> विध्न विचारत भीरु जन, नहीं आरम्भे काम, विपति देख छोड़े तुरंत मध्यम मन कर श्याम। पुरुष सिंह संकल्प कर, सहते विपति अनेक, 'बना' न छोड़े ध्येय को, रघुबर राखे टेक।। हचितः मानव धर्म प्रणेता सनुवृष्ट श्री स्णछोड्रवासनी महारान

> > **OUADRATIC EQUATIONS**

Some questions (Assertion–Reason type) are given below. Each question contains **Statement – 1** (Assertion) and **Statement – 2** (**Reason**). Each question has 4 choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct. So select the correct choice : *Choices are :*

- (A) Statement 1 is True, Statement 2 is True; Statement 2 is a correct explanation for Statement 1.
- (B) Statement 1 is True, Statement 2 is True; Statement 2 is NOT a correct explanation for Statement 1.
- (C) **Statement 1** is True, **Statement 2** is False.
- (D) Statement 1 is False, Statement 2 is True.
- 1. Statement-1: If $x \in \mathbb{R}$, $2x^2 + 3x + 5$ is positive. Statement-2: If $\Delta < 0$, $ax^2 + bx + c$, 'a' have same sign $\forall x \in \mathbb{R}$.
- 2. Statement-1: If $1 + \sqrt{2}$ is a root of $x^2 2x 1 = 0$, then $1 \sqrt{2}$ will be the other root. Statement-2: Irrational roots of a quadratic equation with rational coefficients always or
- **Statement-2:** Irrational roots of a quadratic equation with rational coefficients always occur in conjugate pair.
- 3. Statement-1: The roots of the equation $2x^2 + 3ix + 2 = 0$ are always conjugate pair.
- Statement-2: Imaginary roots of a quadratic equation with real coefficients always occur in conjugate pair. 4. Consider the equation $(a^2 - 3a + 2) x^2 + (a^2 - 5a + 6)x + a^2 - 1 = 0$
- Statement 1: If a = 1, then above equation is true for all real x.
 Statement 2: If a = 1, then above equation will have two real and distinct roots.
 Consider the equation (a + 2)x² + (a 3) x = 2a 1
 Statement-1: Roots of above equation are rational if 'a' is rational and not equal to -2.
 Statement-2: Roots of above equation are rational for all rational values of 'a'.

6. Let $f(x) = x^2 = -x^2 + (a+1)x + \hat{5}$

Statement–1: f(x) is positive for same $\alpha < x < \beta$ and for all $a \in \mathbb{R}$

- **Statement–2**: f(x) is always positive for all $x \in R$ and for same real 'a'.
- Consider $f(x) = (x^2 + x + 1) a^2 (x^2 + 2) a$ 7. $-3(2x^2 + 3x + 1) = 0$ **Statement-1**: Number of values of 'a' for which f(x) = 0 will be an identity in x is 1. **Statement-2**: a = 3 the only value for which f(x) = 0 will represent an identity. Let a, b, c be real such that $ax^2 + bx + c = 0$ and $x^2 + x + 1 = 0$ have a common root 8. Statement-1 : a = b = cStatement-2 : Two quadratic equations with real coefficients can not have only one imaginary root common. 9. Statement-1 : The number of values of a for which $(a^2 - 3a + 2) x^2 + (a^2 - 5a + b) x + a^2 - 4 = 0$ is an identity in x is 1. Statement-2 : If $ax^2 + bx + c = 0$ is an identity in x then a = b = c = 0. 10. Let $a \in (-\infty, 0)$. Statement-1 : $ax^2 - x + 4 < 0$ for all $x \in R$: If roots of $ax^2 + bx + c = 0$, $b, c \in \mathbb{R}$ are imaginary then signs of $ax^2 + bx + c$ and a are same for all $x \in \mathbb{R}$. Statement-2 11. Let $a, b, c \in \mathbb{R}$, $a \neq 0$.

Statement-1 : Difference of the roots of the equation $ax^2 + bx + c = 0$

= Difference of the roots of the equation $-ax^2 + bx - c = 0$

Statement-2 : The two quadratic equations over reals have the same difference of roots if product of the coefficient of the two equations are the same.

12. Statement-1 : If the roots of $x^5 - 40x^4 + Px^3 + Qx^2 + Rx + S = 0$ are in G.P. and sum of their reciprocal is 10, then |S| = 32.

Statement-2 : x_1 . x_2 . x_3 . x_4 . x_5 = S, where x_1 , x_2 , x_3 , x_4 , x_5 are the roots of given equation.

13. Statement-1 : If $0 < \alpha < \frac{\pi}{4}$, then the equation $(x - \sin \alpha) (x - \cos \alpha) - 2 = 0$ has both roots in $(\sin \alpha, \cos \alpha)$

Statement-2 : If f(a) and f(b) possess opposite signs then there exist at least one solution of the equation f(x) = 0 in open interval (a, b).

- **Statement-1**: If $a \ge 1/2$ then $\alpha < 1 < p$ where α , β are roots of equation $-x^2 + ax + a = 0$ 14.
- **Statement–2**: Roots of quadratic equation are rational if discriminant is perfect square.
- **Statement-1 :** The number of real roots of $|x|^2 + |x| + 2 = 0$ is zero. **Statement-2 :** $\forall x \in \mathbb{R}, |x| \ge 0$. 15.
- **Statement-1:** If all real values of x obtained from the equation $4^x (a 3)2^x + (a 4) = 0$ are non-positive, then $a \in (4, 5]$ 16.
- **Statement-2:** If $ax^2 + bx + c$ is non-positive for all real values of x, then $b^2 4ac$ must be -ve or zero and 'a' must be -ve.

17. **Statement-1:** If a, b, c, $d \in R$ such that a < b < c < d, then the equation (x - a) (x - c) + 2(x - b) (x - d) = 0 are real and distinct. **Statement-2:** If f(x) = 0 is a polynomial equation and a, b are two real numbers such that f(a) f(b) < 0 has at least one real root.

18. Statement-1:
$$f(x) = \frac{x^2 + x + 1}{x^2 + 2x + 5} > 0 \quad \forall x \in \mathbb{R}$$

Statement-2: $ax^2 + bx + c > 0 \forall x \in R \text{ if } a > 0 \text{ and } b^2 - 4ac < 0.$

Statement-1: If a + b + c = 0 then $ax^2 + bx + c = 0$ must have '1' as a root of the equation **Statement-2:** If a + b + c = 0 then $ax^2 + bx + c = 0$ has roots of opposite sign. 19.

- **Statement-1:** $ax^2 + bx + c = 0$ is a quadratic equation with real coefficients, if $2 + \sqrt{3}$ is one root then other root can be any 20. other real number.

Statement-2: If P+ \sqrt{q} is a real root of a quadratic equation, then P - \sqrt{q} is other root only when the coefficients of equation are rational

- **Statement-1:** If $px^2 + qx + r = 0$ is a quadratic equation $(p, q, r \in \mathbb{R})$ such that its roots are α , $\beta \& p + q + r < 0$, p q + r < 021. & r > 0, then $3[\alpha] + 3[\beta] = -3$, where [·] denotes G.I.F. **Statement-2:** If for any two real numbers a & b, function f(x) is such that $f(a).f(b) < 0 \Rightarrow f(x)$ has at least one real root lying between (a, b)
- Statement-1: If $x = 2 + \sqrt{3}$ is a root of a quadratic equation then another root of this equation must be $x = 2 + \sqrt{3}$ 22. **Statement-2:** If $ax^2 + bx + c = 0$, a, b, $c \in Q$, having irrational roots then they are in conjugate pairs.
- 23. Statement-1: If roots of the quadratic equation $ax^2 + bx + c = 0$ are distinct natural number then both roots of the equation $cx^{2} + bx + a = 0$ cannot be natural numbers.

Statement-2: If α , β be the roots of $ax^2 + bx + c = 0$ then $\frac{1}{\alpha}$, $\frac{1}{\beta}$ are the roots of $cx^2 + bx + a = 0$.

- **Statement-1:** The $(x p)(x r) + \lambda (x q)(x s) = 0$ where p < q < r < s has non real roots if $\lambda > 0$. 24. **Statement-2:** The equation $(p, q, r \in \mathbb{R}) \beta x^2 + qx + r = 0$ has non-real roots if $q^2 - 4pr < 0$.
- 25. **Statement-1:** One is always one root of the equation $(l - m)x^2 + (m - n)x + (n - l) = 0$, where l, m, $n \in \mathbb{R}$. **Statement-2:** If a + b + c = 0 in the equation $ax^{2} + bx + c = 0$, then 1 is the one root.
- **Statement-1:** If $(a^2 4) x^2 + (a^2 3a + 2) x + (a^2 7a + 0) = 0$ is an identity, then the value of a is 2. 26. **Statement-2:** If a = b = 0 then $ax^2 + bx + c = 0$ is an identity.
- 27. **Statement-1:** $x^2 + 2x + 3 > 0 \forall x \in R$ **Statement-2:** $ax^2 + bx + c > 0 \forall x \in R \text{ if } b^2 - 4ac < 0 \text{ and } a > 0.$

28. Statement-1: Maximum value of
$$\frac{1}{2^{x^2-x+1}}$$
 is $\frac{1}{2^{3/4}}$

Statement-2: Minimum value of
$$ax^2 + bx + c$$
 (a > 0) occurs at $x = -\frac{b}{2a}$.

29. **Statement-1:** If quadratic equation $ax^2 + bx - 2 = 0$ have non-real roots then a < 0

Statement-2: For the quadratic expression $f(x) = ax^2 + bx + c$ if $b^2 - 4ac < 0$ then f(x) = 0 have non real roots.

Statement-1: Roots of equation $x^5 - 40x^4 + Px^3 + Qx^2 + Rx + S = 0$ are in G.P. and sum of their reciprocal is equal to 10 then 30. |s| = 32.

Statement-2: If
$$x_1, x_2, x, x_4$$
 are roots of equation

$$ax^{4} + bx^{3} + cx^{2} + dx + e = 0 \ (a \neq 0)$$

$$x_{1} + x_{2} + x_{3} + x_{4} = -b/a$$

$$\sum x_{1}x_{2} = \frac{c}{a}$$

$$\sum x_{1}x_{2}x_{3} = -\frac{d}{a}$$

$$x_{1}x_{2}x_{3}x_{4} = \frac{e}{a}$$

31.	Statement-1: The real values of a form which the quadratic equation $2x^2 - (a^3 + 8a - 1) + a^2 - 4a = 0$. Possesses roots of opposite signs are given by $0 < a < 4$. Statement-2: Disc ≥ 0 and product of root is < 2					
1. A 13. D 25. A	ANSWER KEY 2. A 3. D 4. C 5. C 6. C 7. D 8. A 9. A 10. D 11. C 12. C 14. B 15. A 16. B 17. A 18. A 19. C 20. A 21. A 22. A 23. A 24. D 26. C 27. A 28. A 29. A 30. A 31. A					
	Solution					
5.	Obviously $x = 1$ is one of the root					
	$\therefore \text{ Other root} = -\frac{2a-1}{a+2} = \text{rational for all rational } a \neq -2.$					
6.	(C) is correct option. Here $f(x)$ is a downward parabola $D = (a + 1)^2 + 20 > 0$ From the graph clearly st (1) is true but st (2) is false					
7.	$f(x) = 0 \text{ represents an identity if } a^2 - a - 6 = 0 \implies a = 3, -2$ $a^2 - a - 6 = 0 \implies a = 3, -2$ $a^2 - a - 6 = 0 \implies a = 3, -2$					
8.	$a^2 - a = 0 \Rightarrow a = 3, -3$ $a^2 - 2a - 3 = 0 \Rightarrow a = 3, -1 \Rightarrow a = 3$ is the only values. Ans.: D (A) $x^2 + x + 1 = 0$					
9.	$D = -3 < 0 \qquad \therefore x^2 + x + 1 = 0 \text{ and } ax^2 + bx + c = 0 \text{ have both the roots common}$ $\Rightarrow a = b = c.$ (A) $(a^2 - 3a + 2) x^2 + (a^2 - 5a + 6) x + a^2 - 4 = 0$ Charly only for $a = 2$, it is an identify					
10.	Statement – II is true as if $ax^2 + bx + c = 0$ has imaginary roots, then for no real x, $ax^2 + bx + c$ is zero, meaning thereby $ax^2 + bx + c$ is always of one sign. Further $\lim_{x \to a} (ax^2 + bx + c) = \text{signum } (a)$, ∞					
	statement – I is false, because roots of $ax^2 - x + 4 = 0$ are real for any $a \in (-\infty, 0)$ and hence $ax^2 - x + 4$ takes zero, positive and negative values. Hence (d) is the correct answer.					
11.	Statement–I is true, as Difference of the roots of a quadratic equation is always \sqrt{D} , D being the discriminant of the quadratic equation and the two given equations have the same discriminant. Statement – II is false as if two quadratic equations over reals have the same product of the coefficients, their discriminents need not be same.					
12.	Hence (c) is the correct answer. Roots of the equation $x^5 - 40x^4 + px^3 + qx^2 + rx + s = 0$ are in G.P., let roots be a, ar, ar^2 , ar^3 , ar^4 $\therefore a + ar + ar^2 + ar^3 + ar^4 = 40$ (i)					
	and $\frac{1}{a} + \frac{1}{ar} + \frac{1}{ar^2} + \frac{1}{ar^3} + \frac{1}{ar^4} = 10$ (ii) from (i) and (ii); $ar^2 = \pm 2$ (iii) Now, $-S = \text{product of roots} = a^5r^{10} = (ar^2)^5 = \pm 32$. $\therefore s = 32$ Hence (c) is the correct answer.					
13.	Let, $f(x) = (x - \sin \alpha) (x - \cos \alpha) - 2$ then, $f(\sin \alpha) = -2 < 0$; $f(\cos \alpha) = -2 < 0$ Also as $0 < \alpha < \frac{\pi}{4}$; $\therefore \sin \alpha < \cos \alpha$ There-fore equation $f(x) = 0$ has one root in $(-\infty, \sin \alpha)$ and other in $(\cos \alpha, \infty)$					

	$\frac{\sin \alpha \cos \alpha}{-\infty}$ Hence (d) is the correct answer.		
14.	(B) $x^2 - ax - a = 0$ g(1)	$<0 \Rightarrow a$	> 1/2
15.	equation can be written as $(2^{*})^{2} - (a - 4) 2^{*} - (a - 4) = 0$	16.	(A) Let $f(x) = (x - a)(x - c) + 2(x - b)(x - d)$
	$\Rightarrow 2^{x} = 1 \& 2^{x} = a - 4$		Then $f(a) = 2(a - b)(a - d) > 0$
	Since $x \le 0$ and $2^x = a - 4$ [\therefore x is non positive] \therefore		f(b) = (b - a) (b - c) < 0
	$0 < a - 4 \le 1 \Longrightarrow 4 < a \le 5$		I(d) = (d-a)(d-b) > 0
	i.e., $a \in (4, 5]$		Hence a root of $I(x) = 0$ hes between a ∞ b and another
	Hence ans. (B).	Uanca t	foot lies between $(0 \propto 0)$.
17	$x^2 + x + 1 > 0 \forall x \in \mathbf{P}$	18	$ax^2 + bx + c = 0$
1/.	$x + x + 1 > 0 \forall x \in \mathbb{R}$	10.	ax + bx + c = 0 Put $x = 1$
	a = 1 > 0 $b^2 A = 1 A = 3 < 0$		$a \pm b \pm c = 0$ which is given
	$y^2 + 2y + 5 > 0 \forall y \in \mathbf{P}$		So clearly '1' is the root of the equation
	$x + 2x + 3 > 0 \forall x \in \mathbb{R}$		Nothing can be said about the sign of the roots
	a = 1 > 0 $b^2 = 4ac = 4 = 20 = -16 < 0$		'c' is correct.
	2 + 1		
	So $\frac{X^2 + X + 1}{2} > 0 \forall x \in \mathbf{R}$ 'a' is correct		
	$x^2 + 2x + 5$		
19.	(A) If the coefficients of quadratic equation are not	20.	(D) R is obviously true. So test the statement let $f(x) = (x + x)$
	rational then root may be $2 \pm \sqrt{3}$ and $2 \pm \sqrt{3}$		$(-p)(x-r) + \lambda (x-q)(x-s) = 0$
	$\frac{1}{10000000000000000000000000000000000$		Then $f(p) = \lambda (p - q) (p - s)$
			$f(r) = \lambda (r - q) (r - s)$
			If $\lambda > 0$ then $f(p) > 0$, $f(r) < 0$
			\Rightarrow There is a root between p & r
			Thus statement-1 is false.

21. (A) Both Statement-1 and Statement-2 are true and Statement-2 is the correct explanation of Statement-1.

22. (C) Clearly Statement-1 is true but Statement-2 is false.

 $\therefore ax^2 + bx + c = 0 \text{ is an identity when } a = b = c = 0.$

23. (A) for
$$x^2 + 2x + 3$$

a > 0 and D < 024. (A) $x^2 - x + 1$

$$=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}$$

25. The roots of the given equation will be of opposite signs. If they are real and their product is negative $D \ge 0$ and product of root is < 0

$$\Rightarrow (a^{3} - 8a - 1)^{2} - 8(a^{2} - 4a) \ge 0 \text{ and } \frac{a^{2} - 4a}{2} < 0$$

$$\Rightarrow a^{2} - 4a < 0$$

$$\Rightarrow 0 < a < 4.$$

Ans. (a)

Que. from Compt. Exams

(b)

(d)

1. If $x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}$ to infinity, then x =(a) $\frac{1 + \sqrt{5}}{\sqrt{5}}$ (b) $\frac{1 - \sqrt{5}}{\sqrt{5}}$

(c)
$$\frac{2}{2}$$
 (c) $\frac{1\pm\sqrt{5}}{2}$ (d) None of these

[EAMCET 1988, 93]

Real with sum one Real with product zero

	$h + \sqrt{h^2 - 4ac}$	$-b+\sqrt{b^2-ac}$							
	(a) $\frac{b \pm \sqrt{b}}{2a}$	(b) $\frac{b \pm \sqrt{b} - ac}{2a}$							
	(c) $\frac{2c}{-h+\sqrt{h^2-4ac}}$	(d) None of these							
4	$-b \pm \sqrt{b} = 4ac$ If the equations $2x^2$	$+3r+5\lambda = 0$ and $r^2 + 2r + 3$	$\lambda = 0$ have a	common	root then	λ —		[RPFT 1080]	
4.	(a) 0	(b) -1	(c)	0.–1	(d)	2,-1			
5.	If the equation $x^2 +$	$\lambda x + \mu = 0$ has equal roots and	1 one root of	the equation	on $x^2 + \lambda x$	x - 12 = 0	is 2. th	$(\lambda \mu) =$	
J .	(a) $(4, 4)$	(b) (-4.4)	(c)	(4,-4)	(d)	(-4,-4)	15 2 , th	(<i>v</i> , <i>µ</i>)	
		$x^2 - x + 1$			~ /				
6.	If x is real and $k = \frac{x}{x}$	$\frac{x^{2}}{x^{2}+x+1}$, then			[MNR 19	92; RPET	1997]		
	(a) $\frac{1}{3} \le k \le 3$	(b) $k \ge 5$	(c)	$k \leq 0$	(d)	None of	these		
7.	If $a < b < c < d$, then	the roots of the equation $(x - x)$	(x-c)+2((x-b)(x-a)	l = 0 are	[IIT 1984]		
,	(a) Real and distinc	t (b) Real and equal	(c)	Imagina	ary	(d)	None	of these	
8.	If the roots of the eq	uation $qx^2 + px + q = 0$ where	p, q are real	, be compl	ex, then th	ne roots o	of the ec	quation $x^2 - 4qx + p^2$	=0 are
	(a) Real and unequa	(b) Real and equal	(c)	Imagina	ary	(d)	None	of these	
9.	The values of a' for	which $(a^2 - 1)x^2 + 2(a - 1)x + a^2$	2 is positive	e for any x	are			[UPSEAT 2001]	
	(a) $a \ge 1$	(b) $a \leq 1$	(c)	a > -3	(d)	<i>a</i> < -3 0	r a > 1		
	If the weeks of a sure t	$x^2 - bx m - 1$	L	:		c			
10.	If the roots of equality	$ax - c = \frac{1}{m+1}$ are equal	out opposite	in sign, the	en une van		will be		
					. [RPET 198	8, 2001;	MP PET 1996, 2002; Pb. (CET 2000]
	(a) $\frac{a-b}{b}$	(b) $\frac{b-a}{b-a}$		(c)	$\frac{a+b}{b}$	(d)	$\frac{b+a}{b+a}$		
	a+b	a+b	0 (1	17.	a-b	a	<i>b</i> – <i>a</i>		1 <i>5</i> TT
11.	The coefficient of x	in the equation $x^2 + px + q$	= 0 was take	n as 1 / 1n	place of I	3, its roo	its were	e found to be -2 and \cdot	-15, 1ne
	(a) 3 10	(h) = 3 = 10	(\mathbf{c})	-5-1	8(d)	None o	f these		
12.	If one root of the equ	ution $ax^2 + bx + c = 0$ be n ti	mes the othe	r root, ther	0 (u)	i tone o	r unese		
	(a) $na^2 = bc(n+1)^2$	(b) $nb^2 = ac(n+1)^2$	(c)	$nc^2 = a$	$(n+1)^2$	(d)	None	of these	
12.	If one root of the	quadratic equation $ax^2 + b$	x + c = 0 is	equal to	the n^{th} r	ower of	the o	ther root then the	value of
-0.		quadratic equation and to	<i>x</i> + c = 0 = 15	equal to	the <i>n</i> _F		uie o	aler root, aler ale	value of
	$(ac^n)^{n+1} + (a^n c)^{n+1} =$	[IIT 1983]						
	(a) b	(b) $-b$	(c)	$b^{\frac{1}{n+1}}$	(d)	$-b^{\frac{1}{n+1}}$			
14.	If $\sin \alpha \cos \alpha$ are the	roots of the equation $ax^2 + bx$	+c=0, then	l v	(u)	U	IMP PF	ET 1993]	
-41	(a) $a^2 - b^2 + 2ac = 0$	(b) $(a-c)^2 - b^2 + c^2$	(c)	$a^2 \pm b^2$	-2ac = 0	(d)	$a^2 \pm b$	$2^{2} + 2ac = 0$	
15.	If both the roots of the	(0) (a-c) = b + c	(C)	u + v	-2uc = 0	(u)	<i>u</i> + <i>v</i>	+2uc=0	
-0.	$x^2 - 2kx + k^2 + k^2$	k - 5 = 0							
	are less than 5, then	k lies in the interval [AIE]	EE 2005]						
	(a) (−∞, 4)	(b) [4,5]	(c)	(5,6]	(d)	(6,∞)			
16.	If the roots of the	equations $x^2 - bx + c = 0$	and $x^2 - cx$	+b=0 di	ffer by t	he same	quanti	ity, then $b+c$ is	equal to
	[BIT Ranchi 1969; MP I	PET 1993]		0	(1)	4			
18	(a) 4 If the product of root	(b) I	(c)	0	(d)	-4			
1/.	$r^{2} = 2lrr + 2e^{2\log k}$	$\frac{1}{2}$							
	is 7. then its roots wi	Il real when	IIT 1984]						
	(a) $k = 1$	(b) $k = 2$	(c)	k = 3	(d)	None o	f these		
18.	If a root of the given	equation $a(b-c)x^2 + b(c-a)x^2$	x + c(a - b) = 0)					
	is 1, then the other w	vill be [RP	ET 1986]						
	(a) $\frac{a(b-c)}{b}$	(b) $\frac{b(c-a)}{c-a}$	(c)	c(a-b)	(d)	None of	these		
	b(c-a)	a(b-c)		a(b-c)		1,010 01	11050		
19.	In a triangle ABC th	he value of $\angle A$ is given by 5	$\cos A + 3 = 0$, then the e	equation	whose ro	ots are	$\sin A$ and $\tan A$ will b	be
	(a) $15 r^2 - 9 r + 16$	[KOOFKEE $19/2$]	0 (c)	15 ··· ²		5 - 0	(d)	$15 x^2 9 \dots 16 0$	
90	(a) $15x - 8x + 10 =$	= 0 (0) $15x + 8x - 10 =$	U (C)	13x -	$o_{\mathbf{v}} \Delta x + 10$	y = 0	(\mathbf{u})	$15x - \delta x - 10 = 0$	
20.	If one root of the equation $(2) = 3 + 13$	auon ax + bx + c = 0 the square		uer, men $a($	$(c-b)^{\circ} = c$	A, where	2 A 18		
	(a) $a^{2} + b^{3}$	(D) $(a-b)^3$	(c)	$a^3 - b^3$	(a)	None of	tnese		

21.	If 8, 2 are the roots of x^2 +	$+ax + \beta = 0$ and 3, 3 are the	e roots of x	$a^{2} + \alpha x + b$	p = 0, then the ro	bots of $x^2 + ax + b = 0$ are
	(a) $8, -1$	(b) $-9, 2$	(c)	-8,-2 ((d) 9, 1	[EAMCET 1987]
22.	The set of values of x whi	ich satisfy $5x + 2 < 3x + 8$	and $\frac{x+2}{x-1} <$:4, is		[EAMCET 1989]
	(a) (2,3)	(b) $(-\infty, 1) \cup (2, 3)$	(c)	(-∞,1) ((d) (1,3)	
23.	If α, β are the roots of x^2 -	$-ax + b = 0$ and if $\alpha^n + \beta^n$	$= V_n$, then	[RPET 1	995; Karnataka C	ET 2000; Pb. CET 2002]
	(a) $V_{n+1} = aV_n + bV_{n-1}$	(b) $V_{n+1} = aV_n + aV_{n-1}$	(c)	$V_{n+1} = aV_{n+1}$	$V_n - bV_{n-1}$	(d) $V_{n+1} = aV_{n-1} - bV_n$
24.	The value of 'c 'for which $ \alpha^2 - \beta^2 = \frac{7}{4}$, where α and β are the roots of $2x^2 + 7x + c = 0$, is					
	(a) 4	(b) 0	(c)	6 ((d) 2	
25.	For what value of λ the sur	m of the squares of the roo	ts of $x^2 + (2)$	$(2+\lambda)x - \frac{1}{2}$	$\frac{1}{2}(1+\lambda) = 0$ is m	inimum [AMU 1999]
	(a) 3/2	(b) 1	(c)	1/2 ((d) 11/4	
26.	The product of all real root	ts of the equation $x^2 - x $.	-6 = 0 is			[Roorkee 2000]
~-	(a) -9	(b) 6	(c)	9 ((d) 36	
27.	For the equation $3x^2 + px$	+3 = 0, p > 0 if one of the f	coot is squar	e of the ot	ther, then p is eq	[ual to [IIT Screening 2000]
	(a) $\frac{1}{3}$	(b) 1	(c)	3 ((d) $\frac{2}{3}$	
28.	If α , β be the roots of x^2 +	$-px + q = 0$ and $\alpha + h, \beta + h$	are the roo	ts of $x^2 + x^2$	rx + s = 0, then	[AMU 2001]
	(a) $\frac{p}{r} = \frac{q}{s}$	(b) $2h = \left[\frac{p}{q} + \frac{r}{s}\right]$	(c)	$p^2 - 4q =$	$=r^2-4s$ (d)	$pr^2 = qs^2$
29.	If $x^2 + px + q = 0$ is the quality of $x^2 + px + q = 0$ is the quality of $x^2 + px + q = 0$.	adratic equation whose roc	ots are $a - 2$	and $b-2$	where a and b a	the roots of $x^2 - 3x + 1 = 0$, then
	(a) $p = 1, q = 5$	[Kerala (Engg.) 2002] (b) p = 1, q = -5	(c)	p = -1, q	=1 (d)	None of these
30.	The value of ' a ' for which	one root of the quadratic e	equation (a^2)	$-5a+3)x^{2}$	$^{2} + (3a - 1)x + 2$	= 0 is twice as large as the other, is
	. 2	[AIEEE 2003]		1	(n) 1	
	(a) $\frac{-}{3}$	(b) $-\frac{1}{3}$	(c)	$\frac{1}{3}$	(d) $-\frac{1}{3}$	
31.	If a,b,c are in G.P., then the	he equations $ax^2 + 2bx + c$	= 0 and dx	$^{2} + 2ex + f$	=0 have a com	smon root if $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in
	[IIT 1985; Pb. CET 2000; DCE	2000]	(a)		(d) None o	fthase
32.	(a) A.P. The value of ' a ' for which	(b) G.P. the equations $x^2 - 3x + a$	(c) = 0 and x^2	+ ax - 3 =	(d) None c = 0 have a comm	non root is [Pb. CET 1999]
0	(a) 3	(b) 1	(c)	-2 ((d) 2	
33.	If $(x + 1)$ is a factor of					
	$x^{-} - (p-3)x^{-} - (3p-5)x^{2}$	+(2p-7)x+6, then $p =$	(c)	1 ((d) None c	5] of these
34.	The roots of the equation	(0) 2	(C)	1 ((u) None (
	$4x^4 - 24x^3 + 57x^2 + 18x -$	-45 = 0,				
	If one of them is $3 + i\sqrt{6}$, a	are				
	(a) $3-i\sqrt{6},\pm\sqrt{\frac{3}{2}}$	(b) $3 - i\sqrt{6}, \pm \frac{3}{\sqrt{2}}$	(c)	$3-i\sqrt{6},\pm$	$\frac{\sqrt{3}}{2}$ (d)	None of these
35.	The values of <i>a</i> for which	$2x^2 - 2(2a+1)x + a(a+1) =$	= 0 may hav	ve one roo	ot less than a and	d other root greater than <i>a</i> are given by
	(a) $1 > a > 0$	[UPSEAT 2001] (b) $-1 \le a \le 0$	(c)	$a \ge 0$ ((d) a > 0 a	a < -1
		ANSWER KI	EY(Que. fro	om Compt	t. Exams)	
		1 a 2 c	3 0	4	c 5 a	7
		o a / a 11 b 12 b	8 a	a 9 D 14	a 10 a	-1
		16 d 17 b	18 (: 19	b 20 b]
		21 d 22 b 26 a 27 c	23 0	c 24 c 29	c 25 c d 30 a	-1

а

С

34

39

с

а

35

40

d

а

31

36

а

d

32

37

d

b

33

38