EY CONCEPTS

- Q.3 Find the area of the region $\{(x, y) : 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2\}$.
- Find the value of c for which the area of the figure bounded by the curves $y = \sin 2x$, the straight lines $x = \pi/6$, x = c & the abscissa axis is equal to 1/2.
- The tangent to the parabola $y = x^2$ has been drawn so that the abscissa x_0 of the point of tangency belongs to the interval [1, 2]. Find x_0 for which the triangle bounded by the tangent, the axis of ordinates \mathbf{a} & the straight line $y = x_0^2$ has the greatest area. page 10
- Compute the area of the region bounded by the curves y = e.x. ln x & y = ln x/(e.x) where ln e=1.
 - A figure is bounded by the curves $y = \sqrt{2} \sin \frac{\pi x}{4}$, y = 0, x = 2 & x = 4. At what angles to the positive
- x-axis straight lines must be drawn through (4,0) so that these lines partition the figure into three parts of the same size. Find the area of the region bounded by the curves , $y = \log_e x$, $y = \sin^4 \pi x \& x = 0$. Find the area bounded by the curves $y = \sqrt{1-x^2}$ and $y = x^3 x$. Also find the ratio in which the y-axis divided this area.
- If the area enclosed by the parabolas $y = a x^2$ and $y = x^2$ is $18\sqrt{2}$ sq. units. Find the value of 'a'.
- The line 3x + 2y = 13 divides the area enclosed by the curve,
- $9x^2 + 4y^2 18x 16y 11 = 0$ into two parts. Find the ratio of the larger area to the smaller area.
- Find the area of the region enclosed between the two circles $x^2 + y^2 = 1 \& (x-1)^2 + y^2 = 1$
- <u>9</u>03 903 7779, Find the values of m (m > 0) for which the area bounded by the line y = mx + 2 and $x = 2y - y^2$ is, (i) 9/2 square units & (ii) minimum. Also find the minimum area.
- Bhopal Phone: 0 Find the ratio in which the area enclosed by the curve $y = \cos x$ ($0 \le x \le \pi/2$) in the first quadrant is divided by the curve $y = \sin x$.
- Find the area enclosed between the curves : $y = \log_{e}(x + e)$, $x = \log_{e}(1/y)$ & the x-axis.
- Find the area of the figure enclosed by the curve $(y \arcsin x)^2 = x x^2$.
- For what value of 'a' is the area bounded by the curve $y = a^2x^2 + ax + 1$ and the straight line $y = a^2x^2 + ax + 1$ x = 0 & x = 1 the least ?
- x = 0 & x = 1 the least ? Find the positive value of 'a' for which the parabola $y = x^2 + 1$ bisects the area of the rectangle with vertices (0, 0), (a, 0), $(0, a^2 + 1)$ and $(a, a^2 + 1)$. Y. Ř
- Compute the area of the curvilinear triangle bounded by the y-axis & the curve, $y = \tan x \& y = (2/3) \cos x.$
- **EREE Download Study Package from website:** www.**TekoClasses.com &** www.**MathsBySuhag.com 8** www.**MathsBySuhag.com 7** www.**TekoClasses.com 8** www.**MathsBySuhag.com 7** www.**TekoClasses.com 8** www.**MathsBySuhag.com 7** www.**MathsBySuhag.com 7** www.**MathsBySuhag.com 7** www.**MathsBySuhag.com 7** www.**MathsBySuhag.com 7** www.**MathsBySuhag.com 7** www.**MathsBySuhag.com 8** www.**MathsBySuhag.com 7** www.**MathsBySuhag.com 8** www.**MathsBySuhag.com 8** www.**MathsBySuhag.com 8** www.**MathsBySuhag.com 1** www.**WathsBySuhag.com 1** waters **1** waters Ś A₁: The area bounded by the curve C & the positive x-axis between the origin & the ordinate at x = a. A₂: The area bounded by the curve C & the negative x-axis between the ordinate x = a & the origin. Prove that A₁ + A₂ + 8 A₁ A₂ = 4.
 - Find the area bounded by the curve $y = x e^{-x}$; xy = 0 and x = c where c is the x-coordinate of the curve inflection point.

Find the value of 'c' for which the area of the figure bounded by the curve, $y = 8x^2 - x^5$, the straight lines x = 1 & x = c & the abscissa axis is equal to 16/3.

- Find the area bounded by the curve $y^2 = x \& x = |y|$.
- Teko Classes, Maths : Suhag Find the area bounded by the curve $y = x e^{-x^2}$, the x-axis, and the line x = c where y (c) is maximum Find the area of the region bounded by the x-axis & the curves defined by,
 - $y = \tan x$, $-\pi/3 \le x \le \pi/3$ $= \cot x$, $\pi/6 \le x \le 3\pi/2$

F	EXERCISE-II				
JO2.1	In what ratio does the x-axis divide the area of the region bounded by the parabolas $y = 4x - x^2$ & $y = x^2 - x$?				
Q.2	Find the area bounded by the curves $y = x^4 - 2x^2 \& y = 2x^2$.				
10 Q.3 Q.4 Q.4	Sketch the region bounded by the curves $y = \sqrt{5 - x^2}$ & $y = x - 1 $ & find its area. Find the equation of the line passing through the origin and dividing the curvilinear triangle with vertex at the origin, bounded by the curves $y = 2x - x^2$, $y = 0$ and $x = 1$ into two parts of equal area.				
Math ⁶⁷⁰	Consider the curve $y = x^n$ where $n > 1$ in the 1 st quadrant. If the area bounded by the curve, the x-axis and the tangent line to the graph of $y = x^n$ at the point (1, 1) is maximum then find the value of n.				
Q.6	and the tangent line to the graph of $y = x^n$ at the point (1, 1) is maximum then find the value of n. Consider the collection of all curve of the form $y = a - bx^2$ that pass through the the point (2, 1), where a and b are positive constants. Determine the value of a and b that will minimise the area of the region bounded by $y = a - bx^2$ and x-axis. Also find the minimum area. In the adjacent graphs of two functions $y = f(x)$ and $y = sinx$				
www.TekoClasses.com & www.MathsBySuhag.com 8.0 (i) (i) (i) (i) (i)	In the adjacent graphs of two functions $y = f(x)$ and $y = \sin x$ are given. $y = \sin x$ intersects, $y = f(x)$ at A (a, f(a)); B(π , 0) and C(2 π , 0). A _i (i = 1, 2, 3) is the area bounded by the curves $y = f(x)$ and $y = \sin x$ between $x = 0$ and $x = a$; i = 1, between $x = a$ and $x = \pi$; i = 2, between $x = \pi$ and $x = 2\pi$; i = 3. If A ₁ = 1 - sina + (a - 1)cosa, determine the function f(x). Hence determine 'a' and A ₁ . Also calculate A ₂ and A ₃ . Consider the two curves $y = 1/x^2 & x = 1/[A(x = 1)]$				
Q.8 (i) Q.9	Consider the two curves $y = 1/x^2 \& y = 1/[4(x-1)]$. At what value of 'a' (a > 2) is the reciprocal of the area of the fig. bounded by the curves, the lines $x = 2$ & $x = a$ equal to 'a' itself ? At what value of 'b' (1 < b < 2) the area of the figure bounded by these curves, the lines $x = b \& x = 2$ equal to $1 - 1/b$. Show that the area bounded by the curve $y = \frac{\ln x - c}{x}$, the x-axis and the vertical line through the maximum point of the curve is independent of the constant c				
website:	maximum point of the curve is independent of the constant c. For what value of 'a' is the area of the figure bounded by the lines, $y = \frac{1}{x}$, $y = \frac{1}{2x-1}$, $x = 2$ & $x = a$ equal to $ln \frac{4}{\sqrt{5}}$?				
G Q.11 Q .12	Compute the area of the loop of the curve $y^2 = x^2 [(1+x)/(1-x)]$. Find the value of K for which the area bounded by the parabola $y = x^2 + 2x - 3$ and the line \mathbf{x}				
generation of the second secon	y = Kx + 1 is least. Also find the least area. Let A _n be the area bounded by the curve y = $(\tan x)^n$ & the lines $x = 0$, $y = 0$ & $x = \pi/4$. Prove that for $x = n > 2$, A _n + A _{n-2} = $1/(n-1)$ & deduce that $1/(2n+2) < A_n < 1/(2n-2)$.				
A Pac V Pac	If f (x) is monotonic in (a, b) then prove that the area bounded by the ordinates at $x = a$; $x = b$; $y = f(x)$ and $y = f(c)$, $c \in (a, b)$ is minimum when $c = \frac{a+b}{2}$. Hence if the area bounded by the graph of $f(x) = \frac{x^3}{3} - x^2 + a$, the straight lines $x = 0$, $x = 2$ and the x-axis is minimum then find the value of 'a'.				
Stu	x^3 2 x^3				
	Hence if the area bounded by the graph of $f(x) = \frac{1}{3} - x^2 + a$, the straight lines $x = 0$, $x = 2$ and the				
09	x-axis is minimum then find the value of 'a'. Consider the two curves $C_1 : y = 1 + \cos x \& C_2 : y = 1 + \cos (x - \alpha)$ for $\alpha \in \left(0, \frac{\pi}{2}\right)$; $x \in [0, \pi]$. Find $\frac{\pi}{2}$ the value of α , for which the area of the figure bounded by the curves $C_1, C_2 \& x = 0$ is same as that of α .				
₹Q.15	Consider the two curves $C_1 : y = 1 + \cos x \& C_2 : y = 1 + \cos (x - \alpha)$ for $\alpha \in \left[0, \frac{\pi}{2}\right]$; $x \in [0, \pi]$. Find $\frac{\omega}{\Omega}$				
REE Download Study Package ⁶¹⁷⁰ ⁷¹⁷ 	the value of α , for which the area of the figure bounded by the curves C_1 , $C_2 \& x = 0$ is same as that of ϕ the figure bounded by C_2 , $y = 1 \& x = \pi$. For this value of α , find the ratio in which the line $y = 1$ divides ϕ the area of the figure by the curves C_1 , $C_2 \& x = \pi$. Find the area bounded by $y^2 = 4(x+1)$, $y^2 = -4(x-1) \& y = x $ above axis of x .				
LL_					
— Q.17	Compute the area of the figure which lies in the first quadrant inside the curve				

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com $x^2 + y^2 = 3 a^2$ & is bounded by the parabola $x^2 = 2 ay$ & $y^2 = 2 ax$ (a > 0). (1, -1) & (1, -1). Let S be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region S & find its area. Find the whole area included between the curve $x^2y^2 = a^2(y^2 - x^2)$ & its asymptotes (asymptotes are the lines which meet the curve at infinity). For what values of $a \in [0, 1]$ does the area of the figure bounded by the graph of the function y = f(x) and the straight lines x = 0, x = 1 & y = f(a) is at a minimum & for what values it is at a maximum if $f(x) = \sqrt{1-x^2}$. Find also the maximum & the minimum areas. Find the area enclosed between the smaller arc of the circle $x^2 + y^2 - 2x + 4y - 11 = 0$ & the parabola $y = -x^2 + 2x + 1 - 2\sqrt{3}$. Draw a neat and clean graph of the function $f(x) = \cos^{-1}(4x^3 - 3x)$, $x \in [-1, 1]$ and find the area enclosed between the graph of the function and the x-axis as x varies from Q to 1. A curve C is said to "bisect the area" the region between $C_1 \& C_2$, if for each point P of C, the two shaded regions A & B shown in the figure have equal areas. Determine the upper curve C_2 , given that the bisecting curve C has the equation $y = x^2 \&$ that the lower curve C_1 has the equation $y = x^2/2$. For what values of $a \in [0, 1]$ does the area of the figure bounded by the graph of the function y = f(x) of x = 1, y = f(a) have the greatest value and for what values does it by the bounded by the graph of the function y = f(x) of x = 1. Let $C_1 \& C_2$ be two curves passing through the origin as shown in the figure. value, if, $f(x) = x^{\alpha} + 3x^{\beta}$, $\alpha, \beta \in \mathbb{R}$ with $\alpha > 1, \beta > 1$. Given $f(x) = \int_{-\infty}^{x} e^{t} (\log \sec t - \sec^{2} t) dt$; $g(x) = -2e^{x} \tan x$. Find the area bounded by the curves value, if, $f(x) = x^{\alpha} + 3x^{\beta}$, $\alpha, \beta \in \mathbb{R}$ with $\alpha > 1, \beta > 1$. Sir), Bhopal y = f(x) and y = g(x) between the ordinates x = 0 and $x = \frac{\pi}{2}$ **EXERCISE-III** Let $f(x) = Maximum \{x^2, (1-x)^2, 2x(1-x)\}$, where $0 \le x \le 1$. Determine the area of the region bounded by the curves y = f(x), x - axis, x = 0 & x = 1. [JEE '97, 5] v Indicate the region bounded by the curves $x^2 = y$, y = x + 2 and x-axis and obtain the area enclosed by $\dot{\phi}$. ea enclosed by [REE '97, 6] (1,1) C₁ (1,1) C₁ (1,0) R (1,0) R (1,0) R (1,0) R (1,0) (1, them. (1/2,1)Let $C_1 \& C_2$ be the graphs of the functions $y = x^2 \& y = 2x$, $0 \le x \le 1$ respectively. Let C₃ be the graph of a function y = f(x), $0 \le x \le 1$, $f(\hat{0}) = 0$. For a point P on C_1 , let the lines through P, parallel to the axes, meet $C_2 \& C_3$ at Q & R respectively (see figure). If for every position of $P(on C_1)$, the areas of the shaded regions OPQ & ORP are equal, determine the function f(x). [JEE '98, 8] Indicate the region bounded by the curves $y = x \ln x \& y = 2x - 2x^2$ and obtain the area enclosed by them. For which of the following values of m, is the area of the region bounded by the curve $y = x - x^2$ and the line y = mx equals 9/2 ? (A) - 4(B) - 2(C) 2(D)4 $\begin{cases} 2x & \text{for } |x| \le 1\\ x^2 + ax + b & \text{for } |x| > 1 \end{cases}$ Let f(x) be a continuous function given by f(x) =Find the area of the region in the third quadrant bounded by the curves, $x = -2y^2$ and

Get S	Solution of These Pa y = f(x) lying on the left	ckages & Learn by ft of the line $8x + 1 = 0$	y Video Tutoria).	als on www.Ma [JEE '99, 3 +	athsBySuhag.com - 10 (out of 200)]	١		
Q.6	Find the area of the region lying inside $x^2 + (y-1)^2 = 1$ and outside $c^2x^2 + y^2 = c^2$ where $c = \sqrt{2} - 1$. [REE '99, 6]							
& www.MathsBySuhag.com 8.9 8.9 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	Find the area enclosed by the parabola $(y-2)^2 = x - 1$, the tangent to the parabola at (2, 3) and the x-axis. [REE 2000,3]							
လ္ Q.8		Let $b \neq 0$ and for $j = 0, 1, 2, \dots, n$, let S_j be the area of the region bounded by the y axis and the curve $\bigcup_{\underline{0}}$						
hsB	$xe^{ay} = sinby, \frac{j\pi}{b} \le y \le \frac{(j+1)\pi}{b}$. Show that $S_0, S_1, S_2, \dots, S_n$ are in geometric progression. Also,							
/at	find their sum for $a = -1$ and $b = \pi$. [JEE'2001, 5].							
Z ≥Q.9	The area bounded by	the curves $y = x - 1$	l and $y = - x +$	1 is		588		
ş	(A) 1	(B) 2	(C) $2\sqrt{2}$	(D) 4		8930		
× & Q.10 E O O 11	Find the area of the region bounded by the curves $y = x^2$, $y = 2-x^2 $ and $y = 2$, which lies to the right of the line $x = 1$. [JEE '2002, (Scr)] [JEE '2002, (Mains)]							
• 2.11	If the area bounded by $y = ax^2$ and $x = ay^2$, $a > 0$, is 1, then $a =$							
asses	(A) 1	(B) $\frac{1}{\sqrt{3}}$	(C) $\frac{1}{3}$	(D) –	$\frac{1}{\sqrt{3}}$	3 903		
Q.12(a	[JEE '2004, (Scr)] $\overset{\circ}{\text{B}}$							
– (b)	(b) Find the area bounded by the curves $x^2 = y$, $x^2 = -y$ and $y^2 = 4x - 3$. (b) Find the area bounded by the curves $x^2 = y$, $x^2 = -y$ and $y^2 = 4x - 3$.							
₹								
	(b) If $4b^2$ 4b 1 $f(1) = 3b^2 + 3b$, $f(x)$ is a quadratic function and its maximum value occurs at $2b^2$							
bsite:	a point V A is a point of intersection of $y = f(y)$ with y axis and point P is such that about AP subtands							
sqe	a right angle at V. Find the area enclosed by $f(x)$ and chord AB. [JEE '2005 (Mains), 4 + 6]							
Ž _{Q.13}	Match the following							
μο								
efr	(i) $\int (\sin x)^{\cos x} (\cos x \cot x - \log(\sin x)^{\sin x}) dx$ (A) 1							
age	(ii) Area bounded by -	$-4y^2 = x \text{ and } x - 1 = -4y^2 = x$. Ka		
l C K	(iii) Cosine of the angle $y = 3^{x-1} \log x$ and	e of intersection of cur $1 y - x^{x} - 1$ is	ves (C) 6	$\ln 2$		g R		
Ба	y = 5 log x and	y - x 1 15	(D) 4		[JEE 2006, 6]	uha		
dy		ЛКІ				S 		
Stu	ANSWER EXERCISE-I							
be				-		°, ∑		
$\frac{\ddot{O}}{C}$ Q.1	5/6 sq. units	Q 2. 21/2 s	q. units	Q 3. 23/6 sq.	units	sse		
≷ Q 4. c	$=-\frac{\pi}{6}$ or $\frac{\pi}{3}$	Q 5. $x_0 = 2$,	Ū.	Q 6. $(e^2 - 5)/4$	4 e sq. units	Teko Classes, Maths : Suhag R. Kariya (S. R. K		
Щ Q 7.π	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{aright arghe at V. Find the area enclosed by } (x) \text{ and chord AB.} \\ \text{(i) } \int_{0}^{\pi/2} (\sin x)^{\cos x} (\cos x \cot x - \log(\sin x)^{\sin x}) dx \\ \text{(i) } \text{Area bounded by } - 4y^2 = x \text{ and } x - 1 = -5y^2 \\ \text{(i) } \int_{0}^{\pi/2} (\sin x)^{\cos x} (\cos x \cot x - \log(\sin x)^{\sin x}) dx \\ \text{(ii) Area bounded by } - 4y^2 = x \text{ and } x - 1 = -5y^2 \\ \text{(B) } 0 \\ \text{(iii) Cosine of the angle of intersection of curves} \\ y = 3^{x-1} \log x \text{ and } y = x^x - 1 \text{ is } \\ \text{(D) } 4/3 \\ \text{(D) } 4/3 \\ \text{(JEE 2006, 6]} \end{array}$							
$\frac{1}{2}$ Q 9. $\frac{\pi}{2}$	$\frac{\pi-1}{\pi+1}$	Q 10. a = 9	Q 11	$\cdot \frac{3\pi+2}{\pi-2}$				

(A)

(A) $\frac{4}{9}$

 $\pi + 4$

(A)

The area bounded by the x-axis and the curve $y = 4x - x^2 - 3$ is

$$\frac{1}{3}$$
 (B) $\frac{2}{3}$ (C) $\frac{4}{3}$ (D) $\frac{8}{3}$

The area bounded by the curve y = sin ax with x-axis in one arc of the curve is

(A)
$$\frac{4}{a}$$
 (B) $\frac{2}{a}$ (C) $\frac{1}{a}$ (D) 2a

The area contained between the curve $xy = a^2$, the vertical line x = a, x = 4a (a > 0) and x-axis is (A) $a^2 \log 2$ (B) 2a² log 2 $(C) a \log 2$ (D) 2a log 2

 $3\pi + 4$

(C) π a²

(D) 2

(D) none

(D) <u>3π</u>

(D) none

The area of the closed figure bounded by the curves $y = \sqrt{x}$, $y = \sqrt{4-3x}$ & y = 0 is:

The area of the closed figure bounded by the curves $y = \cos x$; $y = 1 + \frac{2}{x} & x = \frac{1}{x} + \frac{2}{$

The area included betwee	en the curve $xy^2 = a^2(a - x)$ & its asymptote is:
$-a^2$	

(B) $2\pi a^2$

The area bounded by $x^2 + y^2 - 2x = 0$ & $y = \sin \frac{\pi x}{2}$ in the upper half of the circle is:

(B) $\frac{\pi}{4} - \frac{2}{\pi}$ (A) $\frac{\pi}{2} - \frac{4}{\pi}$ (C) $\pi - \frac{8}{\pi}$ (D) none

The area of the region enclosed between the curves $7x^2 + 9y + 9 = 0$ and $5x^2 + 9y + 27 = 0$ is: (A) 2 (B) 4 (C) 8 (D) 16

The area bounded by the curves $y = x (1 - \ln x)$; $x = e^{-1}$ and a positive X-axis between $x = e^{-1}$ and x = e is :

(A) 2 (B) 1 (C) 4 (D) none of these

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
12. The area bounded by the curves
$$\sqrt{x} + \sqrt{y} = 1$$
 and $x + y = 1$ is
(A) $\frac{1}{3}$ (B) $\frac{1}{6}$ (C) $\frac{1}{2}$ (D) none of these
b > 1, then (k) is
(A) $\sqrt{(x-1)}$ (B) $\sqrt{(x+1)}$ (C) $\sqrt{(x^2+1)}$ (D) $x/\sqrt{(1+x^2)}$
14. The area ounded by x-axis, curve $y = f(x)$, and lines $x = 1$, $x = b$ is equal to $\sqrt{(b^2+1)} - \sqrt{2}$ for all gravity
(A) $\sqrt{(x-1)}$ (B) $\sqrt{(x+1)}$ (C) $\sqrt{(x^2+1)}$ (D) $x/\sqrt{(1+x^2)}$
14. The area of the region for which $0 < y < 3 - 2x - x^2$ and $x > 0$ is
(A) $\sqrt{3}(3-2x-x^2) dx$ (B) $\frac{1}{9}(3-2x-x^2) dx$ (C) $\frac{1}{9}(3-2x-x^2) dx$ (D) $\frac{1}{2}(3-2x-x^2) dx$
(A) $\frac{1}{3}(3-2x-x^2) dx$ (B) $\frac{1}{9}(3-2x-x^2) dx$ (C) $\frac{1}{9}(3-2x-x^2) dx$ (D) $\frac{1}{7}(3-2x-x^2) dx$
(A) $\frac{37a^2}{8}$ (B) $\frac{37a^2}{16}$ (C) $\frac{37a^2}{32}$ (D) $3\pia^2$
(D) $3\pia^2$
15. The area bounded by the curve $x = a\cos^3 t$, $y = a\sin^3 t$ is
(A) $\frac{37a^2}{8}$ (B) $\frac{37a^2}{16}$ (C) $\frac{37a^2}{32}$ (D) $3\pia^2$
(D) $3\pia^2$
16. The area bounded by the curve $xy = 1$, $x - axis$ and the ordinates $x = 1$, $x = 2$; and A_x is the area is go on the curve $xy = 1$, $x - axis$ and the ordinates $x = 2$, $x = 4$, then
(A) $A_x = A_x$ (B) $A_x = 2A_x$ (C) $A_x = 2A_x$ (D) $A_x = A_x$
(D) $A_x = A_x$ (D) $A_x = A_x$ (C) $A_x = 2A_x$ (D) $A_x = A_x$
(D) $A_x = A_x$ (D) $A_x = A_x$ (D) $A_x = A_x$
(C) $A_x = 2A_x + A_x$ (D) $A_x = A_x$ (D) $A_x = A_x$
(A) $\frac{2}{3}$ (B) $\frac{4\pi - \sqrt{3}}{8\pi + \sqrt{3}}$ (C) $\frac{4\pi + \sqrt{3}}{8\pi - \sqrt{3}}$ (D) none of these
19. Find the area of the region bounded by the curve $y = x^2 + 2, y = x, x = 0$ and $x = 3$.
(A) $\frac{2}{3}$ (B) $\frac{4\pi - \sqrt{3}}{8\pi + \sqrt{3}}$ (C) $\frac{4\pi + \sqrt{3}}{8\pi - \sqrt{3}}$ (D) none of these
19. The triangle formed by the targent to the curve $(x) = x^2 + bx - b$ at the point (1, 1) and the coordinate axes, y = y + B_x + a x + a x = 0 the finguation the interval or b is [IIT - 2001]
20. The areas of the fingue and the first quadrant by the curve $y = a^3x^3 + ax + 1$ and the straight lines $y = x^3$

C at x = $\frac{\pi}{4}$ and the x – axis. Find the values of m (m > 0) for which the area bounded by the line y = mx + 2 and 5 $x = 2y - y^2$ is, (i) 9/2 square units & (ii) minimum. Also find the minimum area. **e** 1 Consider the two curves $y = 1/x^2 \& y = 1/[4(x-1)]$. At what value of 'a' (a > 2) is the reciprocal of the area of the figure bounded by the curves, the $\frac{0}{20}$ (i) lines x = 2 & x = a equal to 'a' itself? ра At what value of 'b' (1 < b < 2) the area of the figure bounded by these curves, the lines (ii) x = b & x = 2 equal to 1 - 1/b.A normal to the curve, $x^2 + \alpha x - y + 2 = 0$ at the point whose abscissa is 1, is parallel to the line $\bigotimes_{x=1}^{\infty} y = x$. Find the area in the first quadrant bounded by the curve, this normal and the axis of 'x'. Draw a neat & clean graph of the function $f(x) = \cos^{-1} (4x^3 - 3x), x \in [-1, 1]$ & find the area enclosed the between the graph of the function & the x-axis as x varies from 0 to 1. Find the area of the loce 7779, Find the area of the loop of the curve, $ay^2 = x^2(a - x)$. Let $b \neq 0$ and for $j = 0, 1, 2, \dots, n$, let S_j be the area of the region bounded by the y-axis and the curve δ_{j} $xe^{ay} = sin by, \frac{j\pi}{b} \le y \le \frac{(j+1)\pi}{b}$. Show that $S_{0_1} S_1, S_2, \dots, S_n$ are in geometric progression. Also, find $\bigotimes_{0_1} S_1, S_2, \dots, S_n$ [IIT - 2001, 5]^O their sum for a = -1 and $b = \pi$. Find the area of the region bounded by the curves, $y = x^2$, $y = |2 - x^2| & y = 2$ Phon which lies to the right of the line x = 1. [IIT - 2002, 5] $\begin{bmatrix} 3a^2 + 3a \\ 3b^2 + 3b \\ 3c^2 + 3c \end{bmatrix}$, f(x) is a quadratic function and its maximum value occurs at a $4a^2$ $4b^2$ If Sir), point V. A is a point of intersection of y = f(x) with x-axis and point B is such that chord AB subtends a [IIT - 2005, 6] right angle at V. Find the area enclosed by f(x) and cheord AB. Teko Classes, Maths : Suhag R. Kariya (S. ANSWER **6.** $a = 1 + e^2$, $b = 1 + e^{-2}$ **7.** $\frac{7}{6}$ **8.** 3 π a² EXERCISE-IV B 2. C 3. B 4. B 5. B 6. D 7. C **9.** $3(\sqrt{3}-1)$ sq. units **10.** $\frac{8 a^2}{15}$ Α 9. C 10. B 11. A 12. A 13. D 14. C 17. D 18. C 19. A 15. B 16. A 20. C 21. C **11.** $\frac{20}{3} - 4\sqrt{2}$ sq. units **13.** $\frac{125}{3}$ square units. EXERCISE-V **1.** 4/3 sq. units **2.** $c = -\frac{\pi}{6}$ or $\frac{\pi}{3}$ **3.** $a = -\frac{3}{4}$ $\frac{1}{2} \ln 2 - \frac{1}{4}$ 5. (i) m = 1, (ii) m = ∞ ; A_{min} = 4/3