The area bounded by the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$, the x -axis and the ordinates at $x=a \& x=b$ is given by,

$$
A=\int_{a}^{b} f(x) d x=\int_{a}^{b} y d x .
$$

2. If the area is below the x-axis then A is negative. The convention is to consider the magnitude only i.e.
$A=\left|\int_{a}^{b} y d x\right|$ in this case.
3. Area between the curves $y=f(x) \& y=g(x)$ between the ordinates at $\mathrm{x}=\mathrm{a} \& \mathrm{x}=\mathrm{b}$ is given by,

$$
A=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b}[f(x)-g(x)] d x
$$

4. Average value of a function $y=f(x)$ w.r.t. x over an interval $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ is defined as :

$y(a v)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$.

5. The area function A_{a}^{x} satisfies the differential equation $\frac{d A_{a}^{x}}{d x}=f(x)$ with initial condition $A_{a}^{a}=0$. Note: If $F(x)$ is any integral of $f(x)$ then,

$$
A_{a}^{x}=\int f(x) d x=F(x)+c \quad A_{a}^{a}=0=F(a)+c \Rightarrow c=-F(a)
$$

hence $A_{a}^{x}=F(x)-F(a)$. Finally by taking $x=b$ we get, $A_{a}^{b}=F(b)-F(a)$.
6. CURVETRACING :

The following outline procedure is to be applied in Sketching the graph of a function $y=f(x)$ which in
(i) If all the powers of y in the equation are even then the curve is symmetrical about the axis of x.
(ii) If all the powers of x are even, the curve is symmetrical about the axis of y.
(iii) If powers of $x \& y$ both are even, the curve is symmetrical about the axis of x as well as y.
(iv) If the equation of the curve remains unchanged on interchanging x and y, then the curve is symmetrical
(iii) If powers of $x \& y$ both are even, the curve is symmetrical about the axis of x as well as y.
(iv) If the equation of the curve remains unchanged on interchanging x and y, then the curve is symmetrical about $\mathrm{y}=\mathrm{x}$.
(v) If on interchanging the signs of $x \& y$ both the equation of the curve is unaltered then there is symmetry in opposite quadrants.
(b) Find dy/dx \& equate it to zero to find the points on the curve where you have horizontal tangents.
(c) Find the points where the curve crosses the x -axis \& also the y -axis.
(d) Examine if possible the intervals when $\mathrm{f}(\mathrm{x})$ is increasing or decreasing Examine what happens to ' y ' when $\mathrm{x} \rightarrow \infty$ or $-\infty$.

7. USEFUL RESULTS :

(i) Whole area of the ellipse, $x^{2} / a^{2}+y^{2} / b^{2}=1$ is $\pi a b$.
(ii) Area enclosed between the parabolas $y^{2}=4 a x \& x^{2}=4$ by is $16 \mathrm{ab} / 3$.
(iii) Area included between the parabola $y^{2}=4 a x \&$ the line $y=m x$ is $8 \mathrm{a}^{2} / 3 \mathrm{~m}^{3}$.

EXERCISE-I

Q. 1 Find the area bounded on the right by the line $x+y=2$, on the left by the parabola $y=x^{2}$ and below by ${ }^{-}$
$\amalg Q .2$ Find the area of the region bounded by the curves, $y=x^{2}+2 ; y=x ; x=0 \& x=3$.
Q. 3 Find the area of the region $\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$.
Q. 10 If the area enclosed by the parabolas $y=a-x^{2}$ and $y=x^{2}$ is $18 \sqrt{2}$ sq. units. Find the value of ' a '.
Q. 11 The line $3 \mathrm{x}+2 \mathrm{y}=13$ divides the area enclosed by the curve, $9 x^{2}+4 y^{2}-18 x-16 y-11=0$ into two parts. Find the ratio of the larger area to the smaller area.
Q. 12 Find the area of the region enclosed between the two circles $x^{2}+y^{2}=1 \&(x-1)^{2}+y^{2}=1$
Q. 13 Find the values of $m(m>0)$ for which the area bounded by the line $y=m x+2$ and $\mathrm{x}=2 \mathrm{y}-\mathrm{y}^{2}$ is, (i) $9 / 2$ square units \& (ii) minimum. Also find the minimum area.
Q. 14 Find the ratio in which the area enclosed by the curve $\mathrm{y}=\cos x(0 \leq \mathrm{x} \leq \pi / 2)$ in the first quadrant is divided by the curye $\mathrm{y}=\sin x$.
Q. 15 Find the area enclosed between the curves $: y=\log _{e}(x+e), x=\log _{e}(1 / y) \&$ the x-axis.
Q. 16 Find the area of the figure enclosed by the curve $(y-\arcsin x)^{2}=x-x^{2}$.
Q. $17 \quad$ For what value of ' a ' is the area bounded by the curve $\mathrm{y}=\mathrm{a}^{2} \mathrm{x}^{2}+\mathrm{ax}+1$ and the straight line $\mathrm{y}=0$,
$\mathrm{x}=0 \& \mathrm{x}=1$ the least ?
Q. 18 Find the positive value of 'a' for which the parabola $y=x^{2}+1$ bisects the area of the rectangle with vertices $(0,0),(a, 0),\left(0, a^{2}+1\right)$ and $\left(a, a^{2}+1\right)$.
Q. 19 Compute the area of the curvilinear triangle bounded by the y-axis \& the curve, $y=\tan x \& y=(2 / 3) \cos x$.
Q. 20 Consider the curve $C: y=\sin 2 x-\sqrt{3}|\sin x|$, C cuts the $x-$ axis at $(a, 0), a \in(-\pi, \pi)$. A_{1} : The area bounded by the curve C \& the positive $\mathrm{x}-$ axis between the origin \& the ordinate at $\mathrm{x}=\mathrm{a}$. A_{2} : The area bounded by the curve C \& the negative x -axis between the ordinate $\mathrm{x}=\mathrm{a}$ \& the origin. $\underset{\text {. }}{ }$ Prove that $\mathrm{A}_{1}+\mathrm{A}_{2}+8 \mathrm{~A}_{1} \mathrm{~A}_{2}=4$.
Q. 21 Find the area bounded by the curve $\mathrm{y}=\mathrm{xe}^{-\mathrm{x}} ; \mathrm{xy}=0$ and $\mathrm{x}=\mathrm{c}$ where c is the x -coordinate of the curve's inflection point.
Q. 22 Find the value of ' c ' for which the area of the figure bounded by the curve, $y=8 x^{2}-x^{5}$, the straight lines $\mathrm{x}=1 \& \mathrm{x}=\mathrm{c} \&$ the abscissa axis is equal to $16 / 3$.
Q. 23 Find the area bounded by the curve $\mathrm{y}^{2}=x \& \mathrm{x}=|\mathrm{y}|$.
Q. 24 Find the area bounded by the curve $\mathrm{y}=\mathrm{xe}^{-\mathrm{x}^{2}}$, the x -axis, and the line $\mathrm{x}=\mathrm{c}$ where y (c) is maximum.
Q. 25 Find the area of the region bounded by the x -axis \& the curves defined by,
$\left[\begin{array}{ll}y=\tan x, & -\pi / 3 \leq x \leq \pi / 3 \\ y=\cot x, & \pi / 6 \leq x \leq 3 \pi / 2\end{array}\right.$

EXERCISE-II

In what ratio does the x -axis divide the area of the region bounded by the parabolas $\mathrm{y}=4 x-x^{2}$ \& $\mathrm{y}=x^{2}-x$?
Q. 5 Consider the curve $\mathrm{y}=\mathrm{x}^{\mathrm{n}}$ where $\mathrm{n}>1$ in the $1^{\text {st }}$ quadrant. If the area bounded by the curve, the x -axis and the tangent line to the graph of $y=x^{n}$ at the point $(1,1)$ is maximum then find the value of n.
Q. 6 Consider the collection of all curve of the form $y=a-b x^{2}$ that pass through the the point $(2,1)$, where a and b are positive constants. Determine the value of a and b that will minimise the area of the region bounded by $\mathrm{y}=\mathrm{a}-\mathrm{bx}^{2}$ and x -axis. Also find the minimum area.
Q. 7 In the adjacent graphs of two functions $y=f(x)$ and $y=\sin x$ are given. $\mathrm{y}=$ sinx intersects, $\mathrm{y}=\mathrm{f}(\mathrm{x})$ at $\mathrm{A}(\mathrm{a}, \mathrm{f}(\mathrm{a})) ; \mathrm{B}(\pi, 0)$ and $\mathrm{C}(2 \pi, 0) . \mathrm{A}_{\mathrm{i}}(\mathrm{i}=1,2,3$,$) is the area bounded by the$ curves $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and $\mathrm{y}=\sin \mathrm{x}$ between $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{a} ; \mathrm{i}=1$, between $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\pi ; \mathrm{i}=2$, between $\mathrm{x}=\pi$ and $\mathrm{x}=2 \pi$; $\mathrm{i}=3$. If $\mathrm{A}_{1}=1-\operatorname{sina}+(\mathrm{a}-1) \operatorname{cosa}$, determine the function $\mathrm{f}(\mathrm{x})$. Hence determine ' a ' and A_{1}. Also calculate A_{2} and A_{3}

Q. 8 Consider the two curves $y=1 / x^{2} \& y=1 /[4(x-1)]$.
Q. 14 If $f(x)$ is monotonic in (a, b) then prove that the area bounded by the ordinates $a t x=a ; x=b ; y=f(x)$
Q. 11 Compute the area of the loop of the curve $\mathrm{y}^{2}=x^{2}[(1+x) /(1-x)]$.
Q. 12 Find the value of K for which the area bounded by the parabola $y=x^{2}+2 x-3$ and the line $\mathrm{y}=\mathrm{K} x+1$ is least. Also find the least area. $n>2, \mathrm{~A}_{\mathrm{n}}+\mathrm{A}_{\mathrm{n}-2}=1 /(n-1) \&$ deduce that $1 /(2 n+2)<\mathrm{A}_{\mathrm{n}}<1 /(2 n-2)$. and $\mathrm{y}=\mathrm{f}(\mathrm{c}), \mathrm{c} \in(\mathrm{a}, \mathrm{b})$ is minimum when $\mathrm{c}=\frac{\mathrm{a}+\mathrm{b}}{2}$.
Hence if the area bounded by the graph of $f(x)=\frac{x^{3}}{3}-x^{2}+a$, the straight lines $x=0, x=2$ and the $\sum^{\frac{\pi}{\pi}}$ x-axis is minimum then find the value of ' a '.
Q. 15 Consider the two curves $C_{1}: y=1+\cos x \& C_{2}: y=1+\cos (x-\alpha)$ for $\alpha \in\left(0, \frac{\pi}{2}\right) ; x \in[0, \pi]$. Find the value of α, for which the area of the figure bounded by the curves $C_{1}, C_{2} \& x=0$ is same as that of the figure bounded by $\mathrm{C}_{2}, \mathrm{y}=1 \& \mathrm{x}=\pi$. For this value of α, find the ratio in which the line $\mathrm{y}=1$ divides the area of the figure by the curves $\mathrm{C}_{1}, \mathrm{C}_{2} \& \mathrm{x}=\pi$.
Q. 16 Find the area bounded by $y^{2}=4(x+1), y^{2}=-4(x-1) \& y=|x|$ above axis of x.
Q. 17 Compute the area of the figure which lies in the first quadrant inside the curve Se the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region S \& find its area.
Q. 19 Find the whole area included between the curve $x^{2} y^{2}=a^{2}\left(y^{2}-x^{2}\right) \&$ its asymptotes (asymptotes are the lines which meet the curve at infinity).
Q. 20 For what values of $\mathrm{a} \in[0,1]$ does the area of the figure bounded by the graph of the function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and the straight lines $x=0, x=1 \& y=f(a)$ is at a minimum \& for what values it is at maximum if $f(x)=\sqrt{1-x^{2}}$. Find also the maximum \& the minimum areas.
Q. 21 Find the area enclosed between the smaller arc of the circle $x^{2}+y^{2}-2 x+4 y-11=0$ \& the parabola
Q. 22 Draw a neat and clean graph of the function $f(x)=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in[-1,1]$ and find the area
∞
$E_{0} \mathrm{Q} .23$ Let $\mathrm{C}_{1} \& \mathrm{C}_{2}$ be two curves passing through the origin as shown in the figure. A curve C is said to "bisect the area" the region between $\mathrm{C}_{1} \& \mathrm{C}_{2}$, if for each point P of C , the two shaded regions A \& B shown in the figure have equal areas. Determine the upper curve C_{2}, given that the bisecting curve C has the equation $\mathrm{y}=\mathrm{x}^{2}$ \& that the lower curve C_{1} has the equation $\mathrm{y}=\mathrm{x}^{2} / 2$.

Q. 24 For what values of $a \in[0,1]$ does the area of the figure bounded by the graph of the function $y=f(x)$ \& the straight lines $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=\mathrm{f}(\mathrm{a})$ have the greatest value and for what values does it have the least . value, if, $f(x)=x^{\alpha}+3 x^{\beta}, \alpha, \beta \in \mathrm{R}$ with $\alpha>1, \beta>1$.
$\sum_{i} Q .25 \quad$ Given $f(x)=\int_{0}^{x} e^{t}\left(\log \sec t-\sec ^{2} t\right) d t ; g(x)=-2 e^{x} \tan x . F$
$y=f(x)$ and $y=g(x)$ between the ordinates $x=0$ and $x=\frac{\pi}{3}$.
Q. 1 Let $\mathrm{f}(\mathrm{x})=$ Maximum $\left\{x^{2},(1-x)^{2}, 2 x(1-x)\right\}$, where $0 \leq x \leq 1$. Determine the area of the region $\underset{~}{\text { g }}$ bounded by the curves $\mathrm{y}=\mathrm{f}(\mathrm{x}), \mathrm{x}-$ axis, $x=0 \& x=1$.
[JEE '97, 5] வ்
$\mathcal{E} \mathrm{Q} .2$ Indicate the region bounded by the curves $x^{2}=\mathrm{y}, y=x+2$ and x -axis and obtain the area enclosed by them.
Q. 3 Let $C_{1} \& C_{2}$ be the graphs of the functions $y=x^{2} \& y=2 x$, $0 \leq x \leq 1$ respectively. Let C_{3} be the graph of a function $y=f(x)$, $0 \leq x \leq 1, f(0)=0$. For a point P on C_{1}, let the lines through P, parallel to the axes, meet $\mathrm{C}_{2} \& \mathrm{C}_{3}$ at $\mathrm{Q} \& \mathrm{R}$ respectively (see figure). If for every position of $\mathrm{P}\left(\mathrm{onC}_{1}\right)$, the areas of the shaded regions OPQ \& ORP are equal, determine the function $\mathrm{f}(\mathrm{x})$.
[JEE '98, 8]

Q. 4 Indicate the region bounded by the curves $y=x \ln x \& y=2 x-2 x^{2}$ and obtain the area enclosed by them.
[REE'98, 6]
For which of the following values of m, is the area of the region bounded by the curve $y=x-x^{2}$ and the line $y=m x$ equals $9 / 2$?
(A) -4
(B) -2
(C) 2
(D) 4
(b) Let $f(x)$ be a continuous function given by $f(x)= \begin{cases}2 x & \text { for }|x| \leq 1 \\ x^{2}+a x+b & \text { for }|x|>1\end{cases}$

Find the area of the region in the third quadrant bounded by the curves, $x=-2 y^{2}$ and
Q. 7 Find the area enclosed by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at $(2,3)$ and the x-axis.
[REE 2000,3]
Let $\mathrm{b} \neq 0$ and for $\mathrm{j}=0,1,2$, \qquad n, let S_{j} be the area of the region bounded by the y axis and the curve $x e^{\text {ay }}=\sin b y, \frac{j \pi}{b} \leq y \leq \frac{(j+1) \pi}{b}$. Show that S_{0}, S_{1}, S_{2} . S_{n} are in geometric progression. Also, $\widetilde{\widetilde{\sigma}}_{\Omega}$ find their sum for $\mathrm{a}=-1$ and $\mathrm{b}=\pi$.
[JEE'2001, 5].
Q. 9 The area bounded by the curves $y=|x|-1$ and $y=-|x|+1$ is
(A) 1
(B) 2
(C) $2 \sqrt{2}$
(D) 4
[JEE'2002, (Scr)]
Q. 10 Find the area of the region bounded by the curves $y=x^{2}, y=\left|2-x^{2}\right|$ and $y=2$, which lies to the right of the line $\mathrm{x}=1$.
[JEE '2002, (Mains)]
Q. 11 If the area bounded by $y=a x^{2}$ and $x=a y^{2}, a>0$, is 1 , then $a=$
(A) 1
(B) $\frac{1}{\sqrt{3}}$
(C) $\frac{1}{3}$
(D) $-\frac{1}{\sqrt{3}}$
[JEE '2004, (Scr)]
Q.12(a) The area bounded by the parabolas $y=(x+1)^{2}$ and $y=(x-1)^{2}$ and the line $y=1 / 4$ is
(A) 4 sq. units
(B) $1 / 6$ sq. units
(C) $4 / 3$ sq. units
(D) $1 / 3$ sq. units
[JEE '2005 (Screening)]
(b) Find the area bounded by the curves $x^{2}=y, x^{2}=-y$ and $y^{2}=4 x-3$.

a point V . A is a point of intersection of $\mathrm{y}=f(\mathrm{x})$ with x -axis and point B is such that chord AB subtends. a right angle at V . Find the area enclosed by $f(\mathrm{x})$ and chord AB .
[JEE '2005 (Mains), 4 + 6]
Q. 13 Match the following
(i) $\int_{0}^{\pi / 2}(\sin x)^{\cos x}\left(\cos x \cot x-\log (\sin x)^{\sin x}\right) d x$
(A) 1
(ii) Area bounded by $-4 y^{2}=x$ and $x-1=-5 y^{2}$
(B) 0
(iii) Cosine of the angle of intersection of curves
$y=3^{x-1} \log x$ and $y=x^{x}-1$ is
(C) $6 \ln 2$
(D) $4 / 3$
[JEE 2006, 6]

ANSWER
 EXERCISE-I

Q. $1 \quad 5 / 6$ sq. units

Q2.21/2 sq. units \quad Q3.23/6 sq. units
Q4. $c=-\frac{\pi}{6}$ or $\frac{\pi}{3}$
Q 5. $\mathrm{x}_{0}=2, \mathrm{~A}\left(\mathrm{x}_{0}\right)=8$
Q 6. $\left(e^{2}-5\right) / 4$ e sq. units
Q 7. $\pi-\tan ^{-1} \frac{2 \sqrt{2}}{3 \pi} ; \pi-\tan ^{-1} \frac{4 \sqrt{2}}{3 \pi}$
Q8. $\frac{11}{8}$ sq. units
$\stackrel{\sim}{\Perp}$ Q $9 . \frac{\pi}{2} ; \frac{\pi-1}{\pi+1}$
Q 10. $a=9$
Q 11. $\frac{3 \pi+2}{\pi-2}$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

[^0]The area bounded by the curve $x^{2}=4 y, x$-axis and the line $x=2$ is
(A) 1
(B) $\frac{2}{3}$
(C) $\frac{3}{2}$
(D) 2

The area bounded by the x-axis and the curve $y=4 x-x^{2}-3$ is
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) $\frac{4}{3}$
(D) $\frac{8}{3}$

The area bounded by the curve $y=\sin$ ax with x-axis in one arc of the curve is
(A) $\frac{4}{\mathrm{a}}$
(B) $\frac{2}{a}$
(C) $\frac{1}{a}$
(D) 2 a
4. The area contained between the curve $x y=a^{2}$, the vertical line $x=a, x=4 a(a>0)$ and x - $a x i$ is
(A) $a^{2} \log 2$
(B) $2 a^{2} \log 2$
(C) a $\log 2$
(D) $2 \mathrm{a} \log 2$
5. The area of the closed figure bounded by the curves $y=\sqrt{x}, y=\sqrt{4-3 x} \& y=0$ is:
(A) $\frac{4}{9}$
(B) $\frac{8}{9}$
(C) $\frac{16}{9}$
(D) none

The area of the closed figure bounded by the curves $y=\cos x ; y=1+\frac{2}{\pi} x \& x=\frac{\pi}{2}$ is
(A) $\frac{\pi+4}{4}$
(B) $\frac{3 \pi}{4}$
(C) $\frac{3 \pi+4}{4}$
(D) $\frac{3 \pi-4}{4}$

The area included between the curve $x y^{2}=a^{2}(a-x) \&$ its asymptote is:
(D) none
(A) $\frac{\pi \mathrm{a}^{2}}{2}$
(B) $2 \pi a^{2}$
(C) πa^{2}

The area bounded by $x^{2}+y^{2}-2 x=0 \& y=\sin \frac{\pi x}{2}$ in the upper half of the circle is:
(A) $\frac{\pi}{2}-\frac{4}{\pi}$
(B) $\frac{\pi}{4}-\frac{2}{\pi}$
(C) $\pi-\frac{8}{\pi}$
(D) none
9. The area of the region enclosed between the curves $7 x^{2}+9 y+9=0$ and $5 x^{2}+9 y+27=0$ is:
(A) 2
(B) 4
(C) 8
(D) 16
10. The area bounded by the curves $y=x(1-\ln x) ; x=e^{-1}$ and a positive X-axis between $x=e^{-1}$ and $x=e$ is :
(A) $\left(\frac{\mathrm{e}^{2}-4 \mathrm{e}^{-2}}{5}\right)$
(B) $\left(\frac{\mathrm{e}^{2}-5 \mathrm{e}^{-2}}{4}\right)$
(C) $\left(\frac{4 e^{2}-\mathrm{e}^{-2}}{5}\right)$
(D) $\left(\frac{5 e^{2}-\mathrm{e}^{-2}}{4}\right)$

ய11. The area enclosed between the curves $y=\log _{e}(x+e), x=\log _{e}\left(\frac{1}{y}\right)$ and the x-axis is
(A) 2
(B) 1
(C) 4
(D) none of these

Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.
(A) $\frac{1}{3}$
(B) $\frac{1}{6}$
(C) $\frac{1}{2}$
(D) none of these
13. The area bounded by x-axis, curve $y=f(x)$, and lines $x=1, x=b$ is equal to $\sqrt{\left(b^{2}+1\right)}-\sqrt{2}$ for all $b>1$, then $f(x)$ is
(A) $\sqrt{(x-1)}$
(B) $\sqrt{(x+1)}$
(C) $\sqrt{\left(x^{2}+1\right)}$
(D) $x / \sqrt{\left(1+x^{2}\right)}$
14. The area of the region for which $0<y<3-2 x-x^{2}$ and $x>0$ is
(A) $\int_{1}^{3}\left(3-2 x-x^{2}\right) d x$
(B) $\int_{0}^{3}\left(3-2 x-x^{2}\right) d x$
(C) $\int_{0}^{1}\left(3-2 x-x^{2}\right) d x$
(D) $\int_{-1}^{3}\left(3-2 x-x^{2}\right) d x$
15. The area bounded by $y=x^{2}, y=[x+1], x \leq 1$ and the y-axis is
(A) $1 / 3$
(B) $2 / 3$
(C) 1
(D) $7 / 3$
16. The area bounded by the curve $x=a \cos ^{3} t, y=a \sin ^{3} t$ is
(A) $\frac{3 \pi a^{2}}{8}$
(B) $\frac{3 \pi \mathrm{a}^{2}}{16}$
(C) $\frac{3 \pi a^{2}}{32}$
(D) $3 \pi a^{2}$
17. If A_{1} is the area enclosed by the curve $x y=1, x$-axis and the ordinates $x=1, x=2$; and A_{2} is the area enclosed by the curve $x y=1, x$-axis and the ordinates $x=2, x=4$, then
(A) $A_{1}=2 A_{2}$
(B) $A_{2}=2 A_{1}$
(C) $A_{2}=2 A_{1}$
(D) $A_{1}=A_{2}$
18. The area bounded by the curve $y=f(x), x$-axis and the ordinates $x=1$ and $x=b$ is $(b-1) \sin (3 b+4), \forall b \in R$, then $f(x)=$
(A) $(x-1) \cos (3 x+4)$
(B) $\sin (3 x+4)$
(C) $\sin (3 x+4)+3(x-$

1) $\cos (3 x+4)$
(D) none of these
19. Find the area of the region bounded by the curves $y=x^{2}+2, y=x, x=0$ and $x=3$.
(A) $\frac{21}{2}$ sq. unit
(B) 22 sq. unit
(C) 21 sq. unit
(D) none of these
20. The areas of the figure into which curve $y^{2}=6 x$ divides the circle $x^{2}+y^{2}=16$ are in the ratio
(A) $\frac{2}{3}$
(B) $\frac{4 \pi-\sqrt{3}}{8 \pi+\sqrt{3}}$
(C) $\frac{4 \pi+\sqrt{3}}{8 \pi-\sqrt{3}}$
(D) none of these
21. The triangle formed by the tangent to the curve $f(x)=x^{2}+b x-b$ at the point $(1,1)$ and the coordinate axes, lies in the first quadrant. If its area is 2 , then the value of b is
[IIT - 2001]
(A) -1
(B) 3
(C) -3
(D) 1

EXERCISE-V

Find the area of the region bounded by the curve $y^{2}=2 y-x$ and the y-axis.
2. Find the value of c for which the area of the figure bounded by the curves $y=\sin 2 x$, the straight lines $x=\pi / 6, x=c \&$ the abscissa axis is equal to $1 / 2$.
3. For what value of ' a ' is the area bounded by the curve $y=a^{2} x^{2}+a x+1$ and the straight line $y=0, x=0 \& x=1$ the least?
4. Find the area of the region bounded in the first quadrant by the curve C : $y=\tan x$, tangent drawn to
9. Draw a neat \& clean graph of the function $f(x)=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in[-1,1]$ \& fi
between the graph of the function \& the x-axis as x varies from 0 to 1 .
10. Find the area of the loop of the curve, $a y^{2}=x^{2}(a-x)$.
11. Let $b \neq 0$ and for $j=0,1,2, \ldots \ldots, n$, let S_{j} be the area of the region bounded by the y
$x e^{a y}=\sin$ by, $\frac{j \pi}{b} \leq y \leq \frac{(j+1) \pi}{b}$. Show that $S_{0,} S_{1}, S_{2}, \ldots, S_{n}$ are in geometric pron
their sum for $a=-1$ and $b=\pi$.
12. Find the area of the region bounded by the curves, $y=x^{2}, y=\left|2-x^{2}\right| \& y=2$

9. Draw a neat \& clean graph of the function $f(x)=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in[-1,1] \&$ find the area enclosed
between the graph of the function \& the x-axis as x varies from 0 to 1 .
10. Find the area of the loop of the curve, $a y^{2}=x^{2}(a-x)$.
11. Let $b \neq 0$ and for $j=0,1,2, \ldots \ldots, n$, let S_{j} be the area of the region bounded by the y-axis and the curvem
$x e^{a y}=\sin$ by, $\frac{j \pi}{b} \leq y \leq \frac{(j+1) \pi}{b}$. Show that $S_{0}, S_{1}, S_{2}, \ldots, S_{n}$ are in geometric progression. Also, find
their sum for $a=-1$ and $b=\pi$.
12. Find the area of the region bounded by the curves, $y=x^{2}, y=\left|2-x^{2}\right| \& y=2$
9. Draw a neat $\&$ clean graph of the function $f(x)=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in[-1,1] \&$ find the area enclosed
between the graph of the function \& the x-axis as x varies from 0 to 1 .
10. Find the area of the loop of the curve, $a y^{2}=x^{2}(a-x)$.
11. Let $b \neq 0$ and for $j=0,1,2, \ldots \ldots, n$, let S_{j} be the area of the region bounded by the y-axis and the curvec
$x e^{a y}=\sin$ by, $\frac{j \pi}{b} \leq y \leq \frac{(j+1) \pi}{b}$. Show that $S_{0}, S_{1}, S_{2}, \ldots, S_{n}$ are in geometric progression. Also, find
their sum for $a=-1$ and $b=\pi$.
12. Find the area of the region bounded by the curves, $y=x^{2}, y=\left|2-x^{2}\right| \& y=2$
9. Draw a neat \& clean graph of the function $f(x)=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in[-1,1]$ \& fi
between the graph of the function \& the x-axis as x varies from 0 to 1 .
10. Find the area of the loop of the curve, $a y^{2}=x^{2}(a-x)$.
11. Let $b \neq 0$ and for $j=0,1,2, \ldots \ldots, n$, let S_{j} be the area of the region bounded by the y
$x e^{a y}=\sin$ by, $\frac{j \pi}{b} \leq y \leq \frac{(j+1) \pi}{b}$. Show that $S_{0,} S_{1}, S_{2}, \ldots, S_{n}$ are in geometric pron
their sum for $a=-1$ and $b=\pi$.
12. Find the area of the region bounded by the curves, $y=x^{2}, y=\left|2-x^{2}\right| \& y=2$ which lies to the right of the line $x=1$.

A normal to the curve, $x^{2}+\alpha x-y+2=0$ at the point whose abscissa is 1 , is parallel to the line $y=x$. Find the area in the first quadrant bounded by the curve, this normal and the axis of ' x '.
8. Find the area between the curve $y^{2}(2 a-x)=x^{3} \&$ its asymptotes.
(ii) At what value of ' b ' $(1<b<2)$ the area of the figure bounded by these curves, the lines $x=b \& x=2$ equal to $1-1 / b$.
Find the values of $m(m>0)$ for which the area bounded by the line $y=m x+2$ and $x=2 y-y^{2}$ is, (i) $9 / 2$ square units \& (ii) minimum. Also find the minimum area.

Consider the two curves $y=1 / x^{2} \& y=1 /[4(x-1)]$.
(i) At what value of ' a ' $(a>2)$ is the reciprocal of the area of the figure bounded by the curves, the lines $x=2 \& x=a$ equal to 'a' itself?

$$
\left[\begin{array}{ccc}
4 a^{2} & 4 a & 1 \\
4 b^{2} & 4 b & 1 \\
4 c^{2} & 4 c & 1
\end{array}\right]\left[\begin{array}{c}
f(-1) \\
f(1) \\
f(2)
\end{array}\right]=\left[\begin{array}{l}
3 a^{2}+3 a \\
3 b^{2}+3 b \\
3 c^{2}+3 c
\end{array}\right], f(3
$$

point V. A is a point of intersection of $y=f(x)$ with x-axis and point B is such that chord $A B$ subtends a^{Y} right angle at V . Find the area enclosed by $\mathrm{f}(\mathrm{x})$ and cheord AB .
[IIT-2005, 6] ${ }_{\square}$

ANSWER
 EXERCISE-IV

6. $\mathrm{a}=1+\mathrm{e}^{2}, \mathrm{~b}=1+\mathrm{e}^{-2}$
7. $\frac{7}{6}$
8. $3 \pi \mathrm{a}^{2}$
9. B
10. C
11. B
12. B
13. B
14. D
15. C
16. A
17. C
18. B
19. A
20. A
21. D
22. C
23. A
24. D
25. C
26. A
27. C
28. C
29. $3(\sqrt{3}-1)$ sq. units
30. $\frac{8 \mathrm{a}^{2}}{15}$
31. $\frac{20}{3}-4 \sqrt{2}$ sq. units
32. $\frac{125}{3}$ square units.

EXERCISE-V

1. $4 / 3$ sq. units
2. $\mathrm{c}=-\frac{\pi}{6}$ or $\frac{\pi}{3}$
3. $\mathrm{a}=-\frac{3}{4}$

$\stackrel{\stackrel{1}{山}}{\stackrel{\text { r }}{4}}$
4. $\frac{1}{2} \ln 2-\frac{1}{4} 5$.
5. (i) $m=1$,
(ii) $m=\infty ; A_{\min }=4 / 3$
[^1]
[^0]: IZ $\mathbf{j 0} \boldsymbol{\dagger I}$ əద̂ed

[^1]: Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

