval [0, 1].

S-2: For application of mean value theorem, f(x) must be continuous in [0, 1] and differentiable in (0, 1).

- 116. Statements-1: For some $0 < x_1 < x_2 < \pi/2$, $\tan^{-1}x_2 \tan^{-1}x_1 < x_2 x_1$ Statements-2: If $f(x) > f(x_1) \Rightarrow x_2 > x_1$ function is always increasing
- **117.** Statements-1: The graph of a continuous function y = f(x) has a cusp at point x = c if f''(x) has same sign on both sides of c.

Statements-2: The concavity at any point x = c depends upon f''(x). If f''(x) < 0 or f''(x) > 0 the function is either concave up or concave down.

- **118.** Statements-1: If f be a function defined for all x such that $|f(x) f(y)| < (x y)^2$ then f is constant Statements-2: If $\alpha(x) < \beta(x) < \gamma(x)$ for all x and $\lim_{x \to a} \alpha(x) = \lim_{x \to a} \gamma(x) = L \implies \lim_{x \to a} \beta(x) = L$
- **119.** Statements-1: $f : R \to R$ be a function such that $f(x) = x^3 + x^2 + 3x + \sin x$. Then f is one-one. Statements-2: f(x) is neither increasing nor decreasing.
- 120. Statements-1: If $\alpha \& \beta$ are any two roots of equation $e^x \cos x = 1$, then the equation

 $e^x \sin x - 1 = 0$ has at least one root in (α, β) Statements-2: f is continuous in $[\alpha, \beta]$. f is derivable in (α, β) . $f(\alpha) = f(\beta)$ then these exists

 $x \in (\alpha, \beta)$ such that f'(x) = 0

121. Statements-1: The minimum value of the expression $x^2 + 2bx + c$ is $c - b^2$. Statements-2: The first order derivative of the expression at x = -b is zero and second derivative is always positive.

122. Statements-1: Let
$$\phi(x) = \sin(\cos x)$$
 in $\left[0, \frac{\pi}{2}\right]$ then $\phi(x)$ is decreasing in $\left[0, \frac{\pi}{2}\right]$
Statements-2: $\phi'(x) \le 0 \ \forall x \in \left[0, \frac{\pi}{2}\right]$

123. Statements-1: The function $f(x) = x^4 - 8x^3 + 22x^2 - 24x + 21$ is decreasing for every $x \in (2, 3) \cup (-\infty, 1)$

Statements-2: f'(x) > 0 for the given values of x.

- **124.** Statements-1: For the function $f(x) = x^x$, x = 1/e is a point of local minimum.
- **Statements-2:** f'(x) changes its sign from –ve to positive in neighbourhood of x = 1/e.
- 125. Statements-1: Consider the function $f(x) = (x^3 6x^2 + 12x 8) e^x$ is neither maximum nor minimum let x = 2Statements-2: f'(x) = 0, f''(x) = 0, $f'''(x) \neq 0$ at x = 2
- 126. Statements-1: Consider the function $f(x) = \frac{f(x_1 + x_2)}{2} < \frac{f(x_1) + f(x_2)}{2}$

Statements-2: f'(x) > 0, f''(x) > 0 where $x_1 < x_2$

127. Consider the following function with regard to the function

 $f(x) = (x^3 - 6x^2 + 12x - 8) e^x$

d

Statement-1: f(x) is neither maximum nor minimum at x = 2**Statement-2:** f'(x) = 0, f''(x) = 0, $f'''(x) \neq 0$ at x = 2.

Statements-1: Equation $f(x) = x^3 + 9x^2 + 2ax + a^2 + a + 1 = 0$ has at least one real negative root. 128.

Statements-2: Every equation of odd degree has at least one real root whose sign is opposite to that of its constant term.

	ANSWER							
95. B	96. C	97. A	98. D	99. A	100. A	101. A		
102. A	103. A	104. A	105. A	106. B	107. D	108. D		
109. A	110. A	111. A	112. D	113. A	114. A	115. D		
116. A	117. A	118. A	119. C	120. A	121. A	122. A		
123. C	124. A	125. A	126. A	127. A	128. A			

Que. from Compt. Exams

1.
$$\frac{d}{dx} \tan^{-1} \left[\frac{\cos x - \sin x}{\cos x + \sin x} \right] = [AISSE 1985, 87; DSSE 1982,84; MNR 1985; Karnataka CET 2002; RPET 2002, 03]
(a) $\frac{1}{2(1+x^2)}$ (b) $\frac{1}{1+x^2}$ (c) 1 (d) -1
2. If $y = \frac{x}{2}\sqrt{a^2 + x^2} + \frac{a^2}{2}\log(x + \sqrt{x^2 + a^2})$, then $\frac{dy}{dx} = [AISSE 1983]$
(a) $\sqrt{x^2 + a^2}$ (b) $\frac{1}{\sqrt{x^2 + a^2}}$ (c) $2\sqrt{x^2 + a^2}$ (d) $\frac{2}{\sqrt{x^2 + a^2}}$
3. If $y = \cot^{-1}(\cos 2x)^{1/2}$, then the value of $\frac{dy}{dx}$ at $x = \frac{\pi}{6}$ will be [IIT 1992]
(a) $\left(\frac{2}{3}\right)^{1/2}$ (b) $\left(\frac{1}{3}\right)^{1/2}$ (c) (3)^{1/2} (d) (6)^{1/2}
4. If $f(x + y) = f(x), f(y)$ for all x and y and $f(5) = 2$, $f(0) = 3$, then $f(5)$ will be [IIT 1981; Karnataka CET 2000; UPSEAT 2002; MP PET 2002; AIEEE 2002]
(a) 2 (b) 4 (c) 6 (d) 8
5. If $xe^{-y} = y + \sin^2 x$, then at $x = 0, \frac{dy}{dx} = [IIT 1996]$
(a) -1 (b) -2 (c) 1 (d) 2
6. If $u(x, y) = y\log x + \log y$, then
 $u_x u_y - u_x \log x - u_y \log y + \log x \log y = [EAMCET 2003]$
(a) 0 (b) -1 (c) 1 (d) 2
7. If $y = \int \left(\frac{2x - 1}{x^2 + 1}\right)$ and $f'(x) = \sin x^2$, then $\frac{dy}{dx} = [IIT 1982]$
(a) $\frac{6x^2 - 2x + 2}{(x^2 + 1)^2} \sin\left(\frac{2x - 1}{x^2 + 1}\right)^2$ (b) $\frac{6x^2 - 2x + 2}{(x^2 + 1)^2} \sin\left(\frac{2x - 1}{x^2 + 1}\right)^2$
(c) $\frac{-2x^2 + 2x + 2}{(x^2 + 1)^2} \sin\left(\frac{2x - 1}{x^2 + 1}\right)$ (d) $\frac{-2x^2 + 2x + 2}{(x^2 + 1)^2} \sin\left(\frac{2x - 1}{x^2 + 1}\right)^2$
8. If $x = \sec \theta - \cos \theta$ and $y = \sec^{-\theta} - \cos^{-\theta} \theta$, then [IIT 1989]
(a) $(x^2 + 4)\left(\frac{dy}{dx}\right)^2 = n^2(y^2 + 4)$ (b) $(x^2 + 4)\left(\frac{dy}{dx}\right)^2 = x^2(y^2 + 4)$
(c) $(x^2 + 4)\left(\frac{dy}{dx}\right)^2 = n^2(y^2 + 4)$ (d) None of these
9. If $y = x^{-i----}$, then $\frac{dy}{dx} = [UPSEAT 2004; DCE 2000]$$$

$$\begin{aligned} \text{(a)} \quad \frac{y^2}{x(1+y\log x)} \quad \text{(b)} \quad \frac{y^2}{x(1-y\log y)} \quad \text{(c)} \quad \frac{y}{x(1+y\log x)} \quad \text{(d)} \quad \frac{y}{x(1-y\log x)} \\ \text{(d)} \quad \frac{y}{x(1+y\log x)} \quad \text{(d)} \quad \frac{y}{x(1-y\log x)} \\ \text{(d)} \quad \frac{y}{x(1-y\log x)} \quad \frac{y}{x(1-y\log x)} \\ \text{(d)} \quad \frac{y}{x(1-x)} \quad \frac{y}{x(1-x)} \\ \text{(d)} \quad \frac{y}{x(1-x)} \quad \frac{y}{x(1-x)} \\ \text{(d)} \quad \frac{y}{x(1-x)} \quad \frac{y}{x(1-x)} \\ \text{(d)} \quad \frac{x}{x(1-x)} \\ \text{(d)} \quad \frac{x}{x(1-x)} \quad \frac{x}{x(1-x)} \\ \text{(d)} \quad \frac{x}{x(1-x)} \\ \text{(d)} \quad \frac{x}{x(1-x)} \quad \frac{x}{x(1-x)} \\ \text{(d)} \quad \frac{x}{x(1-x)} \\ \text{(d$$

be 4.5 *metre*, then the rate at which the shadow of the man is lengthening is [MP PET 1989] (a) 0.4 m/sec (b) 0.8 m/sec (c) 1.2 m/sec (d) None of these

22. The radius of the cylinder of maximum volume, which can be inscribed in a sphere of radius *R* is [AMU 1999]

(a)
$$\frac{2}{3}R$$
 (b) $\sqrt{\frac{2}{3}R}$ (c) $\frac{3}{4}R$ (d)

The distance travelled s (in *metre*) by a particle in t seconds is given by, $s = t^3 + 2t^2 + t$. The speed of the particle after 23. 1 second will be [UPSEAT 2003] 2 *cm/sec* (d) None of these (b) 6 *cm/sec* (a) 8 *cm/sec* (c)

24. If y = 4x - 5 is tangent to the curve $y^2 = px^3 + q$ at (2, 3), then [IIT 1994; UPSEAT 2001] (a) p = 2, q = -7 (b) p = -2, q = 7 (c) p = -2, q = -7 (d) p = 2, q = 7 **25.** At what points of the curve $y = \frac{2}{3}x^3 + \frac{1}{2}x^2$, tangent makes the equal angle with axis **[UPSEAT 1999]**

(a)
$$\left(\frac{1}{2}, \frac{5}{24}\right)$$
 and $\left(-1, -\frac{1}{6}\right)$ (b) $\left(\frac{1}{2}, \frac{4}{9}\right)$ and $\left(-1, 0\right)$ (c) $\left(\frac{1}{3}, \frac{1}{7}\right)$ and $\left(-3, \frac{1}{2}\right)$ (d) $\left(\frac{1}{3}, \frac{4}{47}\right)$ and $\left(-1, -\frac{1}{3}\right)$

26. If the normal to the curve y = f(x) at the point (3,4) makes an angle $\frac{3\pi}{4}$ with the positive x-axis then f'(3) is equal to

(a) -1 (b)
$$-\frac{3}{4}$$
 (c) $\frac{4}{3}$ (d)

27. The point(s) on the curve $y^3 + 3x^2 = 12y$ where the tangent is vertical (parallel to y-axis), is (are)

[IIT Screening 2002]

1

(a)
$$\left(\pm \frac{4}{\sqrt{3}}, -2\right)$$
 (b) $\left(\pm \frac{\sqrt{11}}{3}, 1\right)$ (c) $(0,0)$ (d) $\left(\pm \frac{4}{\sqrt{3}}, 2\right)$

28. Let $f(x) = \int_{0}^{x} \frac{\cos t}{t} dt$, x > 0 then f(x) has

[Kurukshetra CEE 2002]

(a) Maxima when $n = -2, -4, -6, \dots$ (b) Maxima when n = -1, -3, -5, ...(c) Minima when $n = 0, 2, 4, \dots$ (d) Minima when n = 1, 3, 5...

29. If $f(x) = x^2 + 2bx + 2c^2$ and $g(x) = -x^2 - 2cx + b^2$ such that *min* f(x) > max g(x), then the relation between b and c is [IIT Screening 2003]

- (a) No real value of b and c (b) $0 < c < b\sqrt{2}$
- (c) $|c| < |b| \sqrt{2}$ (d) $|c| > |b| \sqrt{2}$
- **30.** N characters of information are held on magnetic tape, in batches of x characters each; the batch processing time is $\alpha + \beta x^2$ seconds; α and β are constants. The optimal value of x for fast processing is [MNR 1986]

(a)
$$\frac{\alpha}{\beta}$$
 (b) $\frac{\beta}{\alpha}$ (c) $\sqrt{\frac{\alpha}{\beta}}$ (d) $\sqrt{\frac{\beta}{\alpha}}$

- On the interval [0, 1], the function $x^{25}(1-x)^{75}$ takes its maximum value at the point 31. [IIT 1995]
- (a) 0 (b) 1/2 (c) 1/3 (d) 1/4The function $f(x) = \int_{-1}^{x} t(e^t 1)(t 1)(t 2)^3(t 3)^5 dt$ has a local minimum at x =[IIT 1999] 32. (c) 2 (d) (a) 0 3
- **33.** The maximum value of exp $(2 + \sqrt{3} \cos x + \sin x)$ is [AMU 1999] (b) $\exp(2-\sqrt{3})$ (a) exp(2)(c) exp(4) (d) 1
- If the function $f(x) = 2x^3 9ax^2 + 12a^2x + 1$, where a > 0 attains its maximum and minimum at p and q respectively 34. such that $p^2 = q$, then *a* equals [AIEEE 2003]

(a) 3 (b) 1 (c) 2 (d)
$$\frac{1}{2}$$

35. The function $f(x) = \frac{\ln(\pi + x)}{\ln(e + x)}$ is [IIT 1995]

(a) Increasing on
$$[0,\infty)$$
 (b) Decreasing on $[0,\infty)$

(c) Decreasing on $\left[0, \frac{\pi}{e}\right]$ and increasing on $\left[\frac{\pi}{e}, \infty\right]$

36. The function $f(x) = \sin^4 x + \cos^4 x$ increases, if

(a)
$$0 < x < \frac{\pi}{8}$$
 (b) $\frac{\pi}{4} < x < -$

- **37.** Let $h(x) = f(x) (f(x))^2 + (f(x))^3$ for every real number *x*. Then (a) *h* is increasing whenever *f* is increasing (b) (c) *h* is decreasing whenever *f* is decreasing (d)
- **38.** In [0, 1] Lagrange's mean value theorem is NOT applicable to

(a)
$$f(x) = \begin{cases} \frac{1}{2} - x, & x < \frac{1}{2} \\ \left(\frac{1}{2} - x\right)^2, & x \ge \frac{1}{2} \end{cases}$$
 (b) $f(x) = \begin{cases} \frac{\sin x}{x}, & x \ne 0 \\ 1, & x = 0 \end{cases}$
(c) $f(x) = x |x|$ (d) $f(x) = x |x|$

(d) Increasing on
$$\left[0, \frac{\pi}{e}\right)$$
 and decreasing on $\left[\frac{\pi}{e}, \infty\right)$

[IIT 1999; Pb. CET 2001]

(c)
$$\frac{3\pi}{8} < x < \frac{5\pi}{8}$$
 (d) $\frac{5\pi}{8} < x < \frac{3\pi}{4}$

[IIT 1998]

h is increasing whenever f is decreasing Nothing can be said in general

[IIT Screening 2003]

39. If the function $f(x) = x^3 - 6ax^2 + 5x$ satisfies the conditions of Lagrange's mean value theorem for the interval [1, 2] and the tangent to the curve y = f(x) at $x = \frac{7}{4}$ is parallel to the chord that joins the points of intersection of the curve with the ordinates x = 1 and x = 2. Then the value of *a* is

(a)
$$\frac{35}{16}$$
 (b) $\frac{35}{48}$ (c) $\frac{7}{16}$ (d) $\frac{5}{16}$

40. Let $f(x) = \begin{cases} x^{\alpha} \ln x, x > 0 \\ 0, x = 0 \end{cases}$, Rolle's theorem is applicable to *f* for $x \in [0,1]$, if $\alpha =$

(a)
$$-2$$
 (b) -1 (c) 0 (d) $\frac{1}{2}$

1	d	2	а	3	а	4	C	5	C				
6	C	7	d	8	а	9	b	10	а				
11	а	12	C	13	C	14	b	15	C				
16	b	17	d	18	а	19	C	20	C				
21	b	22	b	23	а	24	а	25	а				
26	d	27	d	28	b,d	29	d	30	C				
31	d	32	b,d	33	C	34	С	35	b				
36	b	37	a, c	38	а	39	b	40	d				

Que from Compt Exams

For 39 Years Que. of IIT-JEE (Advanced) & 15 Years Que. of AIEEE (JEE Main) we have already distributed a book

[IIT Screening 2004]

[MP PET 1998]