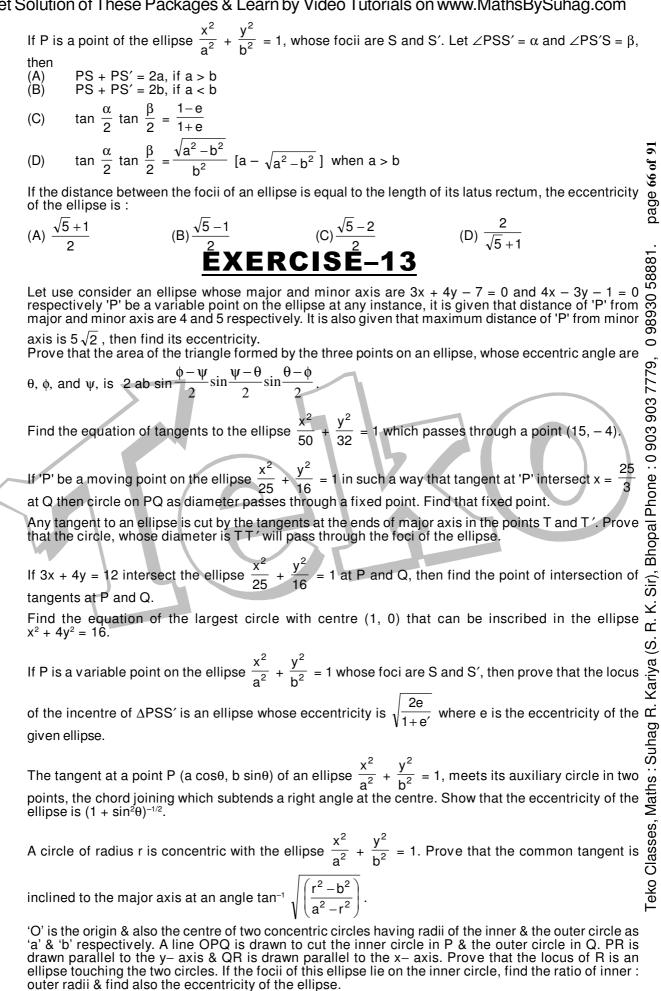
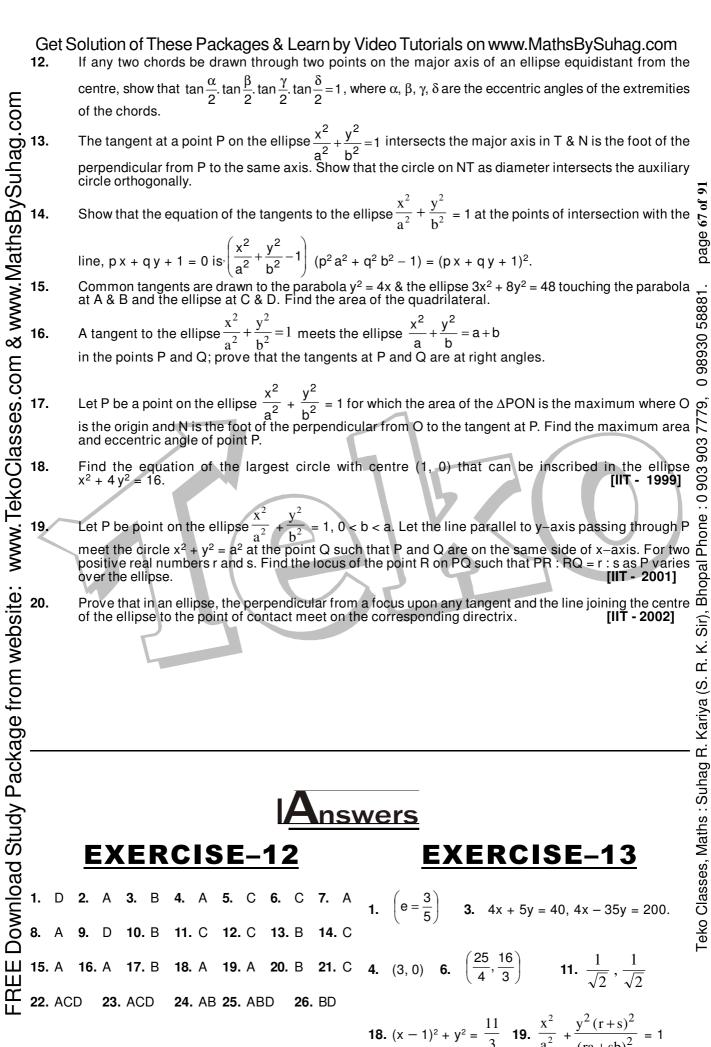

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

EXERCISE-12


Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.


Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

				•					vvv.iviai	nsbyOur	lag.com	
Е	12.	y = mx + c is a normal to the ellipse, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, if c ² is equal to :										
www.TekoClasses.com & www.MathsBySuhag.com		(A) $\frac{(a^2}{a^2r}$	$(-b^2)^2$ $n^2 + b^2$	(B) (a ²	$(a^2 - b^2)^2$	(C)	$\frac{(a^2-b^2)^2}{a^2+b^2m}$	m ² 2	(D) $\frac{(a^2}{a^2}$	$(-b^2)^2m^2$ $(2m^2+b^2)^2m^2$		
	13.	highest part of the bridge is 3 meter from the horizontal. The best approximation of the Pillar from the centre of the base is :										
By	14.	(A) 11/4 Point '((B) 8/3 tre of the e	m Ilipse with ma	()	7/2 m AB & min	or avis ((D)2m	t E is one t	focus of the	65 of
aths	14.	ellipse. is	If OF = 6 & t	he diamete	of the inscrib	oed circ	le of triang	le OCF is	s 2, then	the produc	ct (AB) (CD)	
Š	15	(A) 64	aa ia awab t	(B) 12 hat the lar	ath of the lat	(C) 6			(D) 3	ha lanatha	of its somi	
n & www.	15.	An ellipse is such that the length of the latus rectum is equal to the sum of the lengths of its semi principal axes. Then:(A)Ellipse bulges to a circle(B)Ellipse becomes a line segment between the two foci(C)Ellipse becomes a parabola(D)none of these										98930 58881.
s.con	16.	The loc	ne of fixed length (a + b) moves so that its ends are always on two fixed perpendicular sta locus of the point which divided this line into portions of lengths a & b is: an ellipse (B) an hyperbola (C) a circle (D) none of these								raight lines.	⁷ 9, 0.98
Se	17.	The line	e 2x + y = 3 oints, then t	cuts the ell anθ =	ipse $4x^2 + y^2$	= 5 at P	and Q. If	θ be the	angle be	etween the	e normals at	1
FekoClas		(A) 1/2		(B) 3/4		(C) 3			(D) 5			903
	18.	The foc are (A) {– 1		(B) {−2	ngent to (x – 6) 2, 2}	$y^{2} + y^{2} = 2$	2, then the $\left(-2, \frac{1}{2}\right)$	possible [•]	values or $\sqrt{2}, -2$	f the slope [II _ <u>1</u> }	of this chord T – 2003]	0
Ň	\square								-			Phone
bsite: ww	19.	interce	oted betwee	n coordinat	$x^{2} + 2y^{2} = 2$ e axes. $\frac{1}{2} + \frac{1}{2y^{2}} = 1$				7	[the tangent T - 2004]	Bhopal Ph
		(^{rx}) 2x ²	4y² - '	(^{D)} 4x	2 2y ² - 1	(0)	2 4 - 1		(0)	2		, В
5	20.	$x^2 + 2y^2 = 2$ between the coordinate axes, is [IIT - 2004]										
2 E		(A) $\frac{1}{x^2}$	$+\frac{1}{2y^2}=1$	(B) $\frac{1}{4x}$	$\frac{1}{2} + \frac{1}{2y^2} = 1$	(C)	$\frac{1}{2x^2} + \frac{1}{4y^2}$	2 = 1	(D) $\frac{1}{2x^2}$	$-+\frac{1}{y^2}=1$		S. R.
e fro	21.	(A) $\frac{1}{x^2} + \frac{1}{2y^2} = 1$ (B) $\frac{1}{4x^2} + \frac{1}{2y^2} = 1$ (C) $\frac{1}{2x^2} + \frac{1}{4y^2} = 1$ (D) $\frac{1}{2x^2} + \frac{1}{y^2} = 1$ An ellipse has OB as semi-minor axis, F and F' its foci and the angle FBF' is a right angle. There eccentricity of the ellipse is [IIT - 200] (A) $\frac{1}{4}$ (B) $\frac{1}{\sqrt{3}}$ (C) $\frac{1}{\sqrt{2}}$ (D) $\frac{1}{2}$ art : (B) May have more than one options correct 2. The tangent at any point 'P' on the standard ellipse with focii as S & S' meets the tangents a vertices A & A' in the points V & V', then :										
ag		(A) $\frac{1}{4}$		(B) $\frac{1}{\sqrt{2}}$	-	(C) -	$\frac{1}{\sqrt{2}}$	(D) $\frac{1}{2}$				ж.
ack	Part : (Part : (B) May have more than one options correct										
Ŭ	22.	The tar	ngent at any	point 'P' c	n the standar	rd ellips	e with foc	ii as S &	S' mee	ts the tang	gents at the	Suh
EREE Download Study Package from we		(A) (AV	s A & A′ in ṫ ′) (A′ V′) = b² ′ SV = 90º		points V & V', then :		(B) (AV) (A' V') = a ² (D) V' S' VS is a cyclic			quadrilateral		
bad	23.	Identify the statements which are True. (A) the equation of the director circle of the ellipse, $5x^2 + 9y^2 = 45$ is $x^2 + y^2 = 14$.										Classes, Maths
'n		(B)	the sum of the focal distances of the point (0 6) on the ellipse $\frac{x^2}{25} + \frac{y^2}{36} = 1$ is 10. the point of intersection of any tangent to a parabola & the perpendicular to it from the focus									Cla
NO NO												eko
		(D)	lies on the tangent at the vertex. the line through focus and $(at_1^2, 2at_1)$ on $y^2 = 4ax$, meets it again in the point $(at_2^2, 2at_2)$ iff $t_1t_2 = -1$.									
FRE	24.	The Ca (A) (x + (C) (y +	rtesian equa - 3)² – y – 1 ⊦ 1)² + x + 3	tion of the o = 0 = 0	curve whose p	aramet (B) : (D) :	ric equatio <² + 6x - y y² + 6x - 2	on is x = 2 / + 8 = 0 2y + 4 = (2t – 3 and 0	$dy = 4t^2 - 1$	l is given by	

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

25. FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com 26. 3. 5. 7. 10. 11.

Successful People Replace the words like: "wish", "try" & "should" with "I Will". Ineffective People don't.