Some questions (Assertion-Reason type) are given below. Each question contains Statement - $\mathbf{1}$ (Assertion) and Statement - 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. So select the correct choice :Choices are :
(A)Statement $\mathbf{- 1}$ is True, Statement $\mathbf{- 2}$ is True; Statement $\mathbf{- 2}$ is a correct explanation for Statement $\mathbf{- 1}$.
(B)Statement $\mathbf{- 1}$ is True, Statmnt $\mathbf{- 2}$ is True; Statement $\mathbf{- 2}$ is NOT a correct explanation for Statement $\mathbf{- 1}$.
(C) Statement - $\mathbf{1}$ is True, Statement - $\mathbf{2}$ is False.
(D) Statement - 1 is False, Statement - 2 is True.
253. Tangents are drawn from the origin to the circle $x^{2}+y^{2}-2 h x-2 h y+h^{2}=0(h \geq 0)$

Statement 1: Angle between the tangents is $\pi / 2$
Statement 2: The given circle is touching the co-ordinate axes.
254. Consider two circles $x^{2}+y^{2}-4 x-6 y-8=0$ and $x^{2}+y^{2}-2 x-3=0$

Statement 1: Both circles intersect each other at two distinct points
Statement 2: Sum of radii of two circles in greater than distance between the centres of two circles
255. $\quad C_{1}$ is a circle of radius 2 touching x-axis and y-axis. C_{2} is another circle of radius greater than 2 and touching the axes as well as the circle c_{1}.
Statement-1 : Radius of circle $c_{2}=\sqrt{2}(\sqrt{2}+1)(\sqrt{2}+2)$
Statement-2 : Centres of both circles always lie on the line $y=x$.
256. From the point $P(\sqrt{2}, \sqrt{6})$, tangents $P A$ and $P B$ are drawn to the circle $x^{2}+y^{2}=4$.

Statement-1 : Area of the quadrilateral OAPB (obeying origin) is 4.
Statement-2 : Tangents PA and PB are perpendicular to each other and therefore quadrilateral OAPB is a square.
257. Statement-1 : Tangents drawn from ends points of the chord $x+a y-6=0$ of the parabola $y^{2}=24 x$ meet on the line $x+6=0$
Statement-2 : Pair of tangents drawn at the end points of the parabola meets on the directrix of the parabola
258. Statement-1: Number of focal chords of length 6 units that can be drawn on the parabola $y^{2}-2 y-8 x$ $+17=0$ is zero Statement-2 : Lotus rectum is the shortest focal chord of the parabola
259. Statement-1 : Centre of the circle having $x+y=3$ and $x-y=1$ as its normal is $(1,2)$.

Statement-2 : Normals to the circle always passes through its centre.
260. Statement-1 : The number of common tangents to the circle $x^{2}+y^{2}=4$ and $x^{2}+y^{2}-6 x-8 y-24=$ 0 , is one
Statement-2 : If $C_{1} C_{2}=\left|r_{1}-r_{2}\right|$, then number of common tangents is three. Where $\mathrm{C}_{1} \mathrm{C}_{2}=$ Distance between the centres at both the circle and $\mathrm{r}_{1}, \mathrm{r}_{2}$ are the radius of the circle respectively
261. Statement-1 : The circle having equation $x^{2}+y^{2}-2 x+6 y+5=0$ intersects both the coordinate axes.
Statement-2 : The lengths of x and y intercepts made by the circle having equation $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$ are $2 \sqrt{g^{2}-c}$ and $2 \sqrt{f^{2}-c}$ respectively.
262. Statement-1 : The number of circles that pass through the points $(1,-7)$ and $(-5,1)$ and of radius 4, is two.
Statement-2 : The centre of any circle that pass through the points A and B lies on the perpendicular bisector of $A B$.
263. The line $O P$ and $O Q$ are the tangents from $(0,0)$ to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$.

Statement-1 : Equation of PQ is $\mathrm{fx}+\mathrm{gy}+\mathrm{c}=0$.
Statement-2 : Equation of circle $O P Q$ is $x^{2}+y^{2}+g x+f y=0$.
264. Statement-1: $x^{2}+y^{2}+2 x y+x+y=0$ represent circle passing through origin.

Statement-2 : Locus of point of intersection of perpendicular tangent is a circle
265. Statement-1 : Equation of circle touching x-axis at $(1,0)$ and passing through $(1,2)$ is $x^{2}+y^{2}-2 x-$ $2 \mathrm{y}+1=0$
Statement-2 : If circle touches both the axis then its center lies on $x^{2}-y^{2}=0$
266. Statement-1: Let C be any circle with centre $(0, \sqrt{2})$ has at the most two rational points on it

Download FREE Study Package from www.TekoClasses.com \& Learn on Video

Statement-2: A straight line cuts a circle at atmost two points
267. Tangents are drawn from each point on the line $2 x+y=4$ to the circle $x^{2}+y^{2}=1$

Statement-1: The chords of contact passes through a fixed point
Statement-2: Family of lines $\left(a_{1} x+b_{1} y+c_{1}\right)+k\left(a_{2} x+b_{2} y+c_{2}\right)=0$ always pass through a fixed point.
268. Statement-1: The common tangents of the circles $x^{2}+y^{2}+2 x=0$ and $x^{2}+y^{2}-6=0$ form an equilateral triangle
Statement-2: The given circles touch each other externally.
269. Statement-1: The circle described on the segment joining the points $(-2,-1),(0,-3)$ as diameter cuts the circle $x^{2}+y^{2}+5 x+y+4=0$ orthogonally
Statement-2: Two circles $x^{2}+y^{2}+2 g_{1} x+2 f_{1} y+c_{1}=0 x^{2}+y^{2}+2 g_{2} x+2 f_{2} y+c_{2}=0$ orthogonally if $2 \mathrm{~g}_{1} \mathrm{~g}_{2}+2 \mathrm{f}_{1} \mathrm{f}_{2}=\mathrm{c}_{1}+\mathrm{c}_{2}$
270. Statement-1 : The equation of chord of the circle $x^{2}+y^{2}-6 x+10 y-9=0$, which is bisected at $(-2$, 4) must be $x+y-2=0$.

Statement-2:In notations, the equation of the chord of the circle $S=0$ bisected at (x_{1}, y_{1}) must beT $=S_{1}$.
271. Statement-1 : If two circles $x^{2}+y^{2}+2 g x+2 f y=0$ and $x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y=0$ touch each other, then $\mathrm{f}^{\prime} \mathrm{g}=\mathrm{fg}^{\prime}$
Statement-2 : Two circles touch other, if line joining their centres is perpendicular to all possible common tangents.
272. Statement-1 : Number of circles passing through $(1,2),(4,7)$ and $(3,0)$ is one.

Statement-2 : One and only circle can be made to pass through three non-collinear points.
273. Statement-1 : The chord of contact of tangent from three points A, B, C to the circle $x^{2}+y^{2}=a^{2}$ are concurrent, then A, B, C will be collinear.
Statement-2 : A, B, C always lies on the normal to the circle $x^{2}+y^{2}=a^{2}$
274. Statement-1 : Circles $x^{2}+y^{2}=144$ and $x^{2}+y^{2}-6 x-8 y=0$ do not have any common tangent.

Statement-2 : If one circle lies completely inside the other circle then both have no common tangent.
275. Statement-1 : The equation $x^{2}+y^{2}-2 x-2 a y-8=0$ represents for different values of ' a ' a system of circles passing through two fixed points lying on the x -axis.
Statement-2 : $S=0$ is a circle $\& L=0$ is a straight line, then $S+\lambda L=0$ represents the family of circles passing through the points of intersection of circle and straight line. (where λ is arbitrary parameter).
276. Statement-1 : Lengths of tangent drawn from any point on the line $x+2 y-1=0$ to the circles $x^{2}+y^{2}$ $-16=0 \& x^{2}+y^{2}-4 x-8 y-12=0$ are equal
Statement-2 : Director circle is locus of point of intersection of perpendicular tangents.
277. Statement-1 : One \& only one circle can be drawn through three given points

Statement-2 : Every triangle has a circumcircle.
278. Statement-1: The circles $x^{2}+y^{2}+2 p x+r=0, x^{2}+y^{2}+2 q y+r=0$ touch if $\frac{1}{p^{2}}+\frac{1}{q^{2}}=\frac{1}{r}$

Statement-2 : Two circles with centre C_{1}, C_{2} and radii r_{1}, r_{2} touch each other if $r_{1} \pm r_{2}=c_{1} c_{2}$
279. Statement-1 : The equation of chord of the circle $x^{2}+y^{2}-6 x+10 y-9=0$ which is bisected at $(-2,4)$ must be $x+y-2=0$
Statement-2 : In notations the equation of the chord of the circle $s=0$ bisected at $\left(x_{1}, y_{1}\right)$ must be $T=S_{1}$.
280. Statement-1 : The equation $x^{2}+y^{2}-4 x+8 y-5=0$ represent a circle.

Statement-2 : The general equation of degree two $\mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}^{2}-2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$ represents a circle, if $\mathrm{a}=\mathrm{b} \& \mathrm{~h}=0$. circle will be real if $\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c} \geq 0$.
281. Statement-1 : The least and greatest distances of the point $P(10,7)$ from the circle $x^{2}+y^{2}-4 x-2 y-20=0$ are 5 and 15 units respectively.
Statement-2 : A point $\left(x_{1}, y_{1}\right)$ lies outside a circle $s=x^{2}+y^{2}+2 g x+2 f y+c=0$ if $s_{1}>0$ where $s_{1}=x_{1}^{2}+y_{1}^{2}+2 g x_{1}+2 f y_{1}+c$.
282. Statement-1 : The point (a, -a) lies inside the circle $x^{2}+y^{2}-4 x+2 y-8=0$ when ever $a \in(-1,4)$

Download FREE Study Package from www.TekoClasses.com \& Learn on Video

 www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 WhatsApp 9009260559 CIRCLE PART 2 OF 2Statement-2 : Point $\left(x_{1}, y_{1}\right)$ lies inside the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$, if $\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}+2 \mathrm{gx}_{1}+2 \mathrm{fy}_{1}+\mathrm{c}<0$.
283. Statement-1: If $n \geq 3$ then the value of n for which n circles have equal number of radical axes as well as radical centre is 5 .
Statement-2 : If no two of n circles are concentric and no three of the centres are collinear then number of possible radical centre $={ }^{n} C_{3}$.
284. Statement-1: Two circles $x^{2}+y^{2}+2 a x+c=0$ and $x^{2}+y^{2}+2 b y+c=0$ touches if $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c}$

Statement-2 : Two circles centres c_{1}, c_{2} and radii r_{1}, r_{2} touches each other if $r_{1} \pm r_{2}=c_{1} c_{2}$.
285. Statement-1 : Number of point $(a+1, \sqrt{3} a) a \in I$, lying inside the region bounded by the circles $x^{2}+$ $y^{2}-2 x-3=0$ and $x^{2}+y^{2}-2 x-15=0$ is 1 .
Statement-2 : Sum of squares of the lengths of chords intercepted by the lines $x+y=n, n \in N$ on the circle $x^{2}+y^{2}=4$ is 18 .
253. A
254. B
255. D
256. A
257. A
258. A
259. D
260. C
267. A
274. A
261. D
262. D
263. D
264. D
265. A
266. A
268. A
269. A
270. D
271. C
272. D
273. C
281. B
282. A
283. A
277. A
278. A
279. D
280. A

for 39 Yrs. Que. of IIT-JEE \&

15 Yrs. Que. of AIEEE we have distributed already a book

