

Principal Axis : The major & minor axes together are called principal axis of the ellipse.

Vertices : Point of intersection of ellipse with major axis. $A' \equiv (-a, 0) \& A \equiv (a, 0)$.

Focal Chord : A chord which passes through a focus is called a focal chord.

Double Ordinate : A chord perpendicular to the major axis is called a double ordinate.

Latus Rectum : The focal chord perpendicular to the major axis is called the latus rectum.

 $\frac{2b^2}{a} = \frac{(\text{minor axis})^2}{\text{major axis}} = 2a(1-e^2)$ Length of latus rectum (LL') =

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com = 2 e (distance from focus to the corresponding directrix)

Centre: The point which bisects every chord of the conic drawn through it, is called the centre of the

conic. C = (0, 0) the origin is the centre of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$. NOTE :

- If the equation of the ellipse is given as $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and nothing is mentioned, then the rule is (i) to assume that a > b.
- of 91 If b > a is given, then the y-axis will become major axis and x-axis will become the minor axis (ii) and all other points and lines will change accordingly.
- Solved Example # 2: Find the equation to the ellipse whose centre is origin, axes are the axes of co-ordinate and passes through the points (2, 2) and (3, 1).

Solution. Let the equation to the ellipse is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\therefore \quad \frac{1}{a^2} + \frac{1}{b^2} = 1 \qquad \dots \dots \dots (i)$$

and
$$\frac{9}{a^2} + \frac{1}{b^2} = 1 \qquad \dots \dots \dots (ii)$$

from (i) - 4 (ii), we get
$$\frac{4-36}{a^2} = 1-4 \implies a^2 = \frac{32}{3}$$

$$5 - 5$$

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\therefore \quad ae = 4 \quad and \quad e = \frac{1}{3} \text{ (Given)}$$

$$\therefore \quad a = 12 \quad and \quad b^2 = a^2 (1 - e^2)$$

$$\Rightarrow \quad b^2 = 144 \left(1 - \frac{1}{9}\right)$$

$$b^2 = 16 \times 8$$

$$b = 8\sqrt{2}$$

Solution. Let the equation to the ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Since it passes through the points (2, 2) and (3, 1) $\therefore \quad \frac{4}{a^2} + \frac{4}{b^2} = 1$ (ii) and $\frac{9}{a^2} + \frac{1}{b^2} = 1$ (iii) from (i) - 4 (ii), we get $\frac{4-36}{a^2} = \frac{1-4}{a} = a^2 = \frac{32}{3}$ from (i), we get $\frac{1}{b^2} = \frac{1}{4} - \frac{3}{32} = \frac{8-3}{32}$ $b^2 = \frac{32}{5}$ \therefore Ellipse is $3x^2 + 5y^2 = 32$ Ans. Solved Example # 3 Find the equation of the ellipse whose focil are (4, 0) and (-4, 0) and eccentricity is $\frac{1}{3}$ Solution. Since both focus les on x-axis, therefore x-axis is major axis and mid point of focil is origin which is y-axis. Let equation of ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ \therefore a = 12 and $b^2 = a^2(1 - e^2)$ \Rightarrow $b^2 = 144 \left(1 - \frac{1}{9}\right)$ $b^2 = 16 \times 8$ $b = 8\sqrt{2}$ Equation of ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) \therefore $\angle BSB' = \frac{\pi}{2}$ and OB = OB' $\frac{\pi}{2}$ ∠BSB′ = •:• OB = OB'Ś' \cap and $\frac{\pi}{4}$ ∠BSO = в OS = OBae = b \Rightarrow

 $\frac{\sqrt{3}}{2}$ Ans.

Ans.
$$\left(\pm \frac{\sqrt{5}}{6}, 0\right)$$

4.

FREE Download Study Package from website: مَسْس.TekoClasses.com & www.MathsBySuhag.com مَسْ مَسْ اللَّ

Find the standard ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ passing through (2, 1) and having eccentricity $\frac{1}{2}$. **Ans.** $3x^2 + 4y^2 = 16$

A point moves so that the sum of the squares of its distances from two intersecting non perpendicular straight lines is constant. Prove that its locus is an ellipse.

3. Auxiliary Circle / Eccentric Angle :

A circle described on major axis of ellipse as diameter is called the **auxiliary circle**. Let De a point on the auxiliary circle $r^2 + y^2 = a^2$ such that line through D perpendicular to the x - axis on the way intersects the ellipse at P then P & D are called as the **Corresponding Points** on the x - axis on the way intersects the ellipse at P then P & D are called as the **Corresponding Points** on the vert P = (a cos0 + a sin0) **Note that :** $(PN) = \frac{b}{a} = \frac{Semi minor axis}{(QN)}$ **Note that :** $(PN) = \frac{b}{a} = \frac{Semi minor axis}{(QN)}$ P = (a cos0 + b sin0) **Note that :** $(PN) = \frac{b}{a} = \frac{Semi minor axis}{(QN)}$ P = (a cos0 + b sin0) **Note that :** $(PN) = \frac{b}{a} = \frac{Semi minor axis}{(QN)}$ P = (a cos0 + b sin0) Note the point circle is the auxiliary circle. **d Example # 7** Find the focal distance of a point P(0) on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) $PS = (a - a \cos 0)$ $PS = (a - a a \cos 0)$ $PS = (a - a a c \cos 0)$ Note : PS + PS' = AA' **c Eample # 8** Find the distance from centre of the point P on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ whose radius makes angle α with x-axis. $Let P = (a \cos 0, b \sin 0)$ $\therefore \frac{b}{a} \tan 0 = \tan \alpha$ $\tan 0 = \frac{a}{b} \tan \alpha$ $OP = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} = \sqrt{\frac{a^2 + b^2 \tan^2 \theta}{8c^2 \theta}}$ $\sqrt{\frac{a^2 + b^2 x^2}{2}} \tan^2 \alpha$ A circle described on major axis of ellipse as diameter is called the auxiliary circle. Let Q be a point on the auxiliary circle $x^2 + y^2 = a^2$ such that line through Q perpendicular to the x – axis Solved Example # 7 Solution. Solvex Eample # 8 Sol. $\frac{a^2 + b^2 \times \frac{a^2}{b^2} \tan^2 \alpha}{1 + \frac{a^2}{b^2} \tan^2 \alpha}$ $\frac{a^2 + b^2 \tan^2 \theta}{1 + \tan^2 \theta}$

$$OP = \frac{ab}{\sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha}} \qquad Ans.$$

Self Practice Problem

Find the distance from centre of the point P on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ whose eccentine angle is α

Ans.
$$r = \sqrt{a^2 \cos^2 \alpha + b^2 \sin^2 \alpha}$$

page 15 of 91 Find the eccentric angle of a point on the ellipse $\frac{x^2}{6} + \frac{y^2}{2} = 1$ whose distance from the centre is 2.

Ans.
$$\pm \frac{\pi}{4}, \pm \frac{3\pi}{4}$$

Show that the area of triangle inscribed in an ellipse bears a constant ratio to the area of the triangle formed by joining points on the auxiliary circle corresponding to the vertices of the first triangle.

Parametric Representation:

The equations x = a cos θ & y = b sin θ together represent the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Where θ is a parameter. Note that if $P(\theta) \equiv (a \cos \theta, b \sin \theta)$ is on the ellipse then; $Q(\theta) \equiv (a \cos \theta, a \sin \theta)$ is on the auxiliary circle.

The equation to the chord of the ellipse joining two points with eccentric angles $\alpha \& \beta$ is given by

$$\frac{x}{a}\cos\frac{\alpha+\beta}{2} + \frac{y}{b}\sin\frac{\alpha+\beta}{2} = \cos\frac{\alpha-\beta}{2}$$

Solved Example # 9

x² 25 y² 16 $\frac{\pi}{4}$ =1 joining two points P Write the equation of chord of an ellipse + and C

Equation of chord is

$$\frac{x}{5}\cos\frac{\left(\frac{\pi}{4}+\frac{5\pi}{4}\right)}{2}+\frac{y}{4}\cdot\sin\frac{\left(\frac{\pi}{4}+\frac{5\pi}{4}\right)}{2}=\cos\frac{\left(\frac{\pi}{4}-\frac{\pi}{4}\right)}{2}$$
$$\frac{x}{5}\cdot\cos\left(\frac{3\pi}{4}\right)+\frac{y}{4}\cdot\sin\left(\frac{3\pi}{4}\right)=0$$
$$-\frac{x}{5}+\frac{y}{5}=0 \qquad \Rightarrow \qquad y=x \text{ Ans.}$$

If $P(\alpha)$ and $P(\beta)$ are extremities of a focal chord of ellipse then prove that its eccentricity

$$e = \left| \frac{\cos\left(\frac{\alpha - \beta}{2}\right)}{\cos\left(\frac{\alpha + \beta}{2}\right)} \right|.$$

COS

Let the equation of ellipse is $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ equation of chord is $\cos\left(\frac{\alpha+\beta}{2}\right) + \frac{y}{b}\sin\left(\frac{\alpha+\beta}{2}\right) = \cos\left(\frac{\alpha-\beta}{2}\right)$ Since above chord is focal chord it passes through focus (ae, 0) or (- ae, 0) $\left(\frac{\alpha+\beta}{2}\right) = \cos\left(\frac{\alpha-\beta}{2}\right)$ ± e cos cos Ans. *.*.. e =

 $\pm e = \frac{\cos\frac{\alpha - p}{2}}{\cos\frac{\alpha + \beta}{2}}$ Note: :: $\pm e = \frac{1 + \tan\frac{\alpha}{2} \cdot \tan\frac{\beta}{2}}{1 - \tan\frac{\alpha}{2} \cdot \tan\frac{\beta}{2}}$ Applying componendo and dividendo $\frac{1\pm e}{\pm e-1} = \frac{2}{2\tan\frac{\alpha}{2}\cdot\tan\frac{\beta}{2}}$ $\tan\frac{\alpha}{2}\tan\frac{\beta}{2} = \frac{1+e}{e-1} \text{ or } \frac{e-1}{1+e}$ Solved Example # 11 Find the angle between two diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Whose extremities have eccentrici angle α and $\beta = \alpha + \frac{\pi}{2}$. Solution. **Q**(β) Let ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Slope of OP = $m_1 = \frac{b \sin \alpha}{a \cos \alpha} = \frac{b}{a} \tan \alpha$ Slope of OQ = $m_2 = \frac{b \sin \beta}{a \cos \beta} = -\frac{b}{a} \cot \alpha$ given $\beta = \alpha +$ $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\frac{b}{a} (\tan \alpha + \cot \alpha)}{1 - \frac{b^2}{a^2}} \right| =$ $\frac{2ab}{(a^2-b^2)\sin 2\alpha}$ Ans. Self Practice Problem Find the sum of squares of two diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ whose extremitites have eccentric angles differ by $\frac{\pi}{2}$ and show that it is constant. Ans. $4(a^2 + b^2)$ Show that the sum of squares of reciprocals of two perpendicular diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is constant. Find the constant also. Ans. $\frac{1}{4} \left(\frac{1}{a^2} + \frac{1}{b^2} \right)$ Find the locus of the foot of the perpendicular from the centre of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ on the chord joining two points whose eccentric angles differ by $\frac{\pi}{2}$. $2(x^2 + y^2)^2 = a^2 x^2 + b^2 y^2$ Ans. Position of a Point w.r.t. an Ellipse: The point P(x₁, y₁) lies outside, inside or on the ellipse according as ; $\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} - 1 > < \text{ or } = 0.$ Solved Example # 12

Check we ther the point P(3, 2) lies inside or outside of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$.

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

Ρ(α)

 $S_1 = \frac{9}{25} + \frac{4}{16} - 1 = \frac{9}{25} + \frac{1}{4} - 1 < 0$ \therefore Point P = (2, 2) Point $P \equiv (3, 2)$ lies inside the ellipse. Ans. Find the set of value(s) of 'a' for which the point P(α , $-\alpha$) lies inside the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. page 17 of 91 If $P(\alpha, -\alpha)$ lies inside the ellipse $\frac{\alpha^2}{16} + \frac{\alpha^2}{9} - 1 < 0$ Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. $\frac{25}{144} \cdot \alpha^2 < 1 \quad \Rightarrow \qquad \alpha^2 < \frac{144}{25}$ Solved Example $\left(-\frac{12}{5}, \frac{12}{5}\right)$. Ans. Line and an Ellipse: The line y = mx + c meets the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in two points real, coincident or imaginary according as c^2 is $< = or > a^2m^2 + b^2$. Hence y = mx + c is tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ if $c^2 = a^2m^2 + b^2$. Find the set of value(s) of ' λ ' for which the line $3x - 4y + \lambda = 0$ intersect the ellipse $\frac{x^2}{16} + \frac{y^2}{9}$ = 1 at two Solving given line with ellipse, we get = 0 Since, line intersect the parabola at two distinct points, roots of above equation are real & distinct $\frac{\lambda^2}{(18)^2} - \frac{8}{9} \cdot \left(\frac{\lambda^2}{144} - 1\right) > 0$ $-12\sqrt{2} < \lambda < 12\sqrt{2}$ **Self Practice Problem** Find the value of ' λ ' for which $2x - y + \lambda = 0$ touches the ellipse $\frac{x^2}{25} + \frac{y^2}{\alpha} = 1$ $\lambda = \pm \sqrt{109}$ Slope form: y = mx ± $\sqrt{a^2m^2+b^2}$ is tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ for all Tangents:(a) Point form : $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$ is tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at (x_1, y_1) . Parametric form: $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$ is tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $(a \cos \theta, b \sin \theta)$ **NOTE :** (i) There are two tangents to the ellipse having the same m, i.e. there are two tangents parallel to any given direction. These tangents touches the ellipse at extremities of a diameter. Point of intersection of the tangents at the point $\alpha \& \beta$ is, $\left(a \frac{\cos \frac{\alpha+\beta}{2}}{\cos \frac{\alpha-\beta}{2}}, b \frac{\sin \frac{\alpha+\beta}{2}}{\cos \frac{\alpha-\beta}{2}}\right)$ (ii)

The eccentric angles of the points of contact of two parallel tangents differ by π . (iii)

Solved Example # 15

Find the equations of the tangents to the ellipse $3x^2 + 4y^2 = 12$ which are perpendicular to the line y + 2x = 4.

Solution.

Slope of tangent = m = Given ellipse is $\frac{x^2}{4} + \frac{y^2}{3} = 1$ Equation of tangent whose slope is 'm' is $y = mx \pm \sqrt{4m^2 + 3}$ $y = \frac{1}{2} x \pm \sqrt{1+3}$ $m = \frac{1}{2}$ *:*. ÷

Solved Example # 16

Solved Example # 17

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

Solution.

locus is
$$\frac{x^2}{a^2 \sec^2\left(\frac{\alpha}{2}\right)} + \frac{y^2}{b^2 \sec^2\left(\frac{\alpha}{2}\right)} = 1$$
 Ans

Solved Example # 18

Prove that the locus of the point of intersection of tangents to an ellipse at two points whose eccentric Y is an ellipse. Prove that the locus of the point of intersection of tangents to an ellipse at two points whose eccentric Y is an ellipse. Let P (h, k) be the point of intersection of tangents at A(θ) and B(β) to the ellipse. $h = \frac{a \cos\left(\frac{\theta + \beta}{2}\right)}{\cos\left(\frac{\theta - \beta}{2}\right)} \& k = \frac{b \sin\left(\frac{\theta + \beta}{2}\right)}{\cos\left(\frac{\theta - \beta}{2}\right)}$ $\Rightarrow \qquad \left(\frac{h}{a}\right)^2 + \left(\frac{k}{b}\right)^2 = \sec^2\left(\frac{\theta - \beta}{2}\right)$ but given that $\theta - \beta = \alpha$ $\therefore \quad \text{locus is } \frac{x^2}{a^2 \sec^2\left(\frac{\alpha}{2}\right)} + \frac{y^2}{b^2 \sec^2\left(\frac{\alpha}{2}\right)} = 1$ Ans. Ans. Ans. Ans. Ans. Solution.

Let P(h, k) be the foot of perpendicular to a tangent y = mx + $\sqrt{a^2m^2 + b^2}$(i) from centre

Find the shortest distance between the line x + y = 10 and the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$

Shortest distance occurs between two non-intersecting curve always along common normal. Let 'P' be a point on ellipse and Q is a point on given line for which PQ is common normal.

.... Equation of tangent parallel to given line is $(y = mx \pm \sqrt{a^2m^2 + b^2})$ *.*.. $y = -x \pm 5$ x + y + 5 = 0x + y - 5 = 0or \Rightarrow minimum distance = distance between *.*•. x + y - 10 = 0 & x + y - 5 = 0 $=\frac{|10-5|}{\sqrt{1+1}}$

shortest distance \Rightarrow

$$\frac{5}{\sqrt{2}}$$
 Ans.

 \sim

a² -b²

(a + b)

- 1.

or

Solved Example # 21

Prove that, in an ellipse, the distance between the centre and any normal does not exceed the difference between the semi-axes of the ellipse.

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com Solution.

Let the equation of ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Equation of permittion \overline{a} Equation of normal at P (θ) is $(a \sec \theta)x - (b \csc \theta)y - a^2 + b^2 = 0$ distance of normal from centre

$$= OR = \frac{|a^2 - b^2|}{\sqrt{a^2 + b^2 + (a \tan \theta)^2 + (b \cot \theta)^2}}$$
$$= \frac{|a^2 - b^2|}{\sqrt{(a + b)^2 + (a \tan \theta - b \cot \theta)^2}}$$

$$(a + b)^2 + (a \tan \theta - b \cot \theta)^2 \ge (a + b)^2$$

 $|OR| \le (a - b)$ Ans.

Self Practice Problem

Find the value(s) of 'k' for which the line x + y = k is a normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 20.

Ans.
$$k = \pm \sqrt{\frac{(a^2 - b^2)^2}{a^2 + b^2}}$$

If the normal at the point P(θ) to the ellipse $\frac{x^2}{14} + \frac{y^2}{5} = 1$ intersects it again at the point Q(2 θ) then 21. $\cos\theta =$

$$(A^*) - \frac{2}{3}$$
 (B) $\frac{2}{3}$ (C) $-\frac{6}{7}$ (D)

Pair of Tangents:

The equation to the pair of tangents which can be drawn from any point (x_1, y_1) to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ is given by: } SS_1 = T^2 \text{ where }:$$

$$S = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 \qquad ; \qquad S_1 = \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} - 1 \text{ ; } T = \frac{xx_1}{a^2} + \frac{yy_1}{b^2}$$

Solved Example # 22

How many real tangents can be drawn from the point (4, 3) to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. Find the equation these tangents & angle between them. Solution.

Given point $\mathsf{P} \equiv (4, 3)$

ellipse
$$S \equiv \frac{x^2}{16} + \frac{y^2}{9} - 1 = 0$$

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

 $\frac{6}{7}$

$$\begin{array}{l} \vdots \quad S_{1} \equiv \frac{16}{16} + \frac{9}{9} - 1 = 1 > 0 \\ \Rightarrow \quad \text{Point P} = (4, 3) \text{ lies outside the ellipse.} \\ \vdots \quad \text{Two langents can be drawn from the point P(4, 3). \\ Equation of pair of targents is \\ S_{3} = \frac{1}{16} + \frac{9}{9} - 1 \right) \cdot 1 = \left(\frac{4x}{16} + \frac{3y}{9} - 1\right)^{2} \\ \Rightarrow \quad \left(\frac{x^{2}}{16} + \frac{y^{2}}{9} - 1\right) \cdot 1 = \left(\frac{4x}{16} + \frac{3y}{9} - 1\right)^{2} \\ \Rightarrow \quad \left(\frac{x^{2}}{16} + \frac{y^{2}}{9} - 1\right) = \frac{x^{2}}{16} + \frac{y^{2}}{9} + 1 + \frac{xy}{6} - \frac{x}{2} - \frac{2y}{3} \\ \Rightarrow \quad -xy + 3x + 4y - 12 = 0 \\ \Rightarrow \quad (4 - x) (y - 3) = 0 \\ \Rightarrow \quad x = 4 & y = 3 \\ \text{and angle between them } = \frac{\pi}{2} \quad \text{Ans.} \\ \end{array}$$

If tangents to the parabola $y^2 = 4ax$ intersect the ellipse $\frac{x}{a^2} + \frac{y}{b^2} = 1$ at A and B, then find the locus of point of intersection of tangents at A and B.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com Since it passes through (a, -b)

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com Self F 25. 26. 27. 13.

$$\begin{array}{lll} \therefore & \frac{\alpha}{2a} - \frac{(b-\alpha)}{2b} = \frac{\alpha^2}{2a^2} + \frac{(b-\alpha)^2}{2b^2} \\ \Rightarrow & \left(\frac{1}{a} + \frac{1}{b} \right) \alpha - 1 = \alpha^2 \left(\frac{1}{a^2} + \frac{1}{b^2} \right) - \frac{2}{b} \alpha + 1 \quad \Rightarrow \quad \alpha^2 \left(\frac{1}{a^2} + \frac{1}{b^2} \right) - \left(\frac{3}{b} + \frac{1}{a} \right) \alpha + 2 = 0 \\ \text{since line bisect two choid \\ \therefore & above quadratic equation in α must have two distinct real roots \\ \therefore & \left(\frac{3}{b} + \frac{1}{a} \right)^2 - 4 \left(\frac{1}{a^2} + \frac{1}{b^2} \right) \cdot 2 > 0 \\ \Rightarrow & \frac{9}{b^2} + \frac{1}{a^2} + \frac{6}{ab} - \frac{8}{a^2} - \frac{8}{b^2} > 0 \qquad \Rightarrow \quad \frac{1}{b^2} - \frac{7}{a^2} + \frac{6}{ab} > 0 \\ \Rightarrow & a^3 > 7b^3 + 6ab > 0 \\ \Rightarrow & a^3 > 7b^3 - 6ab \text{ which is the required condition.} \\ \textbf{Tractice Problem} \\ \text{Find the equation of the chord } \frac{x^2}{36} + \frac{y^2}{9} = 1 \text{ which is bisected at (2, 1).} \\ \textbf{Ans.} & x + 2y = 4 \\ \text{Find the tocus of the mid-points of normal chords of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. \\ \textbf{Ans.} & \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} \right)^2 \left(\frac{a^6}{a^2} - \frac{b^6}{b^2} \right) = (a^2 - b^2)^2 \\ \text{Find the tength of the chord of the ellipse $\frac{x^2}{25} + \frac{y^2}{6} = 1 \text{ whices middle point is } \left(\frac{1}{2}, \frac{2}{5} \right) \\ \textbf{Aps.} & \frac{7}{5} \sqrt{41} \\ \textbf{Important High Lights:} \\ \text{Refering to the ellipse $\frac{x^4}{a^4} + \frac{y^2}{b^2} = 1 \\ \text{If P e any point on the ellipse with 8.8.6' as its folgi then $f(SP) + f(SP) = 2a. \\ \text{The tangent a normal star point P on the ellipse bisect the external & internal angles between the focal distances of the root of the root end root point root the external & internal angles between the focal distances of the root of the prepandicular is there are and a large bott the end or and tage bisect in the external & internal angles between the focal distances of cores are relacted through other focus a vice -versa. Hence we can docuce that the straight point P meet on the normal AP G and bisects it where G is the point where normal AP meets the major axis. \\ \text{The product of the length s of the perpendicular signet focus to the eventhe ends of an instare there are and the dispession of contact & the directrix sublends a right angles distance a dispession o$$$$$$