

D θ R

1. Conic Sections:

A conic section, or conic is the locus of a point which moves in a plane so that its distance from a fixed point is in a constant ratio to its perpendicular distance from a fixed straight line.
The fixed point is called the Focus.

- The fixed straight line is called the Directrix.
- The constant ratio is called the Eccentricity denoted by e.
- A point of intersection of a conic with its axis is called a Vertex.

2. Section of right circular cone by different planes

A right circular cone is as shown in the
(i) Section of a right circular cone by a plane passing through its vertex is a pair of straight lines passing through the vertex as shown in the
(ii) Section of a right circular cone by a plane parallel to its base is a circle as shown in the figure-3.

(iii) Section of a right circular cone by a plane parallel to a generator of the cone is a parabola as shown in the

Figure- 3

Figure
(iv) Section of a right circular cone by a plane neither parallel to any generator of the cone nor perpendicular or parallel to the axis of the cone is an ellipse or hyperbola as shown in the figure - $5 \& 6$.

Figure -5

Figure -6
 3D View :

3. General equation of a conic: Focal directrix property:

The general equation of a conic with focus $(p, q) \&$ directrix $I x+m y+n=0$ is:
$\left(l^{2}+m^{2}\right)\left[(x-p)^{2}+(y-q)^{2}\right]=e^{2}(l x+m y+n)^{2} \equiv a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
4. Distinguishing various conics :

The nature of the conic section depends upon the position of the focus S w.r.t. the directrix \& also upon the value of the eccentricity e. Two different cases arise.
Case (I) When The Focus Lies On The Directrix.
In this case $\Delta \equiv \mathrm{abc}+2 \mathrm{fgh}-\mathrm{af}^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2}=0$ \& the general equation of a conic represents a pair of o straight lines if:
$\mathrm{e}>1 \equiv \mathrm{~h}^{2}>$ ab the lines will be real \& distinct intersecting at S .
$e=1 \equiv h^{2} \geq a b$ the lines will coincident.
$\mathrm{e}<1 \equiv \mathrm{~h}^{2}<\mathrm{ab}$ the lines will be imaginary.
Case (II) When The Focus Does Not Lie On Directrix. a parabola an ellipse a hyperbola
$e=1 ; \Delta \neq 0$,
PARABOLA

5. Definition and Terminology

A parabola is the locus of a point, whose distance from a fixed point (focus) is equal to perpendicular distance from a fixed straight line (directrix).
Four standard forms of the parabola are $y^{2}=4 a x ; y^{2}=-4 a x ; x^{2}=4 a y ; x^{2}=-4 a y$
For parabola $y^{2}=4 a x$:
(i) Vertex is $(0,0)$
(iii) Axis is $y=0$
(ii) focus is (a, 0)

Focal Distance: The distance of a point on the parabola from the focus
Focal Chord : A chord of the parabola, which passes through the focus.
Double Ordinate: A chord of the parabola perpendicular to the axis of the syprimededy.
Latus Rectum: A double ordinate passing through the focus or a focal chord perpendicular to the axis of parabola is called the Latus Rectum (L.R.).
For $y^{2}=4 a x . \quad \Rightarrow \quad$ Length of the latus rectum $=4 a$.

$$
\Rightarrow \quad \text { ends of the latus rectum are } L(a, 2 a) \& L^{\prime}(a,-2 a) \text {. }
$$

NOTE:
Perpendicular distance from focus on directrix = half the latus rectum.
(ii) Vertex is middle point of the focus \& the point of intersection of directrix \& axis.
(iii) Two parabolas are said to be equal if they have the same latus rectum.

Examples :

Find the equation of the parabola whose focus is at $(-1,-2)$ and the directrix the line $x-2 y+3=0$.

Solution.

Let $P(x, y)$ be any point on the parabola whose focus is $S(-1,-2)$ and the directrix $x-2 y+3=0$. Draw $P M$ perpendicular to directrix $x-2 y+3=0$. Then by definition,

$$
\begin{array}{ll}
& S P=P M \\
& S P^{2}=P M^{2} \\
\Rightarrow & (x+1)^{2}+(y+2)^{2}=\left(\frac{x-2 y+3}{\sqrt{1+4}}\right)^{2} \\
\Rightarrow & 5\left[(x+1)^{2}+(y+2)^{2}\right]=(x-2 y+3)^{2} \\
\Rightarrow & 5\left(x^{2}+y^{2}+2 x+4 y+5\right)=\left(x^{2}+4 y^{2}+9-4 x y+6 x-12 y\right)
\end{array}
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com $\Rightarrow \quad 4 x^{2}+y^{2}+4 x y+4 x+32 y+16=0$
This is the equation of the required parabola.

Example :

Find the vertex, axis, focus, directrix, latusrectum of the parabola, also draw their rough sketches. $4 y^{2}+12 x-20 y+67=0$
Solution.
The given equation is

$$
\begin{array}{ll}
4 y^{2}+12 x-20 y+67=0 & \Rightarrow \quad y^{2}+3 x-5 y+\frac{67}{4}=0 \\
\Rightarrow \quad y^{2}-5 y=-3 x-\frac{67}{4} & \Rightarrow \quad y^{2}-5 y+\left(\frac{5}{2}\right)^{2}=-3 x-\frac{67}{4}+\left(\frac{5}{2}\right)^{2} \\
\Rightarrow \quad\left(y-\frac{5}{2}\right)^{2}=-3 x-\frac{42}{4} & \Rightarrow \quad\left(y-\frac{5}{2}\right)^{2}=-3\left(x+\frac{7}{2}\right) \quad \ldots .(i)
\end{array}
$$

Let $\quad x=X-\frac{7}{2}, y=Y+\frac{5}{2}$

Using these relations, equation (i) reduces to $Y^{2}=-3 X$
This is of the form $Y^{2}=-4 a X$. On comparing, we get $4 a=3 \Rightarrow a=3 / 4$.
Vertex - The coordinates of the vertex are ($\mathrm{X}=0, \mathrm{Y}=0$)
So, the coordinates of the vertex are

$$
\left(-\frac{7}{2}, \frac{5}{2}\right)
$$

$$
\text { [Putting } X=0, Y=0 \text { in (ii)] }
$$

Axis: The equation of the axis of the parabola is $Y=0$.
So, the equation of the axis is

$$
y=\frac{5}{2} \quad[\text { Putting } Y=0 \text { in (ii)] }
$$

Focus- The coordinates of the focus are $(X=-a, Y=0)$
i.e. $\quad(X=-3 / 4, Y=0)$.

So, the coordinates of the focus are

$$
(-17 / 4,5 / 2) \quad[P \text { Putting } X=3 / 4 \text { in (ii) }]
$$

Directrix - The equation of the directrix is $X=$ a i.e. $X=\frac{3}{4}$
So, the equation of the directrix is

$$
x=-\frac{11}{4} \quad[\text { Putting } X=3 / 4 \text { in (ii) }]
$$

Latusrectum - The length of the latusrectum of the given parabola is $4 \mathrm{a}=3$.

Self Practice Problems

2. Find the extremities of latus rectum of the parabola $y=x^{2}-2 x+3$.

Ans. $\left(\frac{1}{2}, \frac{9}{4}\right)\left(\frac{3}{2}, \frac{9}{4}\right)$
3. Find the latus rectum \& equation of parabola whose vertex is origin \& directrix is $x+y=2$.

Ans. $\quad 4 \sqrt{2}, x^{2}+y^{2}-2 x y+8 x+8 y=0$
4. Find the vertex, axis, focus, directrix, latusrectum of the parabola $y^{2}-8 y-x+19=0$. Also draw their roguht sketches.

Ans.

5. Find the equation of the parabola whose focus is $(1,-1)$ and whose vertex is $(2,1)$. Also find its axis and latusrectum.
Ans. $\quad(2 x-y-3)^{2}=-20(x+2 y-4)$, Axis $2 x-y-3=0$. $L L^{\prime}=4 \sqrt{5}$.

6. Parametric Representation:

The simplest \& the best form of representing the co-ordinates of a point on the parabola is (at², 2at)
i.e. the equations $x=a t^{2} \& y=2$ at together represents the parabola $y^{2}=4 a x$, t being the parameter.

Example : Find the parametric equation of the parabola $(x-1)^{2}=-12(y-2)$
Solution. $\quad \because \quad 4 a=-12 \quad \Rightarrow \quad a=3, y-2=a t^{2}$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com Self Practice Problems

1. Find the parametric equation of the parabola $x^{2}=4 a y \quad$ Ans. $x=2 a t, y=a t^{2}$.
2. Position of a point Relative to a Parabola:

The point $\left(x_{1} y_{1}\right)$ lies outside, on or inside the parabola $y^{2}=4 a x$ according as the expression $y_{1}{ }^{2}-4 a x_{1}$ is positive, zero or negative.
Example : \quad Check weather the point $(3,4)$ lies inside or outside the paabola $y^{2}=4 x$.
Solution.

$$
\begin{array}{ll}
& y^{2}-4 x=0 \\
\because & S_{1} \equiv y^{2}-4 x_{1}=16-12=4>0 \\
\therefore & (3,4) \text { lies outside the parabola. }
\end{array}
$$

Self Practice Problems

1. Find the set of value's of α for which $(\alpha,-2-\alpha)$ lies inside the parabola $y^{2}+4 x=0$.

Ans. $\quad a \in(-4-2 \sqrt{3},-4+2 \sqrt{3})$
8. Line \& a Parabola: The line $y=m x+c$ meets the parabola $y^{2}=4 a x$ in two points real, coincident or imaginary according as $a>c m \Rightarrow$ condition of tangency is, $c=a / m$. Length of the chord intercepted by the parabola on the line $y=m x+c$ is:

$$
\left(\frac{4}{m^{2}}\right) \sqrt{a\left(1+m^{2}\right)(a-m c)}
$$

NOTE : 1. The equation of a chord joining $t_{1} \& t_{2}$ is $2 x-\left(t_{1}+t_{2}\right) y+2 a t_{1} t_{2}=0$.
2. If $t_{1} \& t_{2}$ are the ends of a focal chord of the parabola $y^{2}=4 a^{2} x$ then $t_{1} t_{2}=-1$. Hence the co-ordinates at the extremities of a focal chord can be taken as (at ${ }^{2,2 a t) ~ \& ~}\left(\frac{\mathrm{a}}{\mathrm{t}^{2}},-\frac{2 \mathrm{a}}{\mathrm{t}}\right)$
3. Length of the focal chord making an angle α with the x - axis is $4 \operatorname{acosec}^{2} \alpha$.

Example : \quad Discuss the position of line $y=x+1$ with respect to parabolas $y^{2}=4 x$.
Solution. Solving we get $(x+1)^{2}=4 x \Rightarrow \quad(x-1)^{2}=0$
so $y=x+1$ is tangent to the parabola.
Example :
Prove that focal distance of a point $P\left(a t^{2}, 2 a t\right)$ on parabola $y^{2}=4 a x(a>0)$ is $a\left(1+t^{2}\right)$.
Solution.

$$
\begin{array}{ll}
\because \quad & P S=P M \\
=a+a t^{2}
\end{array}
$$

$P S=a\left(1+t^{2}\right)$.
Example :
If t_{1}, t_{2} are end points of a focal chord then show that $t_{1} t_{2}=-1$.
Solution.

$$
\text { since } P, S \& Q \text { are collinear }
$$

$\therefore \quad \mathrm{m}_{\mathrm{PQ}}=\mathrm{m}_{\mathrm{PS}}$
$\Rightarrow \quad \frac{2}{t_{1}+t_{2}}=\frac{2 t_{1}}{t_{1}^{2}-1}$
$\begin{array}{ll}\Rightarrow & \mathrm{t}_{1}{ }^{2}-1=\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{1} \mathrm{t}_{2} \\ \Rightarrow & \mathrm{t}_{1} \mathrm{t}_{2}=-1\end{array}$
Example :
If the endpoint t_{1}, t_{2} of a chord satisfy the relation $t_{1} t_{2}=k$ (const.) then prove that the chord always passes through a fixed point. Find the point?

Solution.

Equation of chord joining $\left(a t_{1}{ }^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}{ }^{2}, 2 a t_{2}\right)$ is
$y-2 a t_{1}=\frac{2}{t_{1}+t_{2}}\left(x-a t_{1}{ }^{2}\right)$
$\left(t_{1}+t_{2}\right) y-2 a t_{1}{ }^{2}-2 a t_{1} t_{2}=2 x-2 a t_{1}{ }^{2}$
$y=\frac{2}{\mathrm{t}_{1}+\mathrm{t}_{2}}(\mathrm{x}+\mathrm{ak}) \quad\left(\because \quad \mathrm{t}_{1} \mathrm{t}_{2}=\mathrm{k}\right)$
\therefore This line passes through a fixed point ($-\mathrm{ak}, 0$).

Self Practice Problems

1. If the line $y=3 x+\lambda$ intersect the parabola $y^{2}=4 x$ at two distinct point's then set of value's of ' λ ' is Ans. $\quad(-\infty, 1 / 3)$
2. Find the midpoint of the chord $x+y=2$ of the parabola $y^{2}=4 x$.
3. Ans. If one end of focal chord of parabola $y^{2}=16 x$ is $(16,16)$ then coordinate of other end is.

Ans. (1, -4)
If PSQ is focal chord of parabola $y^{2}=4 a x(a>0)$, where S is focus then prove that

$$
\frac{1}{P S}+\frac{1}{S Q}=\frac{1}{a}
$$

(i) $\mathrm{y}_{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_{1}\right)$ at the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$;
$y=m x+\frac{a}{m}(m \neq 0)$ at $\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right)$
(iii) $t y=x+a t^{2}$ at ($a t^{2}$, 2at).

NOTE : Point of intersection of the tangents at the point $t_{1} \& t_{2}$ is $\left[a t_{1} t_{2} a\left(t_{1}+t_{2}\right)\right]$.
Example : Prove that the straight line $y=m x+c$ touches the parabola $y^{2}=4 a(x+a)$ if $c=m a+\frac{a}{m}$
Solution. Equation of tangent of slope ' m ' to the parabola $y^{2}=4 a(x+a)$ is

$$
y=m(x+a)+\frac{a}{m} \quad \Rightarrow \quad y=m x+a\left(m+\frac{1}{m}\right)
$$

$$
\text { but the given tangent is } \mathrm{y}=\mathrm{mx}+\mathrm{c} \quad \therefore \quad \mathrm{c}=\mathrm{am}+\frac{\mathrm{a}}{\mathrm{~m}}
$$

Example : A tangent to the parabola $y^{2}=8 x$ makes an angel of 45° with the straight line $y=3 x+5$. Find
its equation and its point of contact.
Solution. Slope of required tangent's are
$m=\frac{3 \pm 1}{1 \mp 3}$
$m_{1}=-2, \quad m_{2}=\frac{1}{2}$
$\because \quad$ Equation of tangent of slope m to the parabola $y^{2}=4 a x$ is
$\therefore \quad$ tangent's $y=-2 x-1$ at $\left(\frac{1}{2},-2\right)$
$y=\frac{1}{2} x+4$ at $(8,8)$
Example :
Find the equation to the tangents to the paabola $\mathrm{y}^{2}=9 \mathrm{x}$ which goes through the point $(4,10)$.
Solution.
Equation of tangent to parabola $y^{2}=9 x$ is
$y=m x+\frac{9}{4 m}$
Since it passes through $(4,10)$
$\therefore \quad 10=4 \mathrm{~m}+\frac{9}{4 \mathrm{~m}} \quad \Rightarrow \quad 16 \mathrm{~m}^{2}-40 \mathrm{~m}+9=0$
$\mathrm{m}=\frac{1}{4}, \frac{9}{4}$
$\therefore \quad$ equation of tangent's are $\quad y=\frac{x}{4}+9 \quad \& \quad y=\frac{9}{4} x+1$.

Example :

Solution.

Find the equations to the common tangents of the parabolas $y^{2}=4 a x$ and $x^{2}=4 b y$.
Equation of tangent to $y^{2}=4 a x$ is

$$
\begin{equation*}
y=m x+\frac{a}{m} \tag{i}
\end{equation*}
$$

Equation of tangent to $x^{2}=4$ by is

$$
\begin{equation*}
x=m_{1} y+\frac{b}{m_{1}} \tag{ii}
\end{equation*}
$$

$\Rightarrow \quad y=\frac{1}{m_{1}} x-\frac{b}{\left(m_{1}\right)^{2}}$
for common tangent, (i) \& (ii) must represent same line.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
$\therefore \quad \frac{1}{m_{1}}=m \quad \& \quad \frac{a}{m}=-\frac{b}{m_{1}^{2}}$
$\Rightarrow \quad \frac{a}{m}=-\mathrm{bm}^{2} \quad \Rightarrow \quad m=\left(-\frac{a}{b}\right)^{1 / 3}$
$\therefore \quad$ equation of common tangent is

$$
y=\left(-\frac{a}{b}\right)^{1 / 3} x+a\left(-\frac{b}{a}\right)^{1 / 3} .
$$

Self Practice Problems

Find equation tangent to parabola $\mathrm{y}^{2}=4 \mathrm{x}$ whose intercept on y -axis is 2 .
Ans. $y=\frac{x}{2}+2$
3. Prove that image of focus in any tangent to parabola lies on its directrix.
4. Prove that the area of triangle formed by three tangents to the parabola $y^{2}=4 a x$ is half the area of triangle formed by their points of contacts.

10. Normals to the parabola $y^{2}=4 a x$:

(i)

$$
y-y_{1}=-\frac{y_{1}}{2 a}\left(x-x_{1}\right) \text { at }\left(x_{1}, y_{1}\right)
$$

(ii) $y=m x-2 a m-a m^{3}$ at $\left(a m^{2,}-2 a m\right)$
(iii) $y+t x=2 a t+a t^{3} a t\left(a t^{2}, 2 a t\right)$.

NOTE :
(i) Point of intersection of normals at $t_{1} \& t_{2}$ are, $a\left(t_{1}^{2}+t_{2}^{2}+t_{1} t_{2}+2\right) ;-a t_{1} t_{2}\left(t_{1}+t_{2}\right)$.
(ii) If the normals to the parabola $y^{2}=4 a x$ at the point t_{1}, meets the parabola again at the point.

(iii) If the normals to the parabola $y^{2}=4 a x$ at the points $t_{1} \& t_{2}$ intersect again on the parabola at the $\bar{\sigma}$ point ' t_{3} ' then $\mathrm{t}_{1} \mathrm{t}_{2}=2 ; \mathrm{t}_{3}=-\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$ and the line joining $\mathrm{t}_{1} \& \mathrm{t}_{2}$ passes through a fixed point 0

Example

If the normal at point ' t_{1} ' intersects the parabola again at ' t ' then show that $t_{2}=-t_{1}-\frac{2}{t_{1}}$
Solution.
Slope of normal at $P=-t_{1}$ and slope of chord $P Q=\frac{2}{t_{1}+t_{2}}$
$\therefore \quad-\mathrm{t}_{1}=\frac{2}{\mathrm{t}_{1}+\mathrm{t}_{2}}$
$\mathrm{t}_{1}+\mathrm{t}_{2}=-\frac{2}{\mathrm{t}_{1}} \quad \Rightarrow \quad \mathrm{t}_{2}=-\mathrm{t}_{1}-\frac{2}{\mathrm{t}_{1}}$.

Example :

If the normals at points t_{1}, t_{2} meet at the point t_{3} on the parabola then prove that
(i) $\quad t_{1} t_{2}=2$
(ii) $\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}=0$

Solution.
Since normal at $t_{1} \& t_{2}$ meet the curve at t_{3}

$$
\begin{array}{ll}
\therefore & \mathrm{t}_{3}=-\mathrm{t}_{1}-\frac{2}{\mathrm{t}_{1}} \\
& \mathrm{t}_{3}=-\mathrm{t}_{2}-\frac{2}{\mathrm{t}_{2}} \\
\Rightarrow \quad & \left(\mathrm{t}_{1}{ }^{2}+2\right) \mathrm{t}_{2}=\mathrm{t}_{1}\left(\mathrm{t}_{2}^{2}+2\right) \\
\because \quad \mathrm{t}_{1} \mathrm{t}_{2}\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)+2\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)=0 \\
\mathrm{t}_{1} \neq \mathrm{t}_{2}, \mathrm{t}_{1} \mathrm{t}_{2}=2 \tag{iii}
\end{array}, . .
$$

from equation (i) \& (iii), we get
Hence (ii) $\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}=0$

Example:

Find the locus of the point N from which 3 normals are drawn to the parabola $y^{2}=4 a x$ are such that
(i) Two of them are equally inclined to x-axis

Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.
(ii) Two of them are perpendicular to each other

Solution

Equation of normal to $y^{2}=4 a x$ is

$$
y=m x-2 a m-a m^{3}
$$

Let the normal is passes through $N(h, k)$
$\therefore \quad k=m h-2 a m-a m^{3} \quad \Rightarrow \quad a m^{3}+(2 a-h) m+k=0$
For given value's of (h, k) it is cubic in ' m '.
Let $\mathrm{m}_{1}, \mathrm{~m}_{2} \& \mathrm{~m}_{3}$ are root's
$\therefore \quad \mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}=0$
$m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}=\frac{2 a-h}{a}$
$m_{1} m_{2} m_{3}=-\frac{k}{a}$
(i) If two nromal are equally inclined to x-axis, then $m_{1}+m_{2}=0$
(ii) $\quad \therefore \quad \mathrm{m}_{3}=0 \quad \underset{\text { if two normal's }}{\Rightarrow}$
$\therefore \quad m_{1} \mathrm{~m}_{2}=-1$
from (3) $\quad m_{3}=\frac{k}{a}$
from (2)
$-1+\frac{k}{a}\left(m_{1}+m_{2}\right)=\frac{2 a-h}{a}$
from (1)

$$
\begin{equation*}
m_{1}+m_{2}=-\frac{k}{a} \tag{v}
\end{equation*}
$$

from (5) \& (6), we get

$$
-1-\frac{k^{2}}{a}=2-\frac{h}{a}
$$

$$
y^{2}=a(x-3 a)
$$

Self Practice Problems

1. Find the points of the parabola $y^{2}=4 a x$ at which the normal is inclined at 30° to the axis.

Ans. $\quad\left(\frac{\mathrm{a}}{3},-\frac{2 \mathrm{a}}{\sqrt{3}}\right),\left(\frac{\mathrm{a}}{3}, \frac{2 \mathrm{a}}{\sqrt{3}}\right)$
2. If the normal at point $P(1,2)$ on the parabola $y^{2}=4 x$ cuts it again at point Q then $Q=$?

Ans. (9, -6)
3. Find the length of normal chord at point 't' to the parabola $y^{2}=4 a x$.

Ans. $\quad \ell=\frac{4 \mathrm{a}\left(\mathrm{t}^{2}+1\right)^{\frac{3}{2}}}{\mathrm{t}^{2}}$

$$
\therefore \quad m^{2} h-m k+a=0
$$

Self Practice Problem

1. If two tangents to the parabola $y^{2}=4 a x$ from a point P make angles θ_{1} and θ_{2} with the axis of the parabola, then find the locus of P in each of the following cases.
(i) $\tan ^{2} \theta_{1}+\tan ^{2} \theta_{2}=\lambda$ (a constant)
(ii) $\quad \cos \theta_{1} \cos \theta_{2}{ }^{2}=\lambda$ (a constant)

Ans. (i) $y^{2}-2 a x=\lambda x^{2}$, (ii) $x^{2}=\lambda^{2}\left\{(x-a)^{2}+y^{2}\right\}$

12. Director Circle:

Locus of the point of intersection of the perpendicular tangents to a curve is called the Director Circle.
For parabola $y^{2}=4 a x$ it's equation is $x+a=0$ which is parabola's own directrix.

13. Chord of Contact:

Equation to the chord of contact of tangents drawn from a point $P\left(x_{1}, y_{1}\right)$ is
$\mathrm{yy}_{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_{1}\right)$.
NOTE : The area of the triangle formed by the tangents from the point $\left(x_{1}, y_{1}\right) \&$ the chord of contact is
$\left(y_{1}^{2}-4 a x_{1}\right)^{3 / 2} \div 2 a$.

Example :

Find the length of chord of contact of the tangents drawn from point $\left(x_{1}, y_{1}\right)$ to the parabola $y^{2}=4 a x$.
Solution.
Let tangent at $P\left(t_{1}\right) \& Q\left(t_{2}\right)$ meet at $\left(x_{1}, y_{1}\right)$
at $t_{1}=x_{1}$
$a\left(t_{1}+t_{2}\right)=y_{1}$

$$
\left.\begin{array}{l}
a t_{1} t_{2}=x_{1} \quad \& \quad a\left(t_{1}+t_{2}\right)=y_{1} \\
P Q
\end{array} \begin{array}{rl}
\left(a t_{1}^{2}-a t_{2}^{2}\right)^{2}+\left(2 a\left(t_{1}-t_{2}\right)\right)^{2}
\end{array}\right) .
$$

Example :

$$
=\sqrt{\frac{\left(y_{1}^{2}-4 a x_{1}\right)\left(y_{1}^{2}+4 a^{2}\right)}{a^{2}}}
$$

If the line $x-y-1=0$ intersect the parabola $y^{2}=8 x$ at $P \& Q$, then find the point of intersection of tangents
at $P \& Q$.
$\underset{~}{x}$
Solution.
Let (h, k) be point of intersection of tangents then chord of contact is

$$
\begin{align*}
& y k=4(x+h) \tag{i}\\
& 4 x-y k+4 h=0
\end{align*}
$$

But given is

$$
x-y-1=0
$$

$\therefore \quad \frac{4}{1}=\frac{-k}{-1}=\frac{4 h}{-1}$
$\Rightarrow \quad h=-1, k=4$
$\therefore \quad$ point $\equiv(-1,4)$

Example :

Find the locus of point whose chord of contact w.r.t to the parabola $y^{2}=4 b x$ is the tangents of the parabola
$y^{2}=4 a x$.

Solution.

Equation of tangent to $y^{2}=4 a x$ is $y=m x+\frac{a}{m}$
Let it is chord of contact for parabola $y^{2}=4 b x$ w.r.t. the point $P(h, k)$
$\therefore \quad$ Equation of chord of contact is

$$
y k=2 b(x+h)
$$

$$
\begin{equation*}
y=\frac{2 b}{k} x+\frac{2 b h}{k} \tag{ii}
\end{equation*}
$$

From (i) \& (ii)

$$
m=\frac{2 b}{k}, \frac{a}{m}=\frac{2 b h}{k} \Rightarrow a=\frac{4 b^{2} h}{k^{2}}
$$

locus of P is
Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

$$
y^{2}=\frac{4 b^{2}}{a} x
$$

Self Practice Problems

1. Prove that locus of a point whose chord of contact w.r.t. parabola passes through focus is directrix
2. If from a variable point ' P ' on the line $x-2 y+1=0$ pair of tangent's are drawn to the parabola $y^{2}=8 x$ then prove that chord of contact passes through a fixed point, also find that point.
Ans. $(1,8)$

14. Chord with a given middle point:

Equation of the chord of the parabola $y^{2}=4 a x$ whose middle point is

$$
\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \text { is } \mathrm{y}-\mathrm{y}_{1}=\frac{2 \mathrm{a}}{\mathrm{y}_{1}}\left(\mathrm{x}-\mathrm{x}_{1}\right) \equiv \mathrm{T}=\mathrm{S}_{1}
$$

Example:

Find the locus of middle point of the chord of the parabola $y^{2}=4 a x$ which pass through a given point (p, q). Solution.

Let $P(h, k)$ be the mid point of chord of parabola $y^{2}=4 a x$,
so equation of chord is $y k-2 a(x+h)=k^{2}-4 a h$.
Since it passes through (p, q)
$\therefore \quad q k-2 a(p+h)=k^{2}-4 a h$
$\therefore \quad$ Required locus is
$y^{2}-2 a x-q y+2 a p=0$.
Example :
Find the locus of middle point of the chord of the parabola $y^{2}=4 a x$ whose slope is ' m '.
Solution.
Let $P(h, k)$ be the mid point of chord of parabola $y^{2}=4 a x$, so equation of chord is $y k-2 a(x+h)=k^{2}-4 a h$.
but slope $=\frac{2 \mathrm{a}}{\mathrm{k}}=\mathrm{m}$

Self Practice Problems

1. Find the equation of chord of parabola $y^{2}=4 x$ whose mid point is $(4,2)$.

Ans. $\quad x-y-2=0$
2. Find the locus of mid - point of chord of parabola $y^{2}=4 a x$ which touches the parabola $x^{2}=4 b y$.

Ans. $\quad y\left(2 a x-y^{2}\right)=4 a^{2} b$

15. Important Highlights:

(i) If the tangent \& normal at any point ' P ' of the parabola intersect the axis at $T \& G$ then $\frac{\pi}{\sigma}$ $S T=S G=S P$ where ' S ' is the focus. In other words the tangent and the normal at a point P on the parabola are the bisectors of the angle between the focal radius SP \& the perpendicular \dot{q}^{-} from P on the directrix. From this we conclude that all rays emanating from S will become or parallel to the axis of theparabola after reflection.
(ii) The portion of a tangent to a parabola cut off between the directrix \& the curve subtends a right $\frac{\stackrel{1}{\leftrightharpoons}}{\curvearrowleft}$ angle at the focus.
(iii) The tangents at the extremities of a focal chord intersect at right angles on the directrix, and hence a circle on any focal chord as diameter touches the directrix. Also a circle on any focal ${ }^{*}$ radii of a point $\mathrm{P}\left(\mathrm{at}^{2}, 2 a t\right)$ as diameter touches the tangent at the vertex and intercepts a chord Σ of length $a \sqrt{1+t^{2}}$ on a normal at the point P.
(iv) Any tangent to a parabola \& the perpendicular on it from the focus meet on the tangent at the vertex.
(v) If the tangents at P and Q meet in T, then:
$\Rightarrow \quad T P$ and $T Q$ subtend equal angles at the focus S.
The triangles S.
(vi) Semi latus rectum of the parabola $y^{2}=4 a x$, is the harmonic mean between segments of any focal chord of the parabola.
(vii) The area of the triangle formed by three points on a parabola is twice the area of the triangle formed by the tangents at these points.
(viii) If normal are drawn from a point $P(h, k)$ to the parabola $y^{2}=4 a x$ then
$k=m h-2 a m-a m^{3}$ i.e. $\quad a m^{3}+m(2 a-h)+k=0$.
Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

$\Rightarrow \quad$ algebraic sum of the slopes of the three concurrent normals is zero.
$\Rightarrow \quad$ algebraic sum of the ordinates of the three conormal points on the parabola is zero
$\Rightarrow \quad$ Centroid of the Δ formed by three co-normal points lies on the x-axis.
$\Rightarrow \quad$ Condition for three real and distinct normals to be drawn froma point $P(h, k)$ is

$$
h>2 a \& k^{2}<\frac{4}{27 a}(h-2 a)^{3 .} .
$$

(ix) Length of subtangent at any point $P(x, y)$ on the parabola $y^{2}=4 a x$ equals twice the abscissa of the point P. Note that the subtangent is bisected at the vertex.
(x) Length of subnormal is constant for all points on the parabola \& is equal to the semi latus rectum.
Note: Students must try to proof all the above properties.

