ARDA UNDER THE CURVES

Some questions (Assertion-Reason type) are given below. Each question contains Statement - 1 (Assertion) and Statement - 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. So select the correct choice :

Choices are :

(A) Statement - $\mathbf{1}$ is True, Statement $\mathbf{- 2}$ is True; Statement $\mathbf{- 2}$ is a correct explanation for Statement $\mathbf{- 1}$.
(B) Statement $\mathbf{- 1}$ is True, Statement $\mathbf{- 2}$ is True; Statement $\mathbf{-} \mathbf{2}$ is NOT a correct explanation for Statement $\mathbf{- 1}$.
(C) Statement - $\mathbf{1}$ is True, Statement - $\mathbf{2}$ is False.
(D) Statement - $\mathbf{1}$ is False, Statement - $\mathbf{2}$ is True.
209. Let $\left|A_{1}\right|$ be the area bounded between the curves $y=|x|$ and $y=1-|x| ;\left|A_{2}\right|$ be the area bounded between the curves $\mathrm{y}=-|\mathrm{x}|$ and $\mathrm{y}=|\mathrm{x}|-1$.
Statement-1: $\left|\mathrm{A}_{1}\right|=\left|\mathrm{A}_{2}\right|$
Statement-2: Area of two similar parallelograms are equal.
210. Statement-1: Area bounded between the curves $y=|x-3 \pi|$ and $y=\cos ^{-1}(\cos x)$ is $\pi^{2} / 2$

Statement-2: $|x-3 \pi|=3 \pi-x$ for $5 \pi / 2 \leq x \leq 3 \pi$

$$
\cos ^{-1}(\cos x)=x-2 \pi, 2 \pi \leq x \leq 3 \pi
$$

211. Statement-1: Area of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$ in the first quadrant is equal to π

Statement-2: Area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=a^{2}$ is $\pi a b$.
212. Statement-1: Area enclosed by the curve $|x|+|y|=2$ is 8 units

Statement-2: $|x|+|y|=2$ represents an square of side length $\sqrt{8}$ unit.
213. Statement-1: The area bounded by $y=x(x-1)^{2}$, the y-axis and the line $y=2$ is

$$
\int_{0}^{2}\left(x(x-2)^{2}-2\right) d x \text { is equal to } \frac{10}{3}
$$

Statement-2: The curve $y=x(x-1)^{2}$ is intersected by $y=2$ at $x=2$ only and for $0<x<2$, the curve $y=x(x-$ $1)^{2}$ lies below the line $\mathrm{y}=2$.
214. Let f be a non-zero odd function and $\mathrm{a}>0$.

Statement-1: $\int_{-a}^{a} f(x)=0$. Because
Statement-2: Area bounded by $\mathrm{y}=\mathrm{f}(\mathrm{x}), \mathrm{x}=\mathrm{a}, \mathrm{x}=-\mathrm{a}$ and $\mathrm{x}-\mathrm{axis}$ is zero.
215. Statement-1: The area of the curve $y=\sin ^{2} x$ from 0 to π will be more than that of the curve $y=\sin x$ from 0 to π.
Statement-2: $\mathrm{x}^{2}>\mathrm{x}$ if $\mathrm{x}>1$.
216. Statement-1: The area bounded by the curves $y=x^{2}-3$ and $y=k x+2$ is least if $k=0$.

Statement-2: The area bounded by the curves $y=x^{2}-3$ and $y=k x+2$ is $\sqrt{k^{2}+20}$.
217. Statement-1: The area of the ellipse $2 x^{2}+3 y^{2}=6$ will be more than the area of the circle $x^{2}+y^{2}-2 x+4 y+4=0$.
Statement-2: The length of the semi-major axis of ellipse $2 x^{2}+3 y^{2}=6$ is more than the radius of the circle $x^{2}+$ $y^{2}-2 x+4 y+4=0$.

Download FREE Study Package from www.TekoClasses.com \& Learn on Video

 www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 AREA UNDER CURVE PART 3 OF 3218. Statement-1: Area included between the parabolas $y=x^{2} / 4 a$ and the curve

$$
y=\frac{8 a b}{x^{2}+4 a^{2}} \text { is } \frac{a^{2}}{3}(6 \pi-4) \text { sq. units. }
$$

Statement-2: Both the curves are symmetrical about y-axis and required area is $\int_{x_{1}}^{x_{2}}\left(y_{2}-y_{1}\right) d x$
219. Statement-1: The area of the region bounded by $y^{2}=4 x, y=2 x$ is $1 / 3$ sq. units.

Statement-2: The area of the region bounded by $y^{2}=4 a x, y=m x$ is $\frac{8 a^{2}}{3 m^{3}}$ sq. units.
220. Statement-1: Area under the curve $y=\sin x$, above ' x ' axis between two ordinates $x=0 \& x=2 \pi$ is 4 units.

Statement-2: $\int_{0}^{2 \pi} \sin x d x=4$
221. Statement-1: Area under the curve $y=[|\sin x|+|\cos x|]$, where [] denotes the greatest integer function. above ' x ' axis and between the ordinates $=0 \& x=\pi$ is π units.
Statement-2: $\mathrm{f}(\mathrm{x})=|\sin \mathrm{x}|+|\cos \mathrm{x}|$ is periodic with fundamental period $\pi / 2$.
222. Statement-1: Area between $y=2-x^{2} \& y=-x$ is equal to $\int_{-1}^{2}\left(2+x-x^{2}\right) d x$

Statement-2: When a region is determined by curves that intersect, the intersection points give the units of integration.
223. Statement-1: Area of the region bounded by the lines $2 y=-x+8, x$-axis and the lines $x=3$ and $x=5$ is 4 sq. units.
Statement-2: Area of the region bounded by the lines $x=a, x=b, x$-axis and the curve $y=f(x)$ is $\int_{a}^{b} f(x) d x$.
224. Statement-1: The area of the region included between the parabola $y=\frac{3 x^{2}}{4}$ and the line $3 x-2 y+12=0$ is 27 sq. units.
Statement-2: The area bounded by the curve $y=f(x)$ the x - $a x$ is and $x=a, x=b$ is $\int_{a}^{b} f(x) d x$, where f is a continuous function defined on $[a, b]$.
225. Statement-1: The area of the region $\left\{\begin{array}{ll}(x, y): & 0 \leq y \leq x^{2}+1, \\ & 0 \leq y \leq x+1, \quad 0 \leq x \leq 2\end{array}\right\}=\frac{23}{3}$ sq. units.

Statement-2: The area bounded by the curves $y=f(x)$, x-axis ordinates $x=a, x=b$ is $\int_{a}^{2} f(x) d x$
226. Statement-1: Area bounded by $y^{2}=4 x$ and its latus rectum $=8 / 3$

Statement-2: Area of the region bounded by $y^{2}=4 a x$ and it is latus rectum $8 a^{2} / 3$

Answer Key

209. A 210. A
210. D
211. B 218. A
212. A
213. A
214. A
215. B
216. C
217. D 216. C
218. A 225. D
219. A

Details Solution

209. Clearly $\left|\mathrm{A}_{1}\right|=\left|\mathrm{A}_{2}\right|$

210. $\Delta=2 \int_{5 \pi / 2}^{3 \pi}[(x-2 \pi)-(3 \pi-x)] d x=2 \int_{5 \pi / 2}^{3 \pi}(2 x-5 \pi) \mathrm{d} x=\pi^{2} / 2$.
211. (d) Area of ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$ in the first quadrant $=\frac{1}{4} \times \pi \times 2 \times 1=\frac{\pi}{2}$.
212. (A) Clearly $|x|+|y|=2$ represents a square of $\sqrt{8}$ units and area of square is equal to square of the side length.
213. Solving $\mathrm{y}=\mathrm{x}(\mathrm{x}-1)^{2}$ and $\mathrm{y}=2$, we get $\mathrm{x}=2$. Hence $\mathrm{y}=\mathrm{x}(\mathrm{x}-1)^{2}$ intersects the line $\mathrm{y}=2$ at $x=2$ only.
Statement - II is true because of above and the graphs of $y=2$ and $y=x(x-1)^{2}$.
Statement - I is obviously true and it is because of statement - II.
Hence (a) is the correct answer.

214. Statement - I is true, as this is a property of definite integral.

As f is non-zero function, area bounded by given boundaries can not be zero.
Hence statement - II is false.
Hence (c) is the correct answer.
215. $\because \sin ^{2} \mathrm{x} \leq \sin \mathrm{x}: \forall \mathrm{x} \in(0, \pi)$

Therefore area of $y=\sin ^{2} x$ will be lesser from area of $y=\sin x$.
Statement - II is obviously true.
Hence (d) is the correct answer.
216. Let the line $y=k x+2$ cuts $y=x^{2}-3$ at $x=\alpha$ and $\alpha=\beta$, area bounded by the curves $=$
$\int_{\alpha}^{\beta}\left(y_{1}-y_{2}\right)=\int_{\alpha}^{\beta}\left\{(k x+2)-\left(x^{2}-3\right)\right\} d x$
$\Rightarrow \mathrm{f}(\mathrm{k})=\frac{\left(\mathrm{k}^{2}+20\right)^{3 / 2}}{6}$
which clearly shows that statement -II is false but $f(k)$ is least when $k=0$.
Hence (c) is the correct answer.

Download FREE Study Package from www.TekoClasses.com \& Learn on Video

 www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 AREA UNDER CURVE PART 3 OF 3217. Option (b) is correct.

The ellipse $\frac{x^{2}}{3}+\frac{y^{2}}{2}=1 \&$ the circles is $(x-1)^{2}+(y+2)^{2}=1$.
\Rightarrow Area of ellipse $=\pi \sqrt{3} \sqrt{2}=\sqrt{6} \pi$ and area of circle $=\pi .(1)^{2}=\pi$
\Rightarrow The Statement- 2 is true in this particular example. In general, this may not be true.
218. Required area $=2\left[\int_{0}^{2 a} \frac{8 a^{3}}{x^{2}+4 a^{2}} d x-\int_{0}^{2 a} \frac{x^{2}}{4 a} d x\right]$
$=\frac{\mathrm{a}^{2}}{3}(6 \pi-4)$
219. Req. area $=\int_{0}^{4 a / m^{2}}(\sqrt{4 a x}-m x) d x$
$=\frac{8 \mathrm{a}^{2}}{3 \mathrm{~m}^{3}}$ sq. units
220. $\int_{0}^{2 \pi} \sin x d x=[-\cos x]_{0}^{2 \pi}=[-\cos 2 \pi-(-\cos (0))]$
$=[-1-(-1)]=0$
So, c is correct.
221. $1 \leq|\sin x|+|\cos x| \leq \sqrt{2}$

So $[|\sin x|+|\cos x|]=1$
So $\int_{0}^{\pi} 1 . d x=\pi$
' b ' is correct.
223. Area $=\int_{3}^{5} \frac{8-x}{2} d x=\frac{1}{2}\left[8 x-\frac{x^{2}}{2}\right]_{3}^{5}=4$ sq. units.
224. (A)

Required area

$$
\int_{-2}^{4}\left(\frac{3 x+12}{2}-\frac{3}{4} x^{2}\right) d x=27 \text { sq. units. }
$$

225. (D)

Required area is

$$
\int_{0}^{1}\left(x^{2}+1\right) d x+\int_{1}^{2}(x+1) d x=\frac{23}{6} \text { sq. units. }
$$

226. \quad area $=$ ar (OAS)
$=\int_{0}^{1} 2 \sqrt{x} d x$
$=2\left[\frac{2}{3} \cdot \mathrm{x}^{3 / 2}\right]_{0}^{1}=\frac{4}{3} x=\frac{4}{3}$
Whose area $=2 \times \frac{4}{3}=\frac{8}{3}$ that is latus rectum by reason have latus rectum $=\frac{8 \mathrm{a}^{2}}{3}$
Ans. (A)
