The Hyperbola is a conic whose eccentricity is greater than unity. (e>1).

1. Standard Equation \& Definition(s)

Note: ℓ (L.R.) $=2 e$ (distance from focus to directrix)
Centre : The point which bisects every chord of the conic drawn through it is called the centre of the conic. $C \equiv(0,0)$ the origin is the centre of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.

General Note :

Since the fundamental equation to the hyperbola only differs from that to the ellipse in having $-b^{2}$ instead of b^{2} it will be found that many propositions for the hyperbola are derived from those for the ellipse by simply changing the sign of b^{2}.

Example : Find the equation of the hyperbola whose directrix is $2 x+y=1$, focus $(1,2)$ and eccentricity $\sqrt{3}$. Solution. Let P 9x,y) be any point on the hyperbola.

Draw $P M$ perpendicular from P on the directrix.

$$
\begin{aligned}
& \text { Then by definition } \quad \begin{array}{l}
\quad S P=e P M \\
\Rightarrow \\
\Rightarrow \quad(S P)^{2}=e^{2}(P M)^{2}
\end{array} \\
& \Rightarrow \quad(x-1)^{2}+(y-2)^{2}=3\left\{\frac{2 x+y-1}{\sqrt{4+1}}\right\}^{2} \\
& \Rightarrow \quad 5\left(x^{2}+y^{2}-2 x-4 y+5\right\} \\
& \left.\Rightarrow \quad 7 x^{2}-2 y^{2}+12 x y-y^{2}+1+4 x y-2 y-4 x\right) \\
& \text { which is the required hyperbola. }
\end{aligned}
$$

Example : Find the eccentricity of the hyperbola whose latus rectum is half of its transverse axis.
Solution. Let the equation of hyperbola be $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

Self Practice Problems :

Length of transverse axis: The length of transverse $a x$ is $=2 b=8$
Length of conjugate axis: The length of conjugate axis $=2 \mathrm{a}=6$
Eccentricity : $e=\sqrt{\left(1+\frac{a^{2}}{b^{2}}\right)}=\sqrt{\left(1+\frac{9}{16}\right)}=\frac{5}{4}$
Foci : The co ordinates of the foci are ($0, \pm$ be) i.e., $(0, \pm 5)$
Vertices : The co-ordinates of the vertices are ($0, \pm$ b) i.e., $(0, \pm 4)$
Length of latus-rectum : The length of latus-rectum $=\frac{2 a^{2}}{b}$

$$
=\frac{2(3)^{2}}{4} \frac{9}{2}
$$

Equation of directrices : The equation of directrices are

$$
\begin{array}{ll}
y= \pm \frac{b}{e} \\
y= \pm \frac{4}{(5 / 4)} & y= \pm \frac{16}{5}
\end{array}
$$

1. Find the equation of the hyperbola whose focis are $(6,4)$ and $(-4,4)$ and eccentricity is 2.

Ans. $\quad 12 x^{2}-4 y^{2}-24 x+32 y-127=0$
2. Obtain the equation of a hyperbola with coordinates axes as principal axes given that the distances of one of its vertices from the foci are 9 and 1 units.

Ans. $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1, \frac{y^{2}}{16}-\frac{x^{2}}{9}=1$
, \& the transverse axes of the other are called Conjugate Hyperbolas of each other.
eg. $\quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad \&-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are conjugate hyperbolas of each.
Note: (a) If $e_{1} \& e_{2}$ are the eccentrcities of the hyperbola \& its conjugate then $e_{1}^{-2}+e_{2}^{-2}=1$.
(b) The foci of a hyperbola and its conjugate are concyclic and form the vertices of a square.
(c) Two hyperbolas are said to be similiar if they have the same eccentricity.
(d) Two similar hyperbolas are said to be equal if they have same latus rectum.
(e) If a hyperbola is equilateral then the conjugate hyperbola is also equilateral.

Example : Find the lengths of transverse axis and conjugate axis, eccentricity, the co-ordinates of foci,
vertices, lengths of the latus-rectum and equations of the directrices of the following hyperbolas $16 x^{2}-9 y^{2}=-144$
Solution. The equation $16 x^{2}-9 y^{2}=-144$ can be written as

$$
\begin{aligned}
& \frac{x^{2}}{9}-\frac{y^{2}}{16}=-1 \\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1 \\
& a^{2}=9, b^{2}=16
\end{aligned}
$$

$$
a=3, b=4
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
4. Parametric Representation: The equations $x=a \sec \theta \& y=b \tan \theta$ together represents the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ where θ is a parameter. The parametric equations; $x=a \cosh \phi, y=b \sinh \phi$ also represents the same hyperbola.
Note that if $P(\theta) \equiv(a \sec \theta, b \tan \theta)$ is on the hyperbola then;
$Q(\theta) \equiv(a \cos \theta, a \sin \theta)$ is on the auxiliary circle.
The equation to the chord of the hyperbola joining two points with eccentric angles $\alpha \& \beta$ is given by
$\frac{x}{a} \cos \frac{\alpha-\beta}{2}-\frac{y}{b} \sin \frac{\alpha+\beta}{2}=\cos \frac{\alpha+\beta}{2}$.
5. Position Of A Point 'P' w.r.t. A Hyperbola :

The quantity $S_{1} \equiv \frac{x_{1}{ }^{2}}{a^{2}}-\frac{y_{1}{ }^{2}}{b^{2}}-1$ is positive, zero or negative according as the point $\left(x_{1}, y_{1}\right)$ lies inside, on or outside the curve.
Example : Find the position of the point $(5,-4)$ relative to the hyperbola $9 x^{2}-y^{2}=1$.
Solution. \quad Since $9(5)^{2}-(-4)^{2}=1=225-16-1=208>0$,

- So the point $(5,-4)$ inside the hyperbola $9 x^{2}-y^{2}=1$.

6. Line And A Hyperbola: The straight line $y=m x+c$ is a secant, a tangent or passes putside the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ according as : $\mathrm{c}^{2}>$ or $=0$ or $<\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}$, respectively.

7. Tangents :

(i) Slope Form :y $=m x \pm \sqrt{a^{2} m^{2}-b^{2}}$ can be taken as the tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, having slope ' m '. -
(ii) Point Form : Equation of tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $\left(x_{1}, y_{1}\right)$ is $\frac{\mathrm{xx}_{1}}{\mathrm{a}^{2}}-\frac{\mathrm{yy}_{1}}{\mathrm{~b}^{2}}=1$.
(iii) Parametric Form : Equation of the tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point. $(\mathrm{a} \sec \theta, \mathrm{b} \tan \theta)$ is $\frac{\mathrm{x} \sec \theta}{\mathrm{a}}-\frac{\mathrm{y} \tan \theta}{\mathrm{b}}=1$.

Note : (i) Point of intersection of the tangents at $\theta_{1} \& \theta_{2}$ is $x=a \frac{\cos \frac{\theta_{1}-\theta_{2}}{2}}{\cos \frac{\theta_{1}+\theta_{2}}{2}}, y=b \tan \left(\frac{\theta_{1}+\theta_{2}}{2}\right)$
(ii) If $\left|\theta_{1}+\theta_{2}\right|=\pi$, then tangetns at these points $\left(\theta_{1} \& \theta_{2}\right)$ are parallel.
(iii) There are two parallel tangents having the same slope m. These tangents touches the hyperbola at the extremities of a diameter.

Example :

Prove that the straight line $\ell x+m y+n=0$ touches the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ if $a^{2} \ell^{2}-b^{2} m^{2}=n^{2}$. Solution.

The given line is
or

$$
\begin{aligned}
& \ell x+m y+n=0 \\
& y=-\frac{\ell}{m} x-\frac{n}{m}
\end{aligned}
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Comparing this line with $\quad y=M x+c$
$\therefore \quad M=-\frac{\ell}{m}$ and $c=-\frac{n}{m}$
This line (1) will touch the hyperbola

$$
\begin{array}{ll}
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \text { if } c^{2}=a^{2} M^{2}-b^{2} \\
\Rightarrow & \frac{n^{2}}{m^{2}}=\frac{\left.a^{2}\right|^{2}}{m^{2}}-b^{2} \\
\text { or } & a^{2} \ell^{2}-b^{2} m^{2}=n^{2}
\end{array}
$$

Example :

Find the equation of the tangent to the hyperbola $x^{2}-4 y^{2}=36$ which is perpendicular to the line $x-y+4=0$.

Solution.

Let m be the slope of the tangent. Since the tangent is perpendicular to the line $x-y=0$
$\therefore \quad \mathrm{m} \times 1=-1 \quad \Rightarrow \quad \mathrm{~m}=-1$
Since

$$
x^{2}-4 y^{2}=36
$$

or
$\frac{x^{2}}{36}-\frac{y^{2}}{9}=1$
Comparing this with

$$
\therefore \quad \mathrm{a}^{2}=36 \text { and } \mathrm{b}^{2}=9
$$

So the equation of tangents are

$$
\begin{array}{ll}
& y=(-1) x \pm \sqrt{36 \times(-1)^{2}-9} \\
\Rightarrow \quad & y=-x \pm \sqrt{27} \\
& x+y \pm 3 \sqrt{3}=0
\end{array}
$$

(1) Example :Find the equation and the length of the common tangents to hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$. Solution. Tangent at $(a \sec \phi b \tan \phi)$ on the 1 st hyperbola is
$\frac{x}{a} \sec \phi-\frac{y}{b} \tan \phi=1$
Similarly tangent at any point $(b \tan \theta, a \sec \theta)$ on $2 n d$ hyperbolas is

$$
\begin{equation*}
\frac{y}{a} \sec \theta-\frac{x}{b} \tan \theta=1 \tag{2}
\end{equation*}
$$

If (1) and (2) are common tangents then they should be identical. Comparing the co-effecients of x and y

$$
\begin{equation*}
\Rightarrow \quad \frac{\sec \theta}{\mathrm{a}}=-\frac{\tan \phi}{\mathrm{b}} \tag{3}
\end{equation*}
$$

$$
\text { and } \quad-\frac{\tan \theta}{\mathrm{b}}=\frac{\sec \phi}{\mathrm{a}}
$$

or $\quad \sec \theta=-\frac{a}{b} \tan \phi$
$\because \quad \sec ^{2} \theta-\tan ^{2} \theta=1$
$\Rightarrow \quad \frac{a^{2}}{b^{2}} \tan ^{2} \phi-\frac{b^{2}}{a^{2}} \sec ^{2} \phi=1$
\{from (3) and (4)\}
or $\quad \frac{a^{2}}{b^{2}} \tan ^{2} \phi-\frac{b^{2}}{a^{2}}\left(1+\tan ^{2} \phi\right)=1$
or $\quad\left(\frac{a^{2}}{b^{2}}-\frac{b^{2}}{a^{2}}\right) \tan ^{2} \phi=1+\frac{b^{2}}{a^{2}}$
$\tan ^{2} \phi=\frac{b^{2}}{a^{2}-b^{2}}$
and $\sec ^{2} \phi=1+\tan ^{2} \phi=\frac{a^{2}}{a^{2}-b^{2}}$
Hence the point of contanct are
$\left\{ \pm \frac{\mathrm{a}^{2}}{\sqrt{\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}}, \pm \frac{\mathrm{b}^{2}}{\sqrt{\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}}\right\}$ and $\left\{ \pm \frac{\mathrm{b}^{2}}{\sqrt{\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}}, \pm \frac{\mathrm{a}^{2}}{\sqrt{\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}}\right\}\{$ from (3) and (4) $\}$
Length of common tangent i.e., the distance between the above points is $\sqrt{2} \frac{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}{}$ and equation

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com of common tangent on putting the values of $\sec \phi$ and $\tan \phi$ in (1) is

Self Practice Problems :

1. Show that the line $x \cos \alpha+y \sin \alpha=p$ touches the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
if $a^{2} \cos ^{2} \alpha-b^{2} \sin ^{2} \alpha=p^{2}$. Ans. $p^{2}=a^{2} \cos ^{2} \alpha-b^{2} \sin ^{2} \alpha$
2. For what value of λ does the line $y=2 x+\lambda$ touches the hyperbola $16 x^{2}-9 y^{2}=144$?
Ans. $\lambda= \pm 2 \sqrt{5}$
3. Find the equation of the tangent to the hyperbola $x^{2}-y^{2}=1$ which is parallel to the line $4 y=5 x+7$.

Ans. $\quad 4 y=5 x \pm 3$
 $\frac{a^{2} x}{x_{1}}+\frac{b^{2} y}{y_{1}}=a^{2}+b^{2}=a^{2} e^{2}$.
(b) The equation of the normal at the point $P(a \sec \theta, b \tan \theta)$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{a x}{\sec \theta}+\frac{b y}{\tan \theta}=a^{2}+b^{2}=a^{2} e^{2}$.
(c) Equation of normals in terms of its slope ' m ' are $y=m x \pm \frac{\left(a^{2}+b^{2}\right) m}{\sqrt{a^{2}-b^{2} m^{2}}}$.

Example : A normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meets the axes in M and N and lines $M P$ and NP are drawn perpendicular to the axes meeting at P. Prove that the locus of P is the hyperbola $a^{2} x^{2}-b^{2} y^{2}=\left(a^{2}+b^{2}\right)^{2}$.
Solution. The equation of normal at the point $Q(a \sec \phi, b \tan \phi)$ to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $a x \cos \phi+b y \cot \phi=a^{2}+b^{2}$
The normal (1) meets the x-axis in

$$
\begin{align*}
& M\left(\frac{a^{2}+b^{2}}{a} \sec \phi, 0\right) \text { and } y \text {-axis in } \tag{1}\\
& N\left(0, \frac{a^{2}+b^{2}}{b} \tan \phi\right)
\end{align*}
$$

$\therefore \quad$ Equation of MP, the line through M and perpendicular to x-axis, is

$$
x=\left(\frac{a^{2}+b^{2}}{a}\right) \sec \phi \text { or } \sec \phi=\frac{a x}{\left(a^{2}+b^{2}\right)}
$$

and the equation of NP, the line through N and perpendicular to the y-axis is

$$
\begin{equation*}
y=\left(\frac{a^{2}+b^{2}}{b}\right) \tan \phi \text { or } \tan \phi=\frac{b y}{\left(a^{2}+b^{2}\right)} \tag{3}
\end{equation*}
$$

The locus of the point of intersection of MP and NP will be obtained by eliminating ϕ from (2) and (3), we have

$$
\sec ^{2} \phi-\tan ^{2} \phi=1
$$

$\Rightarrow \quad \frac{a^{2} x^{2}}{\left(a^{2}+b^{2}\right)^{2}}-\frac{b^{2} y^{2}}{\left(a^{2}+b^{2}\right)^{2}}=1$
or $\quad a^{2} x^{2}-b^{2} y^{2}=\left(a^{2}+b^{2}\right)^{2}$
is the required locus of P.

Self Practice Problems :

1. Prove that the line $l x+m y-n=0$ will be a normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
if $\frac{\mathrm{a}^{2}}{\ell^{2}}-\frac{\mathrm{b}^{2}}{\mathrm{~m}^{2}}=\frac{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{2}}{\mathrm{n}^{2}}$.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Ans. $\frac{\mathrm{a}^{2}}{\ell^{2}}-\frac{\mathrm{b}^{2}}{\mathrm{~m}^{2}}=\frac{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{2}}{\mathrm{n}^{2}}$.
2. Find the locus of the foot of perpendicular from the centre upon any normal to the hyperbola
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
9. Pair of Tangents:

The equation to the pair of tangents which can be drawn from any point $\left(x_{1}, y_{1}\right)$ to the hyperbola $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ is given by: $\mathrm{SS}_{1}=\mathrm{T}^{2}$ where :
$\mathrm{S} \equiv \frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}-1 \quad ; \quad \mathrm{S}_{1}=\frac{\mathrm{x}_{1}{ }^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}_{1}{ }^{2}}{\mathrm{~b}^{2}}-1 ; \quad \mathrm{T} \equiv \frac{\mathrm{xx}_{1}}{\mathrm{a}^{2}}-\frac{\mathrm{y} \mathrm{y}_{1}}{\mathrm{~b}^{2}}-1$.
Example : How many real tangents can be drawn from the point $(4,3)$ to the ellipse $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$. Find the equation these tangents \& angle between them.

Solution.

Given point $\quad P \equiv(4,3)$
Hyperbola

$$
S \equiv \frac{x^{2}}{16}-\frac{y^{2}}{9}-1=0
$$

$\because \quad S_{1} \equiv \frac{16}{16}-\frac{9}{9}-1=-1<0$
$\Rightarrow \quad$ Point $P \equiv(4,3)$ lies outside the hyperbola.
$\therefore \quad$ Two tangents can be drawn from the point $P(4,3)$.
Equation of pair of tangents is

$$
\mathrm{SS}_{1}=\mathrm{T}^{2}
$$

$\Rightarrow \quad\left(\frac{x^{2}}{16}-\frac{y^{2}}{9}-1\right) \cdot(-1)=\left(\frac{4 x}{16}-\frac{3 y}{9}-1\right)^{2}$
$\Rightarrow \quad-\frac{x^{2}}{16}+\frac{y^{2}}{9}+1=\frac{x^{2}}{16}+\frac{y^{2}}{9}+1-\frac{x y}{6}-\frac{x}{2}+\frac{2 y}{3}$
$\Rightarrow \quad 3 x^{2}-4 x y-12 x+16 y=0$
$\Rightarrow \quad 3 x^{2}$
$3 x^{2}-4 x y-12 x+16 y=0$
$\theta=\tan ^{-1}\left(\frac{4}{3}\right)$
Example : Find the locus of point of intersection of perpendicular tangents to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Solution. Let $P(h, k)$ be the point of intersection of two perpendicular tangents
equation of pair of tangents is $\mathrm{SS}_{1}=\mathrm{T}^{2}$
$\Rightarrow \quad\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-1\right)\left(\frac{h^{2}}{a^{2}}-\frac{k^{2}}{b^{2}}-1\right)=\left(\frac{h x}{a^{2}}-\frac{k y}{b^{2}}-1\right)^{2}$
$\Rightarrow \quad \frac{x^{2}}{a^{2}}\left(-\frac{k^{2}}{b^{2}}-1\right)-\frac{y^{2}}{b^{2}}\left(\frac{h^{2}}{a^{2}}-1\right)+\ldots \ldots . .=0$
Since equation (i) represents two perpendicular lines
$\therefore \quad \frac{1}{a^{2}}\left(-\frac{k^{2}}{b^{2}}-1\right)-\frac{1}{b^{2}}\left(\frac{h^{2}}{a^{2}}-1\right)=0$

$$
-k^{2}-b^{2}-h^{2}+a^{2}=0 \quad \Rightarrow \quad \text { locus is } x^{2}+y^{2}=a^{2}-b^{2}
$$

Ans.
10. Director Circle :

The locus of the intersection point of tangents which are at right angles is known as the Director Circle of the hyperbola. The equation to the director circle is: $x^{2}+y^{2}=a^{2}-b^{2}$.
If $b^{2}<a^{2}$ this circle is real.
If $b^{2}=a^{2}$ (rectangular hyperbola) the radius of the circle is zero \& it reduces to a point circle at the origin. In this case the centre is the only point from which the tangents at right angles can be drawn to the curve.
If $b^{2}>a^{2}$, the radius of the circle is imaginary, so that there is no such circle \& so no pair of tangents at right angle can be drawn to the curve.

11. Chord of Contact:

Equation to the chord of contact of tangents drawn from a point $P\left(x_{1}, y_{1}\right)$ to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is
Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
$T=0$, where $\quad T=\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}-1$

12. Chord with a given middle point:

Equation of the chord of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ whose middle point is $\left(x_{1}, y_{1}\right)$ is $T=S_{1}$, where $S_{1}=\frac{x_{1}{ }^{2}}{a^{2}}-\frac{y_{1}{ }^{2}}{b^{2}}-1 ; \quad T \equiv \frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}-1$.
Example : Find the locus of the mid -point of focal chords of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
Solution. Let $P \equiv(h, k)$ be the mid-point
\therefore equation of chord whose mid-point is given $\frac{x h}{a^{2}}-\frac{y k}{b^{2}}-1=\frac{h^{2}}{a^{2}}-\frac{k^{2}}{b^{2}}-1$
since it is a focal chord,
$\dot{\text { it }}$ it passes through focus, either (ae, 0) or ($-\mathrm{ae}, 0$)
If it passes trhrough (ae, 0)
$\therefore \quad$ locus is $\frac{e x}{a}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$

If it passes through ($-\mathrm{ae}, 0$)

$$
\therefore \quad \text { locus is }-\frac{e \mathrm{x}}{\mathrm{a}}=\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}
$$

Ans.
Example : Find the condition on ' a ' and 'b' for which two distinct chords of the hyperbola $\frac{x^{2}}{2 a^{2}}-\frac{y^{2}}{2 b^{2}}=1$
passing through (a, b) are bisected by the line $x+y=b$.
Solution. Let the line $x+y=b$ bisect the chord at $P(\alpha, b-\alpha)$
$\therefore \quad$ equation of chord whose mid-point is $P(\alpha, b-\alpha)$
$\frac{x \alpha}{2 a^{2}}-\frac{y(b-\alpha)}{2 b^{2}}=\frac{\alpha^{2}}{2 a^{2}}-\frac{(b-\alpha)^{2}}{2 b^{2}}$
Since it passes through (a, b)

$$
\begin{aligned}
\therefore & \frac{\alpha}{2 a}-\frac{(b-\alpha)}{2 b}=\frac{\alpha^{2}}{2 a^{2}}-\frac{(b-\alpha)^{2}}{2 b^{2}} \\
& \alpha^{2}\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right)+\alpha\left(\frac{1}{b}-\frac{1}{a}\right)=0
\end{aligned}
$$

If tangents to the parabola $y^{2}=4 a x$ intersect the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at A and B, then find the locus of point of intersection of tangents at A and B.
Let $P \equiv(h, k)$ be the point of intersection of tangents at $A \& B$
$\therefore \quad$ equation of chord of contact $A B$ is $\frac{x h}{a^{2}}-\frac{y k}{b^{2}}=1$
which touches the parabola
equation of tangent to parabola $y^{2}=4 a x$

$$
\begin{align*}
& y=m x-\frac{a}{m} \quad \Rightarrow \quad m x-y=-\frac{a}{m} \tag{ii}
\end{align*}
$$

equation (i) \& (ii) as must be same

$$
\begin{aligned}
& \therefore \quad \frac{m}{\left(\frac{h}{a^{2}}\right)}=\frac{-1}{\left(-\frac{k}{b^{2}}\right)}=\frac{-\frac{a}{m}}{1} \\
& \therefore \quad \frac{h b^{2}}{k a^{2}}=-\frac{a k}{b^{2}} \quad \Rightarrow \quad m=\frac{h}{k} \frac{b^{2}}{a^{2}} \& m=-\frac{a k}{b^{2}} \\
& \therefore \quad \text { locus of } P \text { is } y^{2}=-\frac{b^{4}}{a^{3}} \cdot x \quad \text { Ans. }
\end{aligned}
$$

$$
\alpha=0, \alpha=\frac{1}{\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}} \quad \therefore \quad a \neq \pm \mathrm{b}
$$

$$
\begin{equation*}
\frac{h x}{a^{2}}-\frac{k y}{b^{2}}-1=\frac{h^{2}}{b^{2}}-\frac{k^{2}}{b^{2}}-1 \quad \text { or } \quad \frac{h x}{a^{2}}-\frac{k y}{b^{2}}=\frac{h^{2}}{a^{2}}-\frac{k^{2}}{b^{2}} \tag{i}
\end{equation*}
$$

The equation of the lines joining the origin to the points of intersection of the hyperbola and the chored
(1) is obtained by making homogeneous hyperbola with the help of (1)

$$
\begin{align*}
& \therefore \quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{\left(\frac{h x}{a^{2}}-\frac{k y}{b^{2}}\right)^{2}}{\left(\frac{h^{2}}{a^{2}}-\frac{k^{2}}{b^{2}}\right)^{2}} \\
& \Rightarrow \quad \frac{1}{a^{2}}\left(\frac{h^{2}}{a^{2}}-\frac{k^{2}}{b^{2}}\right)^{2} x^{2}-\frac{1}{b^{2}}\left(\frac{h^{2}}{a^{2}}-\frac{k^{2}}{b^{2}}\right)^{2} y^{2}=\frac{h^{2}}{a^{4}} x^{2}+\frac{k^{2}}{b^{4}} y^{2}-\frac{2 h k}{a^{2} b^{2}} x y \tag{2}
\end{align*}
$$

The lines represented by (2) will be at right angle if coefficient of $x^{2}+$ coefficient of $y^{2}=0$

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{a^{2}}\left(\frac{h^{2}}{a^{2}}-\frac{k^{2}}{b^{2}}\right)^{2}-\frac{h^{2}}{a^{4}}-\frac{1}{b^{2}}\left(\frac{h^{2}}{a^{2}}-\frac{k^{2}}{b^{2}}\right)^{2}-\frac{k^{2}}{b^{4}}=0 \\
& \Rightarrow \quad\left(\frac{h^{2}}{a^{2}}-\frac{k^{2}}{b^{2}}\right)^{2}\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right)=\frac{h^{2}}{a^{4}}+\frac{k^{2}}{b^{4}}
\end{aligned}
$$

hence, the locus of (h, k) is

$$
\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)^{2}\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right)=\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}
$$

Self Practice Problem

1. Find the equation of the chord $\frac{x^{2}}{36}-\frac{y^{2}}{9}=1$ which is bisected at $(2,1)$.

Ans. $x=2 y$
2. Find the point ' P ' from which pair of tangents PA \& PB are drawn to the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$ in such
a way that $(5,2)$ bisect $A B$
Ans. $\left(\frac{375}{4}, 12\right)$
3. From the points on the circle $x^{2}+y^{2}=a^{2}$, tangent are drawn to the hyperbola $x^{2}-y^{2}=a^{2}$, prove that the locus of the middle points of the chords of contact is the curve $\left(x^{2}-y^{2}\right)^{2}=a^{2}\left(x^{2}+y^{2}\right)$.
Ans. $\quad\left(x^{2}-y^{2}\right)^{2}=a^{2}\left(x^{2}+y^{2}\right)$.

13. Diameter :

The locus of the middle points of a system of parallel chords with slope ' m ' of an hyperbola is called its diameter. It is a straight line passing through the centre of the hyperbola and has the equation
$y=-\frac{b^{2}}{a^{2} m} x$. NOTE : All diameters of the hyperbola passes through its centre.
14. Asymptotes: Definition : If the length of the perpendicular let fall from a point on a hyperbola to a straight line tends to zero as the point on the hyperbola moves to infinity along the hyperbola, then the straight line is called the Asymptote of the hyperbola.

Equations of Asymptote :

$$
\frac{x}{a}+\frac{y}{b}=0 \quad \text { and } \quad \frac{x}{a}-\frac{y}{b}=0 .
$$

Pair of asymptotes : $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0$.
NOTE : (i) A hyperbola and its conjugate have the same asymptote.
(ii) The equation of the pair of asymptotes differs from the equation of hyperbola (or conjugate hyperbola) by the constant term only.
(iii) The asymptotes pass through the centre of the hyperbola \& are equally inclined to the transverse axis of the hyperbola. Hence the bisectors of the angles between the asymptotes are the principle axes of the hyperbola.
(iv) The asymptotes of a hyperbola are the diagonals of the rectangle formed by the lines drawn through the extremities of each axis parallel to the other axis.
(v) Asymptotes are the tangent to the hyperbola from the centre.
(vi) A simple method to find the co-ordinates of the centre of the hyperbola expressed as a general equation of degree 2 should be remembered as:
Let $f(x, y)=0$ represents a hyperbola.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

Self Practice Problems

1. Show that the tangent at any point of a hyperbola cuts off a triangle of constant area from the asymptotes
2. Rectangular Or Equilateral Hyperbola

The particular kind of hyperbola in which the lengths of the transverse \& conjugate axis are equal is called an Equilateral Hyperbola. Note that the eccentricity of the rectangular hyperbola is $\sqrt{2}$
Rectangular Hyperbola ($\mathbf{x y =} \mathbf{c}^{2}$):
It is referred to its asymptotes as axes of co-ordinates.
Vertices: (c, c) \& (-c, - C$)$;
Foci : $(\sqrt{2} c, \sqrt{2} c) \&(-\sqrt{2} c,-\sqrt{2} c)$,
Directrices: $x+y= \pm \sqrt{2} c$
Latus Rectum (I) :

$$
\ell=2 \sqrt{2} \mathrm{c}=\mathrm{T} \cdot \mathrm{~A} .=\mathrm{C} \cdot \mathrm{~A} .
$$

Parametric equation $x=c t, y=c / t, t \in R-\{0\}$
Equation of a chord joining the points $P\left(t_{1}\right) \& Q\left(t_{2}\right)$ is $x+t_{1} t_{2} y=c\left(t_{1}+t_{2}\right)$.
Equation of the tangent at $P\left(x_{1} y_{1}\right)$ is $\frac{x}{x_{1}}+\frac{y}{y_{1}}=2$ \& at $P(t)$ is $\frac{x}{t}+t y=2 c$.
Equation of the normal at $P(t)$ is $x t^{3}-y_{1} t=c\left(t^{4}-1\right)$.
Chord with a given middle point as (h, k) is $k x+h y=2 h k$.
Example : A triangle has its vertices on a rectangle hyperbola. Prove that the orthocentre of the triangle also lies on the same hyperbola.
Solution. Let " t_{1} ", " t_{2} " and " t_{3} " are the vertices of the triangle ABC, described on the rectangular hyperbola $x y=C^{2}$.
$\therefore \quad C o$-ordinates of A, B and C are $\left(c t_{1}, \frac{c}{t_{1}}\right),\left(\mathrm{ct}_{2}, \frac{c}{t_{2}}\right)$ and $\left(\mathrm{ct}_{3}, \frac{c}{t_{3}}\right)$ respectively
Now lope of $B C$ is $\frac{t_{3}-t_{2}}{\mathrm{ct}_{3}-\mathrm{ct}_{2}}=-\frac{1}{t_{2} t_{3}}$
$\therefore \quad$ Slope of AD is $t_{2} t_{3}$
Equation of Altitude AD^{2} is

$$
y-\frac{c}{t_{1}}=t_{2} t_{3}\left(x-c t_{1}\right)
$$

Similarly equation of alltitude BE is
$\mathrm{t}_{2} \mathrm{y}-\mathrm{c}=\mathrm{x} \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}-\mathrm{ct}_{1} \mathrm{t}_{2}{ }^{2} \mathrm{t}_{3}$
Solving (1) and (2), we get the orthocentre $\left(-\frac{c}{t_{1} t_{2} t_{3}},-\mathrm{ct}_{1} t_{2} t_{3}\right)$
Which lies on $x y=c^{2}$.
Example : $\quad A, B, C$ are three points on the rectangular hyperbola $x y=c^{2}$, find
(i) The area of the triangle ABC
(ii) The area of the triangle formed by the tangents A, B and C .

Sol. Let co-ordinates of A, B and C on the hyperbola $x y=c^{2}$ are $\left(c t_{1}, \frac{c}{t_{1}}\right),\left(c t_{2}, \frac{c}{t_{2}}\right)$ and $\left(c t_{3}, \frac{c}{t_{3}}\right)$ respectively.

$$
\therefore \quad \text { Required area is, } 2 c^{2}\left|\frac{\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right)\left(t_{3}-t_{1}\right)}{\left(t_{1}+t_{2}\right)\left(t_{2}+t_{3}\right)\left(t_{3}+t_{1}\right)}\right|
$$

Example : Prove that the perpendicular focal chords of a rectangular hyperbola are equal.
Solution. Let rectangular hyperbola is $x^{2}-y^{2}=a^{2}$
Let equations of $P Q$ and DE are
$\begin{aligned} y & =m x+c \\ \text { and } y & =m_{1} x+c_{1}\end{aligned}$
respectively.
Be any two focal chords of any rectangular hyperbola $x^{2}-y^{2}=a^{2}$ through its focus. We have to prove $P Q=D E$. Since $P Q \perp D E$.
$\therefore \quad \mathrm{mm}_{1}=-1$
Also PQ passes through $S(a \sqrt{2}, 0)$ then from (1),

$$
\begin{aligned}
& \text { where } C_{1}=\left|\begin{array}{ll}
1 & t_{1}^{2} \\
1 & t_{3}^{2}
\end{array}\right|, C_{2}=-\left|\begin{array}{cc}
1 & t_{1}^{2} \\
1 & t_{3}^{2}
\end{array}\right| \text { and } C_{3}=\left|\begin{array}{cc}
1 & t_{1}^{2} \\
1 & t_{2}^{2}
\end{array}\right| \\
& \begin{aligned}
& \therefore \quad C_{1}=t_{3}{ }^{2}-t_{2}{ }^{2}, C_{2}=t_{1}{ }^{2}-t_{3}{ }^{2} \text { and } C_{3}=t_{2}{ }^{2}-t_{1}{ }^{2} \\
& \text { From (1) }=\frac{1}{2\left|\left(t_{3}^{2}-t_{2}^{2}\right)\left(t_{1}^{2}-t_{3}^{2}\right)\left(t_{2}^{2}-t_{1}^{2}\right)\right|} 4 c^{2} \cdot\left(t_{1}-t_{2}\right)^{2}\left(t_{2}-t_{3}\right)^{2}\left(t_{3}-t_{1}\right)^{2} \\
&=2 c^{2}\left|\frac{\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right)\left(t_{3}-t_{1}\right)}{\left(t_{1}+t_{2}\right)\left(t_{2}+t_{3}\right)\left(t_{3}+t_{1}\right)}\right|
\end{aligned}
\end{aligned}
$$

or $\quad 0=m a \sqrt{2}+c$

$$
c^{2}=2 a^{2} m^{2}
$$

Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be the co-ordinates of P and Q then

$$
\begin{equation*}
(P Q)^{2}=\left(x_{1}-x_{2}^{2}\right)+\left(y_{1}-y_{2}\right)^{2} \tag{5}
\end{equation*}
$$

Since $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ lie on (1)
$\begin{array}{ll}\therefore & y_{1}=m x_{1}+c \text { and } y_{2}=m x_{2}+c \\ \therefore & \left(y_{1}-y_{2}\right)=m\left(x_{1}-x_{2}\right)\end{array}$
$\left.\ddot{\text { From }}(5) y_{1}-y_{2}\right)=m\left(x_{1}-x_{2}\right)$

$$
\begin{equation*}
(P Q)^{2}=\left(x_{1}-x_{2}\right)^{2}\left(1+m^{2}\right) \tag{6}
\end{equation*}
$$

Now solving $y=m x+c$ and $x^{2}-y^{2}=a^{2}$ then
or $\quad x^{2}-(m x+c)^{2}=a^{2}$
$\left(m^{2}-1\right) x^{2}+2 m c x+\left(a^{2}+c^{2}\right)=0$
$\therefore \quad x_{1}+x_{2}=\frac{2 m c}{m^{2}-1} \quad$ and $\quad x_{1} x_{2}=\frac{a^{2}+c^{2}}{m^{2}-1}$
$\Rightarrow \quad\left(x_{1}-x_{2}\right)^{2}=\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}$
$=\frac{4 m^{2} c^{2}}{\left(m^{2}-1\right)^{2}}-\frac{4\left(a^{2}+c^{2}\right)}{\left(m^{2}-1\right)}$
$=\frac{4\left\{a^{2}+c^{2}-a^{2} m^{2}\right\}}{\left(m^{2}-1\right)^{2}}$
$=\frac{4 a^{2}\left(m^{2}+1\right)}{\left(m^{2}-1\right)^{2}} \quad\left\{\because c^{2}=2 a^{2} m^{2}\right\}$

Y^{\prime}

From (7), $\quad(P Q)^{2}=4 a^{2}\left(\frac{m^{2}+1}{m^{2}-1}\right)$

Similarly,
$(D E)^{2}=4 a^{2}\left(\frac{m_{1}^{2}+1}{m_{1}^{2}-1}\right)^{2}$

Thus $(P Q)^{2}=(D E)^{2} \Rightarrow P Q=D E$

15. Important Results :

Locus of the feet of the perpendicular drawn from focus of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ upon any tangent is its auxiliary circle i.e. $x^{2}+y^{2}=a^{2} \&$ the product of these perpendiculars is b^{2}.
The portion of the tangent between the point of contact $\&$ the directrix subtends a right angle at the corresponding focus.
The tangent \& normal at any point of a hyperbola bisect the angle between the focal radii. This spells the reflection property of the hyperbola as "An incoming light ray" aimed towards one focus is reflected from the outer surface of the hyperbola towards the other focus. It follows that if an ellipse and a hyperbola have the same foci, they cut at right angles at any of their common point.

Note that the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \&$ the hyperbola $\frac{x^{2}}{a^{2}-k^{2}}-\frac{y^{2}}{k^{2}-b^{2}}=1(a>k>b>0)$ are confocal and therefore orthogonal.

- The foci of the hyperbola and the points P and Q in which any tangent meets the tangents at the vertices are concyclic with PQ as diameter of the circle.
If from any point on the asymptote a straight line be drawn perpendicular to the transverse axis, the product of the segments of this line, intercepted between the point \& the curve is always equal to the square of the semi conjugate axis.
- Perpendicular from the foci on either asymptote meet it in the same points as the corresponding directrix \& the common points of intersection lie on the auxiliary circle.
Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.
- The tangent at any point P on a hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ with centre C, meets the asymptotes in Q and R and cuts off a Δ CQR of constant area equal to ab from the asymptotes $\&$ the portion of the tangent

Example : A ray emanating from the point $(5,0)$ is incident on the hyperbola $9 x^{2}-16 y^{2}=144$ at the point P with
abscissa 8 . Find the equation of the reflected ray after first reflection and point P lies in first quadrant.
Solution.
Given hyperbola is
$9 x^{2}-16 y^{2}=144$. This equation can be
rewritten as $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$

Since \times co-ordinate of P is 8 . Let y
co-ordinate of P ia α
$\because \quad(8, \alpha)$ lies on (1)

Hence conordinate of point P is $(8,3 \sqrt{3})$
$\because \quad$ Equation of reflected ray passing through $P(8,3 \sqrt{3})$ and $S^{\prime}(-5,0)$
$\therefore \quad$ Its equation is $y-3 \sqrt{3}=\frac{0-3 \sqrt{3}}{-5-8}(x-8)$
or $\quad 13 y-39 \sqrt{3}=3 \sqrt{3} x-24 \sqrt{3}$
or $\quad 3 \sqrt{3} x-13 y+15 \sqrt{3}=0$.

