Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com EXERCISE-12

2. The equation of the ellipse with its centre at $(1,2)$, focus at $(6,2)$ and passing through the point $(4,6)$ is
(A) $\frac{(x-1)^{2}}{45}+\frac{(y-2)^{2}}{20}=1$
(B) $\frac{(x-1)^{2}}{20}+\frac{(y-2)^{2}}{45}=1$
(C) $\frac{(x-1)^{2}}{25}+\frac{(y-2)^{2}}{16}=1$
(D) $\frac{(x-1)^{2}}{16}+\frac{(y-2)^{2}}{25}=1$
3. The eccentricity of the ellipse which meets the straight line $\frac{x}{7}+\frac{y}{2}=1$ on the axis of x and the straight line $\frac{x}{3}-\frac{y}{5}=1$ on the axis of y and whose axes lie along the axes of coordinates, is
(A) $\frac{3 \sqrt{2}}{7}$
(B) $\frac{2 \sqrt{6}}{7}$
(C) $\frac{\sqrt{3}}{7}$
(D) none of these
4. The curve represented by $x=3(\cos t+\sin t), y=4(\cos t-\sin t)$, is
(A) ellipse
(B) parabola
(C) hyperbola
(D) circle
5. Minimum area of the triangle by any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with the coordinate axes is
(A) $\frac{a^{2}+b^{2}}{2}$
(B)
$\frac{(a+b)^{2}}{2}$
(C) $a b$
(D) $\frac{(a-b)^{2}}{2}$
6. A circle has the same centre as an ellipse \& passes through the focii $F_{1} \& F_{2}$ of the ellipse, such that the two curves intersect in 4 points. Let 'P' be any one of their point of intersection. If the major axis of the ellipse is $17 \&$ the area of the triangle $P F_{1} F_{2}$ is 30 , then the distance between the focii is :
(A) 11
(B) 12
(C) 13
(D) 15
7. Q is a point on the auxiliary circle corresponding to the point P of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. If T is the foot of the perpendicular dropped from the focus S onto the tangent to the auxiliaryy circle at Q then the
Δ SPT is :
(A) isosceles
(B) equilateral
(C) right angled
(D) right isosceles
8. $x-2 y+4=0$ is a common tangent to $y^{2}=4 x \& \frac{x^{2}}{4}+\frac{y^{2}}{b^{2}}=1$. Then the value of ' b ' and the other common tangent are given by :
(A) $b=\sqrt{3} ; x+2 y+4=0$
(B) $b=3 ; x+2 y+4=0$
(C) $b=\sqrt{3} ; x+2 y-4=0$
(D) $b=\sqrt{3} ; x-2 y-4=0$
9. The locus of point of intersection of tangents to an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the points whose the sum
of eccentric angles is constant, is :
(A) a hyperbola
(B) an ellipse
(C) a circle
(D) a straight line
10. A tangent having slope of $-\frac{4}{3}$ to the ellipse $\frac{x^{2}}{18}+\frac{y^{2}}{32}=1$ intersects the major \& minor axes in points $A \& B$ respectively. If C is the centre of the ellipse, then the area of the triangle $A B C$ is :
(A) 12 sq. units
(B) 24 sq. units
(C) 36 sq. units
(D) 48 sq. units
11. The normal at a variable point P on an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ of eccentricity ' e ' meets the axes of the ellipse in Q and R then the locus of the mid-point of $Q R$ is a conic with an eccentricity e^{\prime} such that :
(A) e^{\prime} is independent of e
(B) $e^{\prime}=1$
(C) $e^{\prime}=e$
(D) $\mathrm{e}^{\prime}=1 / \mathrm{e}$
12. $y=m x+c$ is a normal to the ellipse, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, if c^{2} is equal to :
(A) $\frac{\left(a^{2}-b^{2}\right)^{2}}{a^{2} m^{2}+b^{2}}$
(B) $\frac{\left(a^{2}-b^{2}\right)^{2}}{a^{2} m^{2}}$
(C) $\frac{\left(a^{2}-b^{2}\right)^{2} m^{2}}{a^{2}+b^{2} m^{2}}$
(D) $\frac{\left(a^{2}-b^{2}\right)^{2} m^{2}}{a^{2} m^{2}+b^{2}}$
13. An arc of a bridge is semi-elliptical with major axis horizontal. The length of the base is 9 meter and the highest part of the bridge is 3 meter from the horizontal. The best approximation of the Pillar 2 meter from the centre of the base is :
(A) $11 / 4 \mathrm{~m}$
(B) $8 / 3 \mathrm{~m}$
(C) $7 / 2 \mathrm{~m}$
(D) 2 m
14. Point ' O ' is the centre of the ellipse with major axis $A B$ \& minor axis $C D$. Point F is one focus of the ellipse. If OF $=6 \&$ the diameter of the inscribed circle of triangle OCF is 2 , then the product (AB) (CD)
(A) 64
(B) 12
(C) 65
(D) 3
15. An ellipse is such that the length of the latus rectum is equal to the sum of the lengths of its semi principal axes. Then:
(A) Ellipse bulges to a circle
(B) Ellipse becomes a line segment between the two foci
(C) Ellipse becomes a parabola
(D) none of these
16. A line of fixed length $(a+b)$ moves so that its ends are always on two fixed perpendicular straight lines. The locus of the point which divided this line into portions of lengths $a \& b$ is:
(A) an ellipse
(B) an hyperbola
(C) a circle
(D) none of these
17. The line $2 x+y=3$ cuts the ellipse $4 x^{2}+y^{2}=5$ at P and Q. If θ be the angle between the normals at
these points, then $\tan \theta=$
(A) $1 / 2$
(B) $3 / 4$
(C) $3 / 5$
(D) 5
18. The focal chord of $y^{2}=16 x$ is tangent to $(x-6)^{2}+y^{2}=2$, then the possible values of the slope of this chord are
[IIT-2003]
(A) $\{-1,1\}$
(B) $\{-2,2\}$
(C) $\left\{-2, \frac{1}{2}\right\}$
(D) $\left\{2,-\frac{1}{2}\right\}$
19. A tangent is drawn to ellipse $x^{2}+2 y^{2}=2$. Then the locus of mid point of portion of the tangent intercepted between coordinate axes.
[IIT - 2004]
(A) $\frac{1}{2 x^{2}}+\frac{1}{4 y^{2}}=1$
(B) $\frac{1}{4 x^{2}}+\frac{1}{2 y^{2}}=$
(C) $\frac{x^{2}}{2}+\frac{y^{2}}{4}=1$
(D) $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$
20. The locus of mid point of the intercept of the tangent drawn from an external point to the ellipse $x^{2}+2 y^{2}=2$ between the coordinate axes, is
[IIT - 2004]
(A) $\frac{1}{x^{2}}+\frac{1}{2 y^{2}}=1$
(B) $\frac{1}{4 x^{2}}+\frac{1}{2 y^{2}}=1$
(C) $\frac{1}{2 x^{2}}+\frac{1}{4 y^{2}}=1$
(D) $\frac{1}{2 x^{2}}+\frac{1}{y^{2}}=1$
21. An ellipse has $O B$ as semi-minor axis, F and F^{\prime} its foci and the angle $F B F^{\prime}$ is a right angle. Then, the eccentricity of the ellipse is
[IIT-2005]
(A) $\frac{1}{4}$
(B) $\frac{1}{\sqrt{3}}$
(C) $\frac{1}{\sqrt{2}}$
(D) $\frac{1}{2}$

Part : (B) May have more than one options correct
22. The tangent at any point ' P ' on the standard ellipse with focii as $S \& S$ ' meets the tangents at the
vertices $A \& A^{\prime}$ in the points $V \& V^{\prime}$, then:
(A) $(A V)\left(A^{\prime} V^{\prime}\right)=b^{2}$
(B) $(A V)\left(A^{\prime} V^{\prime}\right)=a^{2}$
(C) $\angle \mathrm{V}^{\prime} \mathrm{SV}=90^{\circ}$
(D) $V^{\prime} S^{\prime} V S$ is a cyclic quadrilateral
23. Identify the statements which are True.
(A) the equation of the director circle of the ellipse, $5 x^{2}+9 y^{2}=45$ is $x^{2}+y^{2}=14$.
(B) the sum of the focal distances of the point (06) on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{36}=1$ is 10 .
(C) the point of intersection of any tangent to a parabola \& the perpendicular to it from the focus lies on the tangent at the vertex.
(D) the line through focus and $\left(\mathrm{at}^{2}{ }_{1}, 2 \mathrm{at}_{1}\right)$ on $\mathrm{y}^{2}=4 \mathrm{ax}$, meets it again in the point $\left(\mathrm{at}^{2}{ }_{2}, 2 \mathrm{at}{ }_{2}\right)$ iff $\mathrm{t}_{1} \mathrm{t}_{2}=-1$.
24. The Cartesian equation of the curve whose parametric equation is $x=2 t-3$ and $y=4 t^{2}-1$ is given by
(A) $(x+3)^{2}-y-1=0$
(B) $x^{2}+6 x-y+8=0$
(C) $(y+1)^{2}+x+3=0$
(D) $y^{2}+6 x-2 y+4=0$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

25. If P is a point of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, whose focii are S and S^{\prime}. Let $\angle P S S^{\prime}=\alpha$ and $\angle P S^{\prime} S=\beta$, then
(A) $P S+P S^{\prime}=2 a$, if $a>b$
(B) $\quad \mathrm{PS}+\mathrm{PS}^{\prime}=2 \mathrm{~b}$, if $\mathrm{a}<\mathrm{b}$
(C) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}=\frac{1-e}{1+e}$
(D)

$$
\tan \frac{\alpha}{2} \tan \frac{\beta}{2}=\frac{\sqrt{a^{2}-b^{2}}}{b^{2}}\left[a-\sqrt{a^{2}-b^{2}}\right] \text { when } a>b
$$

26. If the distance between the focii of an ellipse is equal to the length of its latus rectum, the eccentricity of the ellipse is:
(A) $\frac{\sqrt{5}+1}{2}$
(B) $\frac{\sqrt{5}-1}{2}$
(C) $\frac{\sqrt{5}-2}{2}$
(D) $\frac{2}{\sqrt{5}+1}$

EXERCISE-13

1. Let use consider an ellipse whose major and minor axis are $3 x+4 y-7=0$ and $4 x-3 y-1=0$ respectively ' P ' be a variable point on the ellipse at any instance, it is given that distance of ' P ' from major and minor axis are 4 and 5 respectively. It is also given that maximum distance of ' P ' from minor
2. Prove that the area of the triangle formed by the three points on an ellipse, whose eccentric angle are θ, ϕ, and ψ, is $2 \mathrm{ab} \sin \frac{\phi-\psi}{2} \sin \frac{\psi-\theta}{2} \sin \frac{\theta-\phi}{2}$
3. Find the equation of tangents to the ellipse $\frac{x^{2}}{50}+\frac{y^{2}}{32}=1$ which passes through a point $(15,-4)$.
4. If 'P' be a moving point on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ in such a way that tangent at 'P' intersect $x=\frac{25}{3}$ at Q then circle on $P Q$ as diameter passes through a fixed point. Find that fixed point.
5. Any tangent to an ellipse is cut by the tangents at the ends of major axis in the points T and T^{\prime}. Prove that the circle, whose diameter is TT' will pass through the foci of the ellipse.
6. If $3 x+4 y=12$ intersect the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ at P and Q, then find the point of intersection of tangents at P and Q.
7. Find the equation of the largest circle with centre $(1,0)$ that can be inscribed in the ellipse $x^{2}+4 y^{2}=16$.
8. If P is a variable point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose foci are S and S^{\prime}, then prove that the locus of the incentre of $\Delta \mathrm{PSS}$ ' is an ellipse whose eccentricity is $\sqrt{\frac{2 e}{1+\mathrm{e}^{\prime}}}$ where e is the eccentricity of the given ellipse.
9. The tangent at a point $P(a \cos \theta, b \sin \theta)$ of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, meets its auxiliary circle in two points, the chord joining which subtends a right angle at the centre. Show that the eccentricity of the ellipse is $\left(1+\sin ^{2} \theta\right)^{-1 / 2}$.
10. ' O ' is the origin \& also the centre of two concentric circles having radii of the inner \& the outer circle as ' a ' \& ' b ' respectively. A line OPQ is drawn to cut the inner circle in P \& the outer circle in Q. PR is drawn parallel to the y - axis \& QR is drawn parallel to the x-axis. Prove that the locus of R is an ellipse touching the two circles. If the focii of this ellipse lie on the inner circle, find the ratio of inner: outer radii \& find also the eccentricity of the ellipse.
11. If any two chords be drawn through two points on the major axis of an ellipse equidistant from the centre, show that $\tan \frac{\alpha}{2} \cdot \tan \frac{\beta}{2} \cdot \tan \frac{\gamma}{2} \cdot \tan \frac{\delta}{2}=1$, where $\alpha, \beta, \gamma, \delta$ are the eccentric angles of the extremities
12. Let P be a point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ for which the area of the $\triangle P O N$ is the maximum where O is the origin and N is the foot of the perpendicular from O to the tangent at P . Find the maximum area and eccentric angle of point P.
13. Find the equation of the largest circle with centre $(1,0)$ that can be inscribed in the ellipse $x^{2}+4 y^{2}=16$.
[IIT - 1999]
14. Let P be point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,0<b<a$. Let the line parallel to y-axis passing through P meet the circle $x^{2}+y^{2}=a^{2}$ at the point Q such that P and Q are on the same side of $x-a x i s$. For two positive real numbers r and s. Find the locus of the point R on $P Q$ such that $P R: R Q=r: s$ as P varies over the ellipse.
[IIT - 2001]
15. Prove that in an ellipse, the perpendicular from a focus upon any tangent and the line joining the centre of the ellipse to the point of contact meet on the corresponding directrix.
[IIT - 2002]
16. Common tangents are drawn to the parabola $y^{2}=4 x \&$ the ellipse $3 x^{2}+8 y^{2}=48$ touching the parabola at $A \& B$ and the ellipse at $C \& D$. Find the area of the quadrilateral.
17. A tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meets the ellipse $\frac{x^{2}}{a}+\frac{y^{2}}{b}=a+b$ in the points P and Q; prove that the tangents at P and Q are at right angles.

EXERCISE-12

EXERCISE-13

1. D
2. A
3. B
4. A
5. C
6. C
7. A
8. $\left(e=\frac{3}{5}\right)$
9. $4 x+5 y=40,4 x-35 y=200$.
10. A
11. D
12. B
13. C
14. C
15. B
16. C
17. $(3,0)$
18. $\left(\frac{25}{4}, \frac{16}{3}\right)$
19. $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
20. A
21. B
22. A
23. A
24. B
25. C
26. $(x-1)^{2}+y^{2}=\frac{11}{3}$ 19. $\frac{x^{2}}{a^{2}}+\frac{y^{2}(r+s)^{2}}{(r a+s b)^{2}}=1$

Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

