EXERCISE-10

Part : (A) Only one correct option

1. If $(2,0)$ is the vertex \& y-axis the directrix of a parabola, then its focus is:
(A) $(2,0)$
(B) $(-2,0)$
(C) (4.0)
(D) (-4.0)
2. A parabola is drawn with its focus at (3,4) and vertex at the focus of the parabola $y^{2}-12 x-4 y+4=0$. The equation of the parabola is:
(A) $x^{2}-6 x-8 y+25=0$
(B) $y^{2}-8 x-6 y+25=0$
(C) $x^{2}-6 x+8 y-25=0$
(D) $x^{2}+6 x-8 y-25=0$
3. The length of the chord of the parabola, $y^{2}=12 x$ passing through the vertex \& making an angle of 60° with the axis of x is:
(A) 8
(B) 4
(C) $16 / 3$
(D) none
4. The length of the side of an equilateral triangle inscribed in the parabola, $\mathrm{y}^{2}=4 \mathrm{x}$ so that one of its angular point is at the vertex is:
5. (A) $8 \sqrt{3}$
(B) $6 \sqrt{3}$
(C) $4 \sqrt{3}$
(D) $2 \sqrt{3}$
6. The circles on focal radii of a parabola as diameter touch:
7. (A) the tangent at the vertex $\begin{array}{llll}\text { (B) the axis } & \text { (C) the directrix } & \text { (D) none of these }\end{array}$
8. The equation of the tangent to the parabola $y=(x-3)^{2}$ parallel to the chord joining the points $(3,0)$ and $(4,1)$ is:
(A) $2 x-2 y+6=0$
(B) $2 y-2 x+6=0$
(C) $4 y-4 x+11=0$
(D) $4 x-4 y=11$
9. The angle between the tangents drawn from a point ($-a, 2 a$) to $y^{2}=4 a x$ is
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{6}$
10. An equation of a tangent common to the parabolas $y^{2}=4 x$ and $x^{2}=4 y$ is
(A) $x-y+1=0$
(B) $x+y-1=0$
(C) $x+y+1=0$
(D) $y=0$
11. The line $4 x-7 y+10=0$ intersects the parabola, $y^{2}=4 x$ at the points $A \& B$. The co-ordinates of the point of intersection of the tangents drawn at the points A \& B are:
(A) $\left(\frac{7}{2}, \frac{5}{2}\right)$
(B) $\left(-\frac{5}{2},-\frac{7}{2}\right)$
(C) $\left(\frac{5}{2}, \frac{7}{2}\right)$
(D) $\left(-\frac{7}{2},-\frac{5}{2}\right)$
12. $A P \& B P$ are tangents to the parabola, $y^{2}=4 x$ at $A \& B$. If the chord $A B$ passes through a fixed point
$(-1,1)$ then the equation of locus of P is
(A) $y=2(x-1)$
(B) $y=2(x+1)$
(C) $y=2 x$
(D) $y^{2}=2(x-1)$
13. Equation of the normal to the parabola, $\mathrm{y}^{2}=4 \mathrm{ax}$ at its point $\left(\mathrm{am}^{2}, 2 \mathrm{am}\right)$ is:
(A) $y=-m x+2 a m+a m^{3}$
(B) $y=m x-2 a m-a m^{3}$ (C) $y=m x+2 a m+a m^{3}$
(D) none
14. At what point on the parabola $\mathrm{y}^{2}=4 \mathrm{x}$ the normal makes equal angles with the axes?
(A) $(4,4)$
(B) $(9,6)$
(C) $(4,-1)$
(D) $(1,2)$
15. If on a given base, a triangle be described such that the sum of the tangents of the base angles is a constant, then the locus of the vertex is:
(A) a circle
(B) a parabola
(C) an ellipse
(D) a hyperbola
16. A point moves such that the square of its distance from a straight line is equal to the difference between the square of its distance from the centre of a circle and the square of the radius of the circle. The locus of the point is:
(A) a straight line at right angles to the given line (B) a circle concentric with the given circle
(C)a parabola with its axis parallel to the given line(D) a parabola with its axis perpendicular to the given line.
17. P is any point on the parabola, $y^{2}=4 a x$ whose vertex is A. PA is produced to meet the directrix in D \& M is the foot of the perpendicular from P on the directrix. The angle subtended by MD at the focus is:
(A) $\pi / 4$
(B) $\pi / 3$
(C) $5 \pi / 12$
(D) $\pi / 2$
18. If the distances of two points P \& Q from the focus of a parabola $y^{2}=4 a x$ are $4 \& 9$, then the distance of the point of intersection of tangents at P \& Q from the focus is:
(A) 8
(B) 6
(C) 5
(D) 13
19. Tangents are drawn from the point $(-1,2)$ on the parabola $y^{2}=4 x$. The length of intercept made by these tangents on the line $x=2$ is:
(A) 6
(B) $6 \sqrt{2}$
(C) $2 \sqrt{6}$
(D) none of these
20. From the point (4, 6) a pair of tangent lines are drawn to the parabola, $y^{2}=8 \mathrm{x}$. The area of the triangle formed by these pair of tangent lines \& the chord of contact of the point (4) 6) is:
(A) 8
(B) 4
(C) 2
(D) none of these
21. Locus of the intersection of the tangents at the ends of the normal chords of the parabola
$y^{2}=4 a x$ is
(A) $(2 a+x) y^{2}+4 a^{3}=0$
(B) $(2 a+x)+y^{2}=0$
(C) $(2 a+x) y^{2}+4 a=0$
(D) none of these
22. If the tangents \& normals at the extremities of a focal chord of a parabola intersect at
($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) respectively, then:
(A) $\mathrm{X}_{1}=\mathrm{x}_{2}$
(B) $x_{1}=y_{2}$
(C) $y_{1}=y_{2}$
(D) $x_{2}=y_{1}$

\circ
0
0
0
0
0
0
∞
0
0

Tangents are drawn from the points on the line $x-y+3=0$ to parabola $y^{2}=8 x^{2}$. Then all the chords of contact passes through a fixed point whose coordinates are:
(A) $(3,2)$
(B) $(2,4)$
(C) $(3,4)$
(D) $(4,1)$
22. The distance between a tangent to the parabola $y^{2}=4 \mathrm{Ax}(\mathrm{A}>0)$ and the parallel normal with gradient 1 is:
(A) 4 A
(B) $2 \sqrt{2} \mathrm{~A}$
(C) 2 A
(D) $\sqrt{2} \mathrm{~A}$
23. A variable parabola of latus ractum ℓ, touches a fixed equal parabola, then axes of the two curves being

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com parallel. The locus of the vertex of the moving curve is a parabola, whole latus rectum is:
(A) ℓ
(B) 2ℓ
(C) 4ℓ
(D) none
24. Length of the focal chord of the parabola $y^{2}=4 a x$ at a distance p from the vertex is:
(A) $\frac{2 \mathrm{a}^{2}}{\mathrm{p}}$
(B) $\frac{\mathrm{a}^{3}}{\mathrm{p}^{2}}$
(C) $\frac{4 \mathrm{a}^{3}}{\mathrm{p}^{2}}$
(D) $\frac{p^{2}}{a}$
25. $A B$ is a chord of the parabola $y^{2}=4 a x$ with vertex at A. $B C$ is drawn perpendicular to $A B$ meeting the
axis at C. The projection of $B C$ on the axis of the parabola is
(A) a
(B) 2 a
(C) 4 a
(D) 8 a
26. The locus of the foot of the perpendiculars drawn from the vertex on a variable tangent to the parabola
$y^{2}=4 a x$ is:
(A) $x\left(x^{2}+y^{2}\right)+a y^{2}=0$
(B) $y\left(x^{2}+y^{2}\right)+a x^{2}=0$
(C) $x\left(x^{2}-y^{2}\right)+a y^{2}=0$
(D) none of these
27. Tis a point on the tangent to a parabola $y^{2}=4 a x$ at its point P. TL and $T N$ are the perpendiculars on the focal radius $S P$ and the directrix of the parabola respectively. Then:
(A) SL $=2$ (TN)
(B) $3(\mathrm{SL})=2(\mathrm{TN})$
(C) $\mathrm{SL}=\mathrm{TN}$
(D) $2(\mathrm{SL})=3(\mathrm{TN})$
28. The point of contact of the tangent to the parabola $y^{2}=9 x$ which passes through the point $(4,10)$ and makes an angle θ with the axis of the parabola such that $\tan \theta>2$ is
(A) $(4 / 9,2)$
(B) $(36,18)$
(C) $(4,6)$
(D) $(1 / 4,3 / 2)$
29. If the parabolas $y^{2}=4 x$ and $x^{2}=32 y$ intersect at $(16,8)$ at an angle θ, then θ is equal to
(A) $\tan ^{-1}\left(\frac{3}{5}\right)$
(B) $\tan ^{-1}\left(\frac{4}{5}\right)$
(C) π
(D) $\frac{\pi}{2}$
30. From an external point P, pair of tangent lines are drawn to the parabola, $y^{2}=4 x$. If $\theta_{1} \& \theta_{2}$ are the inclinations of these tangents with the axis of x such that, $\theta_{1}+\theta_{2}=\frac{\pi}{4}$, then the locus of P is:
(A) $x-y+1=0$
(B) $x+y-1=0$
(C) $x-y-1=0$
(D) $x+y+1=0$
31. Locus of the point of intersection of the normals at the ends of parallel chords of gradient m of the parabola $\mathrm{y}^{2}=4 a \mathrm{x}$ is:
(A) $2 x^{2}-y m^{3}=4 a\left(2+m^{2}\right)$
(B) $2 x m^{2}+y m^{3}=4 a\left(2+m^{2}\right)$
(C) $2 x m+\mathrm{ym}^{2}=4 \mathrm{a}(2+\mathrm{m})$
(D) $2 \mathrm{xm}^{2}-\mathrm{ym}^{3}=4 \mathrm{a}\left(2-\mathrm{m}^{2}\right)$
32. The equation of the other normal to the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ which passes through the intersection of those at $(4 a,-4 a)$ \& $(9 a,-6 a)$ is:
$\begin{array}{ll}\text { (A) } 5 x-y+115 a=0 & \text { (B) } 5 x+y-135 a=0\end{array}$
(C) $5 x-y-115 a=0$
(D) $5 x+y+115=0$
33. The point(s) on the parabola $y^{2}=4 x$ which are closest to the circle, $\mathrm{x}^{2}+\mathrm{y}^{2}-24 \mathrm{y}+128=0$ is/are:
(A) $(0,0)$
(B) $(2,2 \sqrt{2})$
(C) $(4,4)$
(D) none
34. If $P_{1} Q_{1}$ and $P_{2} Q_{2}$ are two focal chords of the parabolay $y^{2}=4 a x$, then the chords $P_{1} P_{2}$ and $Q_{1} Q_{2}$ intersect on
(A) directrix
(B) axis
(C) tangent at the vertex
(D) none of these
[IIT - 2000]
35. If $x+y=k$, is the normal to $y^{2}=12 x$, then k is
36. The equation of the common tangent touching the circle $(x-3)^{2}+y^{2}=9$ (D) $\begin{aligned} & \text { (D) }-3\end{aligned}$ (D) parabola $y^{2}=4 x$ above the
36. The equation of the common tangent touching the circle $(x-3)^{2}+y^{2}=9$ (D) $\begin{aligned} & \text { (D) }-3\end{aligned}$ (the parabola $y^{2}=4 x$ above the
36. The equation of the common tangent touching the circle $(x-3)^{2}+y^{2}=9$ (D) $\begin{aligned} & \text { (D) }-3\end{aligned}$ (the parabola $y^{2}=4 x$ above the
36. The equation of the common tangent touching the circle $(x-3)^{2}+y^{2}=9$ (D) $\begin{aligned} & \text { (D) }-3\end{aligned}$ (A) 9 parabola $y^{2}=4 x$ above the
page 61 of 91 x-axis is
(A) $\sqrt{3} y=3 x+1$
(B) $\sqrt{3} y=-(x+3)$
(C) $\sqrt{3} y=x+3$
(D) $\sqrt{3} y=-(3 x+1)$
37. The focal chord to $y^{2}=16 x$ is tangent to $(x-6)^{2}+y^{2}=2$, then the possible values of the slope of this
[IIT - 2003]
chord are:
(B) $\{-2,2\}$
(C) $\{-2,1 / 2\}$
(D) $\{2,-1 / 2\}$
(A) $\{-1,1\}$
38. The normal drawn at a point $\left(a t_{1}{ }^{2},-2 a t_{1}\right)$ of the parabola $y^{2}=4 a x$ meets it again in the point $\left(a t^{2}{ }^{2}, 2 a t_{2}\right)$, then
(A) $\mathrm{t}_{2}=\mathrm{t}_{1}+\frac{2}{\mathrm{t}_{1}}$
(B) $\mathrm{t}_{2}=\mathrm{t}_{1}-\frac{2}{\mathrm{t}_{1}}$
(C) $\mathrm{t}_{2}=-\mathrm{t}_{1}+\frac{2}{\mathrm{t}_{1}}$
(D) $t_{2}-t_{1}-\frac{2}{t_{1}}$
[iIT-2003]
39. The angle between the tangents drawn from the point $(1,4)$ to the parabola $y^{2}=4 x$ is
[IIT - 2004]
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{6}$
40. Let P be the point $(1,0)$ and Q a point of the locus $y^{2}=8 x$. The locus of mid point of $P Q$ is
(A) $x^{2}+4 y+2=0$
(B) $x^{2}-4 y+2=0$
(C) $y^{2}-4 x+2=0$
(D) $y^{2}+4 x+2=0$
[IIT - 2005]
41. A parabola has its vertex and focus in the first quadrant and axis along the line $y=x$. If the distances of the vertex and focus from the origin are respectively $\sqrt{2}$ and $2 \sqrt{2}$, then an equation of the parabola
is
(A) $(x+y)^{2}=x-y+2$
(B) $(x-y)^{2}=x+y-2$
(C) $(x-y)^{2}=8(x+y-2)$
(D) $(x+y)^{2}=8(x-y+2)$

Let $A B C D$ be a square of side length 2 units. C_{2} is the circle through vertices A, B, C, D and C_{1} is the circle touching all the sides of the square $A B C D$. L is a line through A.
42. If P is a point on C_{1} and Q in another point on $C_{2}, \frac{P A^{2}+P B^{2}+P C^{2}+P D^{2}}{Q A^{2}+Q B^{2}+Q C^{2}+Q D^{2}}$ is equal to [IIT - 2006]
(A) 0.75
(B) 1.25
(C) 1
(D) 0.5
43. A circle touch the line L and the circle C_{1} externally such that both the circles are on the same side of the line, then the locus of centre of the circle is
[IIT - 2006]
44. A line M through A is drawn parallel to $B D$. Point S moves such that its distances from the line $B D$ and the vertex A are equal. If locus of S cuts M at T_{2} and T_{3} and $A C$ at T_{1}, then area of $\Delta T_{1} T_{2} T_{3}$ is [IIT-2006)]
(A) $\frac{1}{2}$ sq. units
(B) $\frac{2}{3}$ sq. units
(C) 1 sq. units
(D) 2 sq. units

Part : (B) May have more than one options correct
45. If one end of a focal chord of the parabola $y^{2}=4 x$ is $(1,2)$, the other end lies on
(A) $x^{2} y+2=0$
(B) $x y+2=0$
(C) $x y-2=0$
(D) $x^{2}+x y-y-1=0$
46. The tangents at the extremities of a focal chord of a parabola
(A) are perpendicular
(B) are parallel
(C) intersect on the directrix
(D) intersect at the vertex
47. If from a variable point ' P ' pair of perpendicular tangents $P A$ and $P B$ are drawn to any parabola then
(A) P lies on directrix of parabola
(B) chord of contact $A B$ passes through focus
(C) chord of contact AB passes through of fixed point
(D) $\quad P$ lies on director circle
48. A normal chord of the parabola subtending a right angle at the vertex makes an acute angle θ with the x-axis, then $\theta=$
(A) $\arctan 2$
(B) $\operatorname{arcsec} \sqrt{3}$
(C) $\operatorname{arccot} \sqrt{2}$
(D) $\frac{\pi}{2}-\operatorname{arccot} \sqrt{2}$
49. Variable chords of the parabola $y^{2}=4 a x$ subtend a right angle at the vertex. Then:
(A) locus of the feet of the perpendiculars from the vertex on these chords is a circle
(B) locus of the middle points of the chords is a parabola
(C) variable chords passes through a fixed point on the axis of the parabola (D) none of these Two parabolas have the same focus. If their directrices are the x-axis \& the y-axis respectively, then the slope of their common chord is:
(A) 1
(B) -1
(C) $4 / 3$
(D) $3 / 4$
51. P is a point on the parabola $y^{2}=4 a x(a>0)$ whose vertex is A. PA is produced to meet the directrix in D and M is the foot of the perpendicular from P on the directrix. If a circle is described on MD as a diameter then it intersects the x -axis at a point whose co-ordinates are
(A) $(-3 a, 0)$
(B) $(-a, 0)$
(C) $(-2 a, 0)$
(D) $(a, 0)$

2. Find the set of values of α in the interval $[\pi / 2,3 \pi / 2]$, for which the point $(\sin \alpha, \cos \alpha)$ does not lie outside the
3. Two perpendicular chords are drawn from the origin ' O ' to the parabola $y=x^{2}$, which meet the parabola at P
4. Find the equation of tangent \& normal at the ends of the latus rectum of the parabola
5. $y^{2}=4 a(x-a)$.
5. Prove that the straight line $\ell x+m y+n=0$ touches the parabola $y^{2}=4 a x$ if $\ell n=a m^{2}$.
$7 \quad$ on the parabola, where M is the mid point of P and Q.
7. \quad Find the equation of normal to the parabola $x^{2}=4 y$ at $(9,6)$.
8. Find the equation of the chord of $y^{2}=8 x$ which is bisected at $(2,-3)$

Find the locus of the mid-points of the chords of the parabola $y^{2}=4 a x$ which subtend a right angle at the vertex of the parabola.
10. Find the equation of the circle which passes through the focus of the parabola $x^{2}=4 y$ \& touches it at the point $(6,9)$.
11. Prove that the normals at the points, where the straight line $\ell x+m y=1$ meets the parabola $y^{2}=4 a x$, meet on the normal at the point $\left(\frac{4 \mathrm{am}^{2}}{\ell^{2}}, \frac{4 \mathrm{am}}{\ell}\right)$ of the parabola.
12. If the normals at three points P, Q, and R on parabola $y^{2}=4 a x$ meet in a point O and S be the focus, prove that $\mathrm{SP} . \mathrm{SQ} . \mathrm{SR}=\mathrm{a} . \mathrm{SO}^{2}$.
13. Show that the locus of the point of intersection of the tangents to $y^{2}=4 a x$ which intercept a constant length d on the directrix is $\left(y^{2}-4 a x\right)(x+a)^{2}=d^{2} x^{2}$.
14. Show that the distance between a tangent to the parabola $y^{2}=4 a x$ and the parallel normal is a $\sec ^{2} \theta \operatorname{cosec} \theta$, where θ is the inclination of the either with the axis of the parabola.
15. P and Q are the point of contact of the tangents drawn from a point R to the parabola $y^{2}=4 a x$. If $P Q$ be a normal to the parabola at P, prove that $P R$ is bisected by the directrix.
16. A circle is described whose centre is the vertex and whose diameter is three-quarters of the latus rectum of the parabola $y^{2}=4 a x$. If $P Q$ is the common chord of the circle and the parabola and $L_{1} L_{2}$ is

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com the latus rectum, then prove that the area of the trapezium $\mathrm{PL}_{1} \mathrm{~L}_{2} \mathrm{Q}$ is $\left(\frac{2+\sqrt{2}}{2}\right) \mathrm{a}^{2}$.
17. If the normals from any point to the parabola $x^{2}=4 y$ cuts the line $y=2$ in points whose abscissa are in A.P., then prove that slopes of the tangents at the 3 conormal points are in GP.
18. Prove that the length of the intercept on the normal at the point (at $\left.{ }^{2}, 2 a t\right)$ made by the circle which is described on the focal distance of the given point as diameter is $a \sqrt{1+t^{2}}$.
19. A parabola is drawn to pass through A and B, the ends of a diameter of a given circle of radius a, and to have as directrix a tangent to a concentric circle of radius b; then axes being $A B$ and a perpendicular diameter, prove that the locus of the focus of the parabola is $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{b^{2}-a^{2}}=1$
20. $P N P^{\prime}$ is a double ordinate of the parabola then prove that the locus of the point of intersection of the normal at P and the straight line through P^{\prime} parallel to the axis is the equal parabola $y^{2}=4 a(x-4 a)$.
21. Find the locus of the point of intersection of those normals to the parabola $x^{2}=8 y$ which are at right angles to each other.
[IIT-1997]
22. Let C_{1} and C_{2} be respectively, the parabolas $x^{2}=y-1$ and $y^{2}=x-1$. Let P be any point on C_{1} and Q be any point on C_{2}. Let P_{1} and Q_{1} be the reflections of P and Q, respectively, with respect to the line $y=x$. Prove that P_{1} lies on C_{2}, Q_{1} lies on C and $P Q \geq \min \left\{P P_{1}, Q Q_{1}\right\}$. Hence or otherwise determine points P_{0} and Q_{0} on the parabolas C_{1} and C_{2} respectively such that $P_{0} Q_{0} \leq P Q$ for all pairs of points (P, Q) with P on C_{1} and Q on C_{2}.
[IIT - 2000]
23. Normals are drawn from the point P with slopes m_{1}, m_{2}, m_{3} to the parabola $y^{2}=4 x$. If locus of P with
1.

1. C
2. A
3. C
4. C
5. D
6. B
7. B
8. C
9. A
10. C
11. A
12. C
13. A
14. $\alpha \in[\pi / 2,5 \pi / 6] \cup[\pi, 3 \pi / 2]$
15. $y^{2}=x-2$
16. Tangent $y=x, y=-x$, Normal $x+y=4 a, x-y=4 a$
17. $2 x+9 y=72$
18. $4 x+3 y+1=0$
19. $y^{2}-2 a x+8 a^{2}=0$
20. $x^{2}+y^{2}+18 x-28 y+27=0$
21. $x^{2}-2 y+12=0$
22. $\alpha=2$
23. B
24. B
25. C
26. C
27. C
28. A
29. B
30. A
31. C
32. vertex $\equiv\left(\frac{3}{2},-\frac{29}{8}\right)$, focus $\left(\frac{3}{2},-\frac{33}{8}\right)$ axis $\mathrm{x}=3$, directrix $\mathrm{y}=-\frac{29}{3}$. Latus rectum $=2$.

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0903903 7779,
Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0903903 7779,

