EXERCISE-14

Part: (A) Only one correct option

1. An ellipse and a hyperbola have the same centre origin, the same foci and the minor-axis of the one is the same as the conjugate axis of the other. If $\mathrm{e}_{1}, \mathrm{e}_{2}$ be their eccentricities respectively, then $\frac{1}{\mathrm{e}_{1}^{2}}+\frac{1}{\mathrm{e}_{2}^{2}}=$
(A) 1
(B) 2
(C) 4
(D) none
2. The line $5 x+12 y=9$ touches the hyperbola $x^{2}-9 y^{2}=9$ at the point
(A) $(-5,4 / 3)$
(B) $(5,-4 / 3)$
(C) $(3,-1 / 2)$
(D) none of these
3. If the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{b^{2}}=1 \&$ the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide then the value of b^{2} is :
(A) 4
(B) 9
(C) 16
(D) none
4. The tangents from $(1,2 \sqrt{2})$ to the hyperbola $16 x^{2}-25 y^{2}=400$ include between them an angle equal to:
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{2}$
5. If $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right)$ and $S\left(x_{4}, y_{4}\right)$ are four concyclic points on the rectangular hyperbola
$x y=c^{2}$, the coordinates of orthocentre of the $\Delta P Q R$ are
(A) $\left(x_{4}, y_{4}\right)$
(B) $\left(x_{4},-y_{4}\right)$
(C) $\left(-x_{4},-x_{4}\right)$
(D) $\left(-x_{4},-y_{4}\right)$
6. The asymptotes of the hyperbola $x y=h x+k y$ are
(A) $x-k=0 \& y-h=0$
(B) $x+h=0 \& y+k=0$
(C) $x-k=0 \& y+h=0$
(D) $x+k=0 \& y-h=0$
7. The combined equation of the asymptotes of the hyperbola $2 x^{2}+5 x y+2 y^{2}+4 x+5 y=0$ is
(A) $2 x^{2}+5 x y+2 y^{2}+4 x+5 y+2=0$
(B) $2 x^{2}+5 x y+2 y^{2}+4 x+5 y-2=0$
(C) $2 x^{2}+5 x y+2 y^{2}=0$
(D) none of these
8. If the hyperbolas, $x^{2}+3 x y+2 y^{2}+2 x+3 y+2=0$ and $x^{2}+3 x y+2 y^{2}+2 x+3 y+c=0$ are conjugate of each other, then the value of ' c ' is equal to:
(A) -2
(B) 4
(C) 0
(D) 1
9. P is a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, N$ is the foot of the perpendicular from P on the transverse axis. The tangent to the hyperbola at P meets the transverse axis at T . If O is the centre of the hyperbola, then OT. ON is equal to:
(A) e^{2}
(B) a^{2}
(C) b^{2}
(D) b^{2} / a^{2}
10. The locus of the foot of the perpendicular from the centre of the hyperbola $x y=c^{2}$ on a variable tangent
(A) $\left(x^{2}-y^{2}\right)^{2}=4 c^{2} x y$
(B) $\left(x^{2}+y^{2}\right)^{2}=2 c^{2} x y$
(C) $\left(x^{2}+y^{2}\right)=4 x^{2} x y$
(D) $\left(x^{2}+y^{2}\right)^{2}=4 c^{2} x y$
11. If the chords of contact of tangents from two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ are at right angles, then $\frac{x_{1} x_{2}}{y_{1} y_{2}}$ is equal to
(A) $-\frac{a^{2}}{b^{2}}$
(B) $-\frac{b^{2}}{a^{2}}$
(C) $-\frac{b^{4}}{a^{4}}$
(D) $-\frac{a^{4}}{b^{4}}$
12. The equations of the transverse and conjugate axes of a hyperbola are respectively $x+2 y-3=0$, $2 x-y+4=0$, and their respective lengths are $\sqrt{2}$ and $2 / \sqrt{3}$. The equation of the hyperbola is
(A) $\frac{2}{5}(x+2 y-3)^{2}-\frac{3}{5}(2 x-y+4)^{2}=1$
(B) $\frac{2}{5}(2 x-y+4)^{2}-\frac{3}{5}(x+2 y-3)^{2}=1$
(C) $2(2 x-y+4)^{2}-3(x+2 y-3)^{2}=1$
(D) $2(x+2 y-3)^{2}-3(2 x-y+4)^{2}=1$
13. The chord $P Q$ of the rectangular hyperbola $x y=a^{2}$ meets the x-axis at $A ; C$ is the mid point of $P Q \&{ }^{\prime} O$ '
(A) equilateral
(B) isosceles
(C) right angled
(D) right isosceles.
14. The number those triangles that can be inscribed in the rectangular hyperbola $x y=c^{2}$ whose all sides touch the parabola $y^{2}=4 a x$ is :
(A) 0
(B) 1
(C) 2
(D) Infinite
15. The number of points from where a pair of perpendicular tangents can be drawn to the hyperbola,
$\mathrm{x}^{2} \mathrm{se}$
(A) 0
(B) 1
(C) 2
(D) infinite
16. If hyperbola $\frac{x^{2}}{b^{2}}-\frac{y^{2}}{a^{2}}=1$ passes through the focus of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ then eccentricity of hyperbola is
(A) $\sqrt{2}$
(B) $\frac{2}{\sqrt{3}}$
(C) $\sqrt{3}$
(D) None of these
17. The transverse axis of a hyperbola is of length $2 a$ and a vertex divides the segment of the axis between the centre and the corresponding focus in the ratio $2: 1$, the equation of the hyperbola is:
(A) $4 x^{2}-5 y^{2}=4 a^{2}$
(B) $4 x^{2}-5 y^{2}=5 a^{2}$
(C) $5 x^{2}-4 y^{2}=4 a^{2}$
(D) $5 x^{2}-4 y^{2}=5 a^{2}$
18. If $A B$ is a double ordinate of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that $\triangle O A B$ (O is the origin) is an equilateral triangle, then the eccentricity ' e ' of the hyperbola satisfies
(A) $e>\sqrt{3}$
(B) $1<\mathrm{e}<2 \frac{2}{\sqrt{3}}$
(C) $e=\frac{2}{\sqrt{3}}$
(D) $e>\frac{2}{\sqrt{3}}$
19. If $x \cos \alpha+y \sin \alpha=p$, a variable chord of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{2 a^{2}}=1$ subtends a right angle at the centre of the hyperbola, then the chords touch a fixed circle whose radius is equal to
(A) $\sqrt{2} \mathrm{a}$
(B) $\sqrt{3} \mathrm{a}$
(C) 2 a
(D) $\sqrt{5} \mathrm{a}$
20. Two conics $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $x^{2}=-\frac{1}{b} y$ intersect if
(A) $0<b \leq \frac{1}{2}$
(B) $0<a<\frac{1}{2}$
(C) $a^{2}<b^{2}$
(D) $\mathrm{a}^{2}>\mathrm{b}^{2}$
21. Number of points on hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ from where mutually perpendicular tangents can be drawn to circle $x^{2}+y^{2}=a^{2}(a>b)$ is
(A) 2
(B) 3
(C) infinite
(D) 4
22. The normal to the rectangular hyperbola $x y=c^{2}$ at the point ' t ' meets the curve again at the point ' t, The value of $t_{1}{ }^{3} t_{2}$ is
(A) -1
(B) $-|c|$
(C) $|c|$
(D) 1
23. If the tangent and the normal to a rectangular hyperbola cut off intercepts x_{1} and x_{2} on one axis and
y_{1} and y_{2} on the ot
(A) $x_{1} y_{1}+x_{2} y_{2}=0$
(B) $x_{1} y_{2}+x_{2} y_{1}=0$
(C) $x_{1} x_{2}+y_{1} y_{2}=0$
(D) none of these
24. If $x=9$ is the chord of contact of the hyperbola $x^{2}-y^{2}=9$, then the equation of the corresponding pair of tangents is
(A) $9 x^{2}-8 y^{2}+18 x-9=0$
(B) $9 x^{2}-8 y^{2}+18 x+9=0$
(C) $9 x^{2}-8 y^{2}-18 x-9=0$
(D) $9 x^{2}-8 y^{2}+18 x+9=0$

Part : (B) May have more than one options correct
25. The value of m for which $y=m x+6$ is a tangent to the hyperbola $\frac{x^{2}}{100}-\frac{y^{2}}{49}=1$ is
(A) $\sqrt{\left(\frac{17}{20}\right)}$
(B) $-\sqrt{\left(\frac{17}{20}\right)}$
(C) $\sqrt{\left(\frac{20}{17}\right)}$
(D) $-\sqrt{\left(\frac{20}{17}\right)}$
26. If $(a \sec \theta, b \tan \theta)$ and $(a \sec \phi, b \tan \phi)$ are the ends of a focal chord of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then $\tan \frac{\theta}{2} \tan \frac{\phi}{2}$ equals to
(A) $\frac{e-1}{e+1}$
(B) $\frac{1-e}{1+e}$
(C) $\frac{1+e}{1-e}$
(D) $\frac{e+1}{e-1}$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
(C) $y=2 \sqrt{\frac{3}{7}} x+15 \sqrt{7}$
(D) $y=3 \sqrt{\frac{2}{7}} x-\frac{15}{\sqrt{7}}$
28. The equation of a hyperbola with co-ordinate axes as principal axes, if the distances of one of its
vertices from the foci are 3 \& 1 can be:
(A) $3 x^{2}-y^{2}=3$
(B) $x^{2}-3 y^{2}+3=0$
(C) $x^{2}-3 y^{2}-3=0$
(D) none
29. If $(5,12)$ and $(24,7)$ are the foci of a conic passing through the origin then the eccentricity of conic is
(A) $\sqrt{386} / 12$
(B) $\sqrt{386} / 13$
(C) $\sqrt{386} / 25$
(D) $\sqrt{386} / 38$
30. If the normal at P to the rectangular hyperbola $x^{2}-y^{2}=4$ meets the axes in G and g and C is the centre
of the hyperbola, then
(A) $P G=P C$
(B) $\mathrm{Pg}=\mathrm{PC}$
(C) $P G=P g$
(D) $G g=P C$
31. The tangent to the hyperbola, $x^{2}-3 y^{2}=3$ at the point $(\sqrt{3}, 0)$ when associated with two asymptotes
constitutes:
(A) isosceles triangle
(B) an equilateral triangle
(C) a triangles whose area is $\sqrt{3}$ sq. units
(D) a right isosceles triangle.
32. Which of the following equations in parametric form can represent a hyperbolic profile, where 't' is a parameter.
(A) $x=\frac{a}{2}\left(t+\frac{1}{t}\right) \& y=\frac{b}{2}\left(t-\frac{1}{t}\right)$
(B) $\frac{t x}{a}-\frac{y}{b}+t=0 \& \frac{x}{a}+\frac{t y}{b}-1=0$
(C) $x=e^{t}+e^{-t} \& y=e^{t}-e^{-t}$
(D) $x^{2}-6=2 \cos t \& y^{2}+2=4 \cos ^{2} \frac{t}{2}$
33. If a hyperbola passes through the focii of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$. Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse and if the product of eccentricities of hyperbola and ellipse is 1 , then
(A) the equation of hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
(B) the equation of hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$
(C) focus of hyperbola is $(5,0)$
(D) focus of hyperbola is $(5 \sqrt{3}, 0)$

1. For the hyperbola $x^{2} / 100-y^{2} / 25=1$, prove that
(i) eccentricity $=\sqrt{5} / 2$
(ii) $S A \cdot S^{\prime} A=25$, where $S \& S^{\prime}$ are the foci \& A is the vertex .
2. Chords of the hyperbola, $x^{2}-y^{2}=a^{2}$ touch the parabola, $y^{2}=4 a x$. Prove that the locus of their middle points is the curve, $y^{2}(x-a)=x^{3}$.
3. Find the asymptotes of the hyperbola $2 x^{2}-3 x y-2 y^{2}+3 x-y+8=0$. Also find the equation to the conjugate hyperbola \& the equation of the principal axes of the curve.
4. Given the base of a triangle and the ratio of the tangent of half the base angles. Show that the vertex moves on a hyperbola whose foci are the extremities of the base.
5. If p_{1} and p_{2} are the perpendiculars from any point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ on its asymptotes, then prove that, $\frac{1}{\mathrm{p}_{1} \mathrm{p}_{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$.
6. If two points $P \& Q$ on the hyperbola $x^{2} / a^{2}-y^{2} / b^{2}=1$ whose centre is C be such that $C P$ is perpendicular to $C Q \& a<b$, then prove that $\frac{1}{\mathrm{CP}^{2}}+\frac{1}{\mathrm{CQ}^{2}}=\frac{1}{\mathrm{a}^{2}}-\frac{1}{\mathrm{~b}^{2}}$.
7. If $P S P^{\prime} \& Q S Q^{\prime}$ are two perpendicular focal chords of the hyperbola $x^{2} / a^{2}-y^{2} / b^{2}=1$ then prove that
8. A line through the origin meets the circle $x^{2}+y^{2}=a^{2}$ at P \& the hyperbola $x^{2}-y^{2}=a^{2}$ at Q. Prove that the locus of the point of intersection of the tangent at P to the circle and the tangent at Q to the hyperbola is curve $a^{4}\left(x^{2}-a^{2}\right)+4 x^{2} y^{4}=0$.
9. Prove that the part of the tangent at any point of the hyperbola $x^{2} / a^{2}-y^{2} / b^{2}=1$ intercepted between the point of contact and the transverse axis is a harmonic mean between the lengths of the perpendiculars drawn from the foci on the normal at the same point.
10. Let ' p ' be the perpendicular distance from the centre C of the hyperbola $x^{2} / a^{2}-y^{2} / b^{2}=1$ to the tangent drawn at a point R on the hyperbola. If $S \& S^{\prime}$ are the two foci of the hyperbola, then show that $\left(R S+R S^{\prime}\right)^{2}=4 \mathrm{a}^{2}\left(1+\frac{\mathrm{b}^{2}}{\mathrm{p}^{2}}\right)$.
11. Chords of the hyperbola $x^{2} / a^{2}-y^{2} / b^{2}=1$ are tangents to the circle drawn on the line joining the foci as diameter. Find the locus of the point of intersection of tangents at the extremities of the chords.
12. A point P divides the focal length of the hyperbola $9 x^{2}-16 y^{2}=144$ in the ratio $S^{\prime} P$: PS = 2: 3 where $S \& S^{\prime}$ are the foci of the hyperbola. Through P a straight line is drawn at an angle of 135° to the axis OX. Find the points of intersection of this line with the asymptotes of the hyperbola.
13. The angle between a pair of tangents drawn from a point P to the parabola $y^{2}=4 a x$ is 45°. Show that the locus of the point P is a hyperbola.
[IIT - 1998]
14. Tangents are drawn from any point on the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ to the circle $x^{2}+y^{2}=9$. Find the locus of mid-point of the chord of constant.
[IIT - 2005]

EXERCISE-14

EXERCISE-15

1. A
2. A
3. B
4. C
5. D
6. D
7. A
8. C
9. B
10. D
11. D
12. B
13. B
14. D
15. D
16. C
17. D
18. D
19. A
20. B
21. D
22. A
23. C
24. B
25. $A B$
26. $B C$
27. BD
28. $A B$
29. $A D$
30. ABC
31. $B C$
32. $A C D$
33. AC
34. $x-2 y+1=0 ; 2 x+y+1=0$;
$2 x^{2}-3 x y-2 y^{2}+3 x-y-6=0 ;$ $3 x-y+2=0 ; \quad x+3 y=0$
35. $\frac{\mathrm{x}^{2}}{\mathrm{a}^{4}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{4}}=\frac{1}{\mathrm{a}^{2}+\mathrm{b}^{2}} \quad$ 14. $(-4,3) \&\left(-\frac{4}{7},-\frac{3}{7}\right)$
36. $\frac{x^{2}}{9}-\frac{y^{2}}{4}=\left(\frac{x^{2}+y^{2}}{9}\right)^{2}$
