Some questions (Assertion-Reason type) are given below. Each question contains Statement - 1 (Assertion) and Statement - 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. So select the correct choice :
Choices are :
(A) Statement $\mathbf{- 1}$ is True, Statement $\mathbf{- 2}$ is True; Statement $\mathbf{- 2}$ is a correct explanation for Statement $\mathbf{- 1}$.
(B) Statement - $\mathbf{1}$ is True, Statement - $\mathbf{2}$ is True; Statement - $\mathbf{2}$ is NOT a correct explanation for Statement - $\mathbf{1}$.
(C) Statement - $\mathbf{1}$ is True, Statement - $\mathbf{2}$ is False.
(D) Statement - $\mathbf{1}$ is False, Statement $\mathbf{- 2}$ is True.

PARABOLA

286. Statement-1 : Slope of tangents drawn from $(4,10)$ to parabola $\mathrm{y}^{2}=9 \mathrm{x}$ are $\frac{1}{4}, \frac{9}{4}$.

Statement-2 : Every parabola is symmetric about its directrix.
287. Statement-1: Though $(\lambda, \lambda+1)$ there can't be more than one normal to the parabola $y^{2}=4 x$, if $\lambda<2$.

Statement-2 : The point $(\lambda, \lambda+1)$ lies outside the parabola for all $\lambda \neq 1$.
288. Statement-1 : If $x+y=k$ is a normal to the parabola $y^{2}=12 x$, then k is 9 .

Statement-2 : Equation of normal to the parabola $y^{2}=4 a x$ is $y-m x+2 a m+a^{3}=0$
289. Statement-1 : If b, k are the segments of a focal chord of the parabola $y^{2}=4 a x$, then k is equal to $a b / b-a$.

Statement-2 : Latus rectum of the parabola $y^{2}=4 \mathrm{ax}$ is H.M. between the segments of any focal chord of the parabola
290. Statement-1: Two parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ have common tangent $x+y+a=0$

Statement-2 : $x+y+a=0$ is common tangent to the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ and point of contacts lie on their respective end points of latus rectum.
291. Statement-1 : In parabola $y^{2}=4 a x$, the circle drawn taking focal radii as diameter touches y-axis.
Statement-2 : The portion of the tangent intercepted between point of contact and directix subtends 90° angle at focus.
292. Statement-1 : The joining points $(8,-8) \&(1 / 2,-2)$, which are lying on parabola $y^{2}=4 a x$, pass through focus of parabola.

Statement-2 : Tangents drawn at $(8,-8) \&(1 / 2,-2)$ on the parabola $y^{2}=4 a x$ are perpendicular.
293. Statement-1 : There are no common tangents between circle $x^{2}+y^{2}-4 x+3=0$ and parabola $y^{2}=2 x$.
Statement-2 : Equation of tangents to the parabola $x^{2}=4 a y$ is $x=m y+a / m$ where m denotes slope of tangent.
294. Statement-1: Three distinct normals of the parabola $y^{2}=12 x$ can pass through a point $(h, 0)$ where $h>6$.

Statement-2 : If $h>2 a$ then three distinct nroamls can pass through the point $(h, 0)$ to the parabola $y^{2}=4 a x$.
295. Statement-1 : The normals at the point $(4,4)$ and $\left(\frac{1}{4},-1\right)$ of the parabola $y^{2}=4 x$ are perpendicular.

Statement-2 : The tangents to the parabola at the and of a focal chord are perpendicular.
296. Statement-1 : Through $(\lambda, \lambda+1)$ there cannot be more than one-normal to the parabola $y^{2}=4 x$ if $\lambda<2$.

Statement-2 : The point $(\lambda, \lambda+1)$ lines out side the parabola for all $\lambda \neq 1$.
297. Statement-1 : Slope of tangents drawn from $(4,10)$ to parabola $y^{2}=9 x$ are $1 / 4,9 / 4$

Statement-2 : Every parabola is symmetric about its axis.
298. Statement-1 : If a parabola is defined by an equation of the form $y=a x^{2}+b x+c$ where $a, b, c \in R$ and $a>0$, then the parabola must possess a minimum.
Statement-2 : A function defined by an equation of the form $y=a x^{2}+b x+c$ where $a, b, c \in R$ and $a \neq 0$, may not have an extremum.
299. Statement-1: The point $(\sin \alpha, \cos \alpha)$ does not lie outside the parabola $2 y^{2}+x-2=0$ when $\alpha \in\left[\frac{\pi}{2}, \frac{5 \pi}{6}\right] \cup\left[\pi, \frac{3 \pi}{2}\right]$

Statement-2 : The point $\left(x_{1}, y_{1}\right)$ lies outside the parabola $y^{2}=4 a x$ if $y_{1}{ }^{2}-4 a x_{1}>0$.
300. Statement-1 : The line $y=x+2 a$ touches the parabola $y^{2}=4 a(x+a)$.

Statement-2 : The line $y=m x+c$ touches $y^{2}=4 a(x+a)$ if $c=a m+a / m$.
301. Statement-1: If $P Q$ is a focal chord of the parabola $y^{2}=32 x$ then minimum length of $P Q=32$.

Statement-2 : Latus rectum of a parabola is the shortest focal chord.
302. Statement-1 : Through $(\lambda, \lambda+1)$, there can't be more than one normal to the parabola $\mathrm{y}^{2}=4 \mathrm{x}$ if $\lambda<2$.
Statement-2 : The point $(\lambda, \lambda+1)$ lies outside the parabola for all $\lambda \in R \sim\{1\}$.
303. Statement-1 : Perpendicular tangents to parabola $y^{2}=8 x$ meets on $x+2=0$

Statement-2 : Perpendicular tangents of parabola meets on tangent at the vertex.
304. Let $y^{2}=4 a x$ and $x^{2}=4 a y$ be two parabolas

Statement-1: The equation of the common tangent to the parabolas is $x+y+a=0$
Statement-2: Both the parabolas are reflected to each other about the line $y=x$.
305. Let $y^{2}=4 a(x+a)$ and $y^{2}=4 b(x+b)$ are two parabolas

Statement-1 : Tangents are drawn from the locus of the point are mutually perpendicular
State.-2: The locus of the point from which mutually perpendicular tangents can be drawn to the given comb is $x+y+b=0$

ELLIPSE

306. Tangents are drawn from the point $(-3,4)$ to the curve $9 x^{2}+16 y^{2}=144$.

Statement -1: The tangents are mutually perpendicular.
Statement-2: The locus of the points from which mutually perpendicular tangents can be drawn to the given curve is $\mathrm{x}^{2}+$ $y^{2}=25$.
307. Statement-1 : Circle $x^{2}+y^{2}=9$, and the circle $(x-\sqrt{5})(\sqrt{2} x-3)+y(\sqrt{2} y-2)=0$ touches each other internally.

Statement-2 : Circle described on the focal distance as diameter of the ellipse $4 x^{2}+9 y^{2}=36$ touch the auxiliary circle $x^{2}+$ $y^{2}=9$ internally
308. Statement-1 : If the tangents from the point $(\lambda, 3)$ to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ are at right angles then λ is equal to ± 2.
Statement-2 : The locus of the point of the intersection of two perpendicular tangents to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, is $x^{2}+y^{2}=a^{2}+b^{2}$.
309. Statement-1: $x-y-5=0$ is the equation of the tangent to the ellipse $9 x^{2}+16 y^{2}=144$.

Statement-2 : The equation of the tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is of the form $y=m x \pm$ $\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}}$.
310. Statement-1 : At the most four normals can be drawn from a given point to a given ellipse.

Statement-2 : The standard equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ of an ellipse does not change on changing x by $-x$ and $y b y-y$.
311. Statement-1 : The focal distance of the point $(4 \sqrt{3}, 5)$ on the ellipse $25 x^{2}+16 y^{2}=1600$ will be 7 and 13.
Statement-2 : The radius of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having its centre at $(0,3)$ is 5 .
312. Statement-1 : The least value of the length of the tangents to $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ intercepted between the coordinate axes is $a+b$.

Statement-2 : If x_{1} and x_{2} be any two positive numbers then $\frac{x_{1}+x_{2}}{2} \geq \sqrt{x_{1}+x_{2}}$
313. Statement-1: In an ellipse the sum of the distances between foci is always less than the sum of focal distances of any point on it.
Statement-2 : The eccentricity of any ellipse is less than 1.
314. Statement-1 : Any chord of the conic $x^{2}+y^{2}+x y=1$, through $(0,0)$ is bisected at $(0,0)$

Statement-2 : The centre of a conic is a point through which every chord is bisected.
315. Statement-1 : A tangent of the ellipse $x^{2}+4 y^{2}=4$ meets the ellipse $x^{2}+2 y^{2}=6$ at $P \& Q$. The angle between the tangents at P and Q of the ellipse $x^{2}+2 y^{2}=6$ is $\pi / 2$
Statement-2 : If the two tangents from to the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ are at right angle, then locus of P is the circle $x^{2}+y^{2}=$ $\mathrm{a}^{2}+\mathrm{b}^{2}$.
316. Statement-1: The equation of the tangents drawn at the ends of the major axis of the ellipse $9 x^{2}+5 y^{2}-30 y=0$ is $y=0$, y $=7$.
Statement-1 : The equation of the tangent drawn at the ends of major axis of the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ always parallel to y-axis
317. Statement-1 : Tangents drawn from the point $(3,4)$ on to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ will be mutually perpendicular Statement-2 : The points $(3,4)$ lies on the circle $x^{2}+y^{2}=25$ which is director circle to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$.
318. Statement-1 : For ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{3}=1$, the product of the perpendicular drawn from focii on any tangent is 3 .

Statement-2 : For ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{3}=1$, the foot of the perpendiculars drawn from foci on any tangent lies on the circle x^{2} $+y^{2}=5$ which is auxiliary circle of the ellipse.
319. Statement-1 : If line $x+y=3$ is a tangent to an ellipse with foci $(4,3) \&(6, y)$ at the point $(1,2)$, then $y=17$.

Statement-2 : Tangent and normal to the ellipse at any point bisects the angle subtended by foci at that point.
320. Statement-1: Tangents are drawn to the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ at the points, where it is intersected by the line $2 x+3 y=1$. Point of intersection of these tangents is $(8,6)$.
Statement-2 : Equation of chord of contact to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ from an external point is given by
$\frac{x_{1}}{a^{2}}+\frac{\mathrm{yy}_{1}}{b^{2}}-1=0$
321. Statement-1 : In an ellipse the sum of the distances between foci is always less than the sum of focal distances of any point on it.
Statement-2 : The eccentricity of any ellipse is less than 1.
322. Statement-1: The equation $x^{2}+2 y^{2}+\lambda x y+2 x+3 y+1=0$ can never represent a hyperbola

Statement-2 : The general equation of second degree represent a hyperbola it $\mathrm{h}^{2}>\mathrm{ab}$.
323. Statement-1 : The equation of the director circle to the ellipse $4 x^{2}+9 x^{2}=36$ is $x^{2}+y^{2}=13$.

Statement-2 : The locus of the point of intersection of perpendicular tangents to an ellipse is called the director circle.
324. Statement-1: The equation of tangent to the ellipse $4 x^{2}+9 y^{2}=36$ at the point $(3,-2)$ is $\frac{x}{3}-\frac{y}{2}=1$.

Statement-2 : Tangent at $\left(x_{1}, y_{1}\right)$ to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=1$
325. Statement-1 : The maximum area of $\Delta P S_{1} S_{2}$ where S_{1}, S_{2} are foci of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and P is any variable point on it, is abe, where e is eccentricity of the ellipse.
Statement-2 : The coordinates of pare $(a \sec \theta, b \tan \theta)$.
326. Statement-1 : In an ellipse the sum of the distances between foci is always less than the sum of focal distance of any point on it.
Statement-2 : The eccentricity of ellipse is less than 1.

HYPPRBOLA

327. Let $\mathrm{Y}= \pm \frac{2}{3} \sqrt{\mathrm{x}^{2}-9} \quad \mathrm{x} \in[3, \infty)$ and $\mathrm{Y}_{1}= \pm \frac{2}{3} \sqrt{\mathrm{x}^{2}-9}$ be $\mathrm{x} \in(-\infty,-3]$ two curves.

Statement 1: The number of tangents that can be drawn from $\left(5,-\frac{10}{3}\right)$ to the curve
$\mathrm{Y}_{1}= \pm \frac{2}{3} \sqrt{\mathrm{x}^{2}-9}$ is zero

Statement 2: The point $\left(5,-\frac{10}{3}\right)$ lies on the curve $\mathrm{Y}= \pm \frac{2}{3} \sqrt{\mathrm{x}^{2}-9}$.
328. Statement-1 : If $(3,4)$ is a point of a hyperbola having focus $(3,0)$ and $(\lambda, 0)$ and length of the transverse axis being 1 unit then λ can take the value 0 or 3 .
Statement-2 : $\left|S^{\prime} P-S P\right|=2 a$, where S and S^{\prime} are the two focus $2 a=$ length of the transverse axis and P be any point on the hyperbola.
329. Statement-1 : The eccentricity of the hyperbola $9 x^{2}-16 y^{2}-72 x+96 y-144=0$ is $\frac{5}{4}$.

Statement-2 : The eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is equal to $\sqrt{1+\frac{b^{2}}{a^{2}}}$.
330. Let $a, b, \alpha \in R-\{0\}$, where a, b are constants and α is a parameter.

Statement-1 : All the members of the family of hyperbolas $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{\alpha^{2}}$ have the same pair of asymptotes.
Statement-2 : Change in α, does not change the slopes of the asymptotes of a member of the family $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{\alpha^{2}}$.
331. Statement-1 : The slope of the common tangent between the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $-\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$ may be 1 or -1 .
Statement-2 : The locus of the point of inteeersection of lines $\frac{x}{a}-\frac{y}{b}=m$ and $\frac{x}{a}+\frac{y}{b}=\frac{1}{m}$ is a hyperbola (where m is variable and $a b \neq 0$).
332. Statement-1 : The equation $x^{2}+2 y^{2}+\lambda x y+2 x+3 y+1=0$ can never represent a hyperbola.

Statement-2 : The general equation of second degree represents a hyperbola if $\mathrm{h}^{2}>\mathrm{ab}$.
333. Statement-1 If a point $\left(x_{1}, y_{1}\right)$ lies in the region II of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, shown in the figure, then $\frac{x_{1}^{2}}{a^{2}}-\frac{y_{1}^{2}}{b^{2}}<0$

Statement-2 If $\left(P\left(x_{1}, y_{1}\right)\right.$ lies outside the a hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then $\frac{x_{1}^{2}}{a^{2}}-\frac{y_{1}^{2}}{b^{2}}<1$
334. Statement-1 Equation of tangents to the hyperbola $2 x^{2}-3 y^{2}=6$ which is parallel to the line $y=3 x+4$ is $y=3 x-5$ and $y=3 x+5$.
Statement-2 $y=m x+c$ is a tangent to $x^{2} / a^{2}-y^{2} / b^{2}=1$ if $c^{2}=a^{2} m^{2}+b^{2}$.
335. Statement-1 : There can be infinite points from where we can draw two mutually perpendicular tangents on to the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$

Statement-2 : The director circle in case of hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ will not exist because $a^{2}<b^{2}$ and director circle is $x^{2}+$ $y^{2}=a^{2}-b^{2}$.
336. Statement-1 : The average point of all the four intersection points of the rectangular hyperbola $x y=1$ and circle $x^{2}+y^{2}=4$ is origin $(0,0)$.
Statement-2 : If a rectangular hyperbola and a circle intersect at four points, the average point of all the points of intersection is the mid point of line-joining the two centres.
337. Statement-1 : No tangent can be drawn to the hyperbola $\frac{x^{2}}{2}-\frac{y^{2}}{1}=1$, which have slopes greater than $\frac{1}{\sqrt{2}}$

Statement-2 : Line $y=m x+c$ is a tangent to hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If $c^{2}=a^{2} m^{2}-b^{2}$
338. Statement-1 : Eccentricity of hyperbola $x y-3 x-3 y=0$ is $4 / 3$

Statement-2 : Rectangular hyperbola has perpendicular asymptotes and eccentricity $=\sqrt{2}$
339. Statement-1: The equation $x^{2}+2 y^{2}+\lambda x y+2 x+3 y+1=0$ can never represent a hyperbola

Statement-2 : The general equation of second degree represent a hyperbola it $h^{2}>\mathrm{ab}$.
340. Statement-1 : The combined equation of both the axes of the hyperbola $x y=c^{2}$ is $x^{2}-y^{2}=0$.

Statement-2 : Combined equation of axes of hyperbola is the combined equation of angle bisectors of the asymptotes of the hyperbola.
341. Statement-1 : The point $(7,-3)$ lies inside the hyperbola $9 x^{2}-4 y^{2}=36$ where as the point $(2,7)$ lies outside this.

Statement-2 : The point $\left(x_{1}, y_{1}\right)$ lies outside, on or inside the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ according as $\frac{x_{1}^{2}}{a^{2}}-\frac{y_{1}^{2}}{b^{2}}-1<$ or $=$ or >0
342. Statement-1 : The equation of the chord of contact of tangents drawn from the point $(2,-1)$ to the hyperbola $16 x^{2}-9 y^{2}=$ 144 is $32 x+9 y=144$.
Statement-2 : Pair of tangents drawn from $\left(x_{1}, y_{1}\right)$ to $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $S_{1}=T^{2} S=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad S_{1}=\frac{x_{1}^{2}}{a^{2}}-\frac{y_{1}^{2}}{b^{2}}-1$
343. Statement-1: If $P Q$ and RS are two perpendicular chords of $x y=x^{e}$, and C be the centre of hyperbola $x y=c^{2}$. Then product of slopes of $\mathrm{CP}, \mathrm{CQ}, \mathrm{CR}$ and CS is equal to 1 .
Statement-2 : Equation of largest circle with centre $(1,0)$ and lying inside the ellipse $x^{2}+4 y^{2} 16$ is $3 x^{2}+3 y^{2}-6 x-8=0$.

Answer

286. C 287. B 288. A 289. C 290. B 291. B 292. B 293. C 294. A 295. A 296. B 297. A 298. C 299. B 300. A

287. B
288. D 333. D
289. C
290. D
291. A
292. A
293. A
294. A
295. A
296. A

Solution
286. Option (C) is correct.

$$
\begin{gathered}
y=m x+\frac{a}{m} \\
10=4 m-1 \cdot \frac{9 / 4}{m} \\
\Rightarrow 16 \mathrm{~m}^{2}-40 \mathrm{~m}+9=0 \\
\text { Every } \mathrm{m}_{1}=\frac{1}{4}, \mathrm{~m}_{2}=\frac{9}{4}
\end{gathered}
$$

$$
\Rightarrow \mathrm{m}_{1}=\frac{1}{4}, \mathrm{~m}_{2}=\frac{9}{4}
$$

Every parabola is symmetric about its axis.
287. Option (B) is correct

Any normal to $y^{2}=4 x$ is
$\mathrm{Y}+\mathrm{tx}=2 \mathrm{t}+\mathrm{t}^{3}$
If this passes through $(\lambda, \lambda+1)$, we get
$\lambda+1+\lambda=2 t+t^{3}$
$\Rightarrow \mathrm{t}^{3}+\mathrm{t}(2-\lambda)-\lambda-1=0=\mathrm{f}(\mathrm{t})$ (say)
If $\lambda<2$, then $\mathrm{f}^{\prime}(\mathrm{t})=3 \mathrm{t}^{2}+(2-\lambda)>0$
$\Rightarrow \mathrm{f}(\mathrm{t})=0$ will have only one real root. So A is true.
Statement 2 is also true $\mathrm{b}^{\prime} \operatorname{coz}(\lambda+1)^{2}>4 \lambda$ is true $\forall \lambda \neq 1$. The statement is true but does not follow true statement- 2 .
288. For the parabola $y^{2}=12 x$, equation of a normal with slope -1 is $y=-x-2.3(-1)-3(-1) 3$
$\Rightarrow \mathrm{x}+\mathrm{y}=9, \Rightarrow \mathrm{k}=9$

> Ans. (A).
289. $\quad S P=a+a_{1}{ }^{2}=a\left(1+t_{1}{ }^{2}\right)$
$S Q=a+a / t_{1}{ }^{2}==\frac{a\left(1+t_{1}^{2}\right)}{t_{1}^{2}}$
$\frac{1}{\mathrm{SP}}+\frac{1}{\mathrm{SQ}}=\frac{\left(1+\mathrm{t}_{1}^{2}\right)}{\mathrm{a}\left(1+\mathrm{t}_{1}^{2}\right)}=\frac{1}{\mathrm{a}}$
$\frac{1}{\mathrm{SP}}, \frac{1}{2 \mathrm{a}}, \frac{1}{\mathrm{SQ}}$ are in A.P.
$\Rightarrow 2 \mathrm{a}$ is H.M. between $\mathrm{SP} \& \mathrm{SQ}$
Hence $\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{k}}=\frac{1}{\mathrm{a}} \Rightarrow \frac{1}{\mathrm{k}}=\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~b}}$

$$
\Rightarrow \mathrm{k}=\mathrm{ab} / \mathrm{b}-\mathrm{a}=\frac{\mathrm{b}-\mathrm{a}}{\mathrm{ab}} \quad \text { Ans. (C) }
$$

290. $y^{2}=4 a x$
equation of tangent of slope ' m '
$y=m x+\frac{a}{m}$
If it touches $x^{2}=4 a y$ then $x^{2}=4 a(m x+a / m)$
$x^{2}-4 a m x-\frac{4 a^{2}}{m}=0$ will have equal roots
D $=0$
$16 \mathrm{a}^{2} \mathrm{~m}^{2}+\frac{16 \mathrm{a}^{2}}{\mathrm{~m}}=0$
$m^{3}=-1 \Rightarrow m=-1$
So $y=-x-a \Rightarrow x+y+a=0$
$(a,-2 a) \&(-2 a, a)$ lies on it
' B ' is correct.
291. $(x-a)\left(x-a t^{2}\right)+y(y-2 a t)=0$

Solve with $x=0$
$a^{2} t^{2}+y(y-2 a t)=0$
$y^{2}-2 a t y+a^{2} t^{2}=0$
If it touches y-axis then above quadratic must have equal roots. $\mathrm{SO}, \mathrm{D}=0$
$4 a^{2} t^{2}-4 a^{2} t^{2}=0$ which is correct.
' B ' is correct.
296. (B) Any normal to the parabola $y^{2}=4 x$ is $y+t x=2 t+t^{3}$

It this passes through $(\lambda, \lambda+1)$
$\Rightarrow \mathrm{t}^{3}+\mathrm{t}(2-\lambda)-\lambda-1=0=\mathrm{f}(\mathrm{t})$ say $)$
$\lambda<2$ than $\mathrm{f}^{\prime}(\mathrm{t})=3 \mathrm{t}^{2}+(2-\lambda)>0$
$\Rightarrow \mathrm{f}(\mathrm{t})=0$ will have only one real root $\Rightarrow \mathrm{A}$ is true
The statement-2 is also true since $(\lambda+1)^{2}>4 \lambda$ is true for all $\lambda \neq 1$. The statement-2 is true but does not follow true statement-2.
297. $y=m x+\frac{a}{m}$
$10=4 \mathrm{~m}+\frac{9 / 4}{\mathrm{~m}} \Rightarrow 16 \mathrm{~m}^{2}-40 \mathrm{~m}+9=0$
$\mathrm{m}_{1}=1 / 4, \mathrm{~m}_{2}=9 / 4$
Every parabola is symmetric about its axis.
298. (C) Statement-1 is true but Statement-2 is false.
299. (B)

If the point $(\sin \alpha, \cos \alpha)$ lies inside or on the parabola $2 y^{2}+x-2=0$ then $2 \cos ^{2} \alpha+\sin \alpha-2 \leq 0$
$\Rightarrow \sin \alpha(2 \sin \alpha-1) \geq 0 \quad \Rightarrow \sin \alpha \leq 0$, or $\sin \alpha \geq \frac{1}{2}$.
300. (A) $y=(x+a)+a$ is of the form $y=m(x+a)+a / m$ where $m=1$.
Hence the line touches the parabola.
302. Any normal to the parabola $y^{2}=4 x$ is $y+x t=2 t+t^{3}$

If this passes through $(\lambda, \lambda+1)$. We get $\lambda+1+\lambda t=2 t+t^{3}$.
$\Rightarrow \mathrm{t}^{3}+\mathrm{t}(2-\lambda)-(\lambda+1)=0=\mathrm{f}(\mathrm{t})$ (let)
if $\lambda<2$, then, $\mathrm{f}^{\prime}(\mathrm{t})=3 \mathrm{t}^{2}+(2-\lambda)>0$
$\Rightarrow \mathrm{f}(\mathrm{t})=0$ will have only one real root.
\Rightarrow statement-I is true. Statement-II is also true since $(\lambda+1)^{2}>4 \lambda$ is true for all $\lambda \in R \sim\{1\}$.
Statement - I is true but does ot follow true statement - II.
Hence (b) is the correct answer.
304. (B) Because the common tangent has to be perpendicular to $y=x$. Its slope is -1 .
307. Ellipse is $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
focus $\equiv(\sqrt{5}, 0), \mathrm{e}=\frac{\sqrt{5}}{3}$, Any point an ellipse $\equiv\left(\left(\frac{3}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right)\right.$
equation of circle as the diameter, joining the points $(3 / \sqrt{2}, 2 / \sqrt{2})$ and focus $(\sqrt{5}, 0)$ is
$(x-\sqrt{5})(\sqrt{2} x-3)+y(\sqrt{2} \cdot y-2)=0 \quad$ (A) is the correct option.
308. (a) $(\lambda, 3)$ should satisfy the equation $x^{2}+y^{2}=13$
$\therefore \lambda= \pm 2$.
309. (A)

Here $\mathrm{a}=4, \mathrm{~b}=3$ and $\mathrm{m}=1$
\therefore equation of the tangent is $\mathrm{y}=\mathrm{x} \pm \sqrt{16+9}$
$y=x \pm 5$.
310. Statement - I is true as it is a known fact and statement - II is obviously true. However statement - II is not a true reasoning for statement -I , as coordinate system has nothing to do with statement - I.
311. Given ellipse is $\frac{x^{2}}{64}+\frac{y^{2}}{100}=1$
$\Rightarrow \mathrm{a}^{2}=64 ; \mathrm{b}^{2}=100 \Rightarrow \mathrm{e}=\frac{3}{5}(\because \mathrm{a}<\mathrm{b})$
Now, focal distance of $\left(x_{1}, y_{1}\right)$ on ellipse will be 7 and 13 .
Now, for ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1 \Rightarrow a^{2}=16, b^{2}=9, e=\frac{\sqrt{7}}{4} . \quad \Rightarrow$ Focus is $(a e, 0)$ or $(\sqrt{7}, 0)$.
Now radius of the circle $=$ Distance between $(\sqrt{7}, 0)$ and $(0,3)=4$.

Hence (c) is the correct answer.
313. Option (A) is correct

Sum of the distance between foci $=2 \mathrm{ae}$
Sum of the focal distances $=\frac{2 \mathrm{a}}{\mathrm{e}}$
$\mathrm{ae}<\frac{\mathrm{a}}{\mathrm{e}} \mathrm{b}^{\prime} \operatorname{coze}<1$.
Both are true and it is correct reason.
314. Option (A) is true.

Let $\mathrm{y}=\mathrm{mx}$ be any chord through $(0,0)$. This will meet conic at points whose x -coordinates are given by $\mathrm{x}^{2}+\mathrm{m}^{2} \mathrm{x}^{2}+\mathrm{mx}^{2}=1$
$\Rightarrow\left(1+m+m^{2}\right) \mathrm{x}^{2}-1=0$
$\Rightarrow \mathrm{x}_{1}+\mathrm{x}_{2}=0 \Rightarrow \frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}=0$
Also $\mathrm{y}_{1}=\mathrm{mx}_{1}, \mathrm{y}_{2}=\mathrm{mx}_{2}$
$\Rightarrow \mathrm{y}_{1}+\mathrm{y}_{2}=\mathrm{m}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)=0$
$\Rightarrow \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}=0 \Rightarrow$ mid-point of chord is $(0,0) \forall \mathrm{m}$.
315. Equation of PQ (i.e., chord of contact) to the ellipse $x^{2}+2 y^{2}=6$
$\frac{h x}{6}+\frac{k y}{3}=1$
Any tangent to the ellipse $\mathrm{x}^{2}+4 \mathrm{y}^{2}=4$ is
i.e., $\mathrm{x} / 2 \cos \theta+\mathrm{y} \sin \theta=1$... (2)
$\Rightarrow(1) \&(2)$ represent the same line $\mathrm{h}=3 \cos \theta, \mathrm{k}=3 \sin \theta$
Locus of $\mathrm{R}(\mathrm{h}, \mathrm{k})$ is $\mathrm{x}^{2}+\mathrm{y}^{2}=9 \quad$ Ans. (A)
316. $x^{2} / 5+(y-3)^{2} / 9=1$

Ends of the major axis are $(0,6)$ and $(0,0)$
Equation of tangent at $(0,6)$ and $(0,0)$ is $y=6$, and $y=0$
Anc. (C)
317. $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ will have director circle $x^{2}+y^{2}=16+9$
$\Rightarrow x^{2}+y^{2}=25$
and we know that the locus of the point of intersection of two mutually perpendicular tangents drawn to any standard ellipse is its director circle.
' a ' is correct.
318. $B y$ formula $p_{1} p_{2}=b^{2}$

$$
=3 .
$$

also foot of perpendicular lies on auxiliary circle of the ellipse.
' B ' is correct.
321. Sum of distances between foci $=2 \mathrm{ae}$ sum of the focal distances $=2 \mathrm{a} / \mathrm{e}$
ae $<$ a/e since $\mathrm{e}<1$.
(A)
322. The statement-1 is false. Since this will represent hyperbola if $h^{2}>a b$
$\Rightarrow \frac{\lambda^{2}}{4}>2 \Rightarrow|\lambda|>2 \sqrt{2}$
Thus reason R being a standard result is true.
(A)
323. (a) Both Statement-1 and Statement-2 are True and Statement-2 is the correct explanation of Statement-1.
324. (C) Required tangent is

$$
\frac{3 x}{9}-\frac{2 y}{4}=1 \quad \text { or } \quad \frac{x}{3}-\frac{y}{2}=1
$$

325. (C)
area of $\Delta \mathrm{PS}_{1} \mathrm{~S}_{2}=$ abe $\sin \theta$
clearly its maximum value is abe.

326. Tangents cannot be drawn from one branch of hyperbola to the other branch.

Ans. (A)
328. (d) $\sqrt{(\lambda-3)^{2}+16}-4=1 \Rightarrow \lambda=0$ or 6 .
329. (A)

Hyperbola is $\frac{(x-4)^{2}}{16}-\frac{(y-3)^{2}}{9}=1$
$\therefore \mathrm{e}=\sqrt{1+\frac{9}{16}}=\frac{5}{4}$.
330. Both statements are true and statement - II is the correct reasoning for statement - I, as for any member, semi transverse and semi - conjugate axes are $\frac{a}{\alpha}$ and $\frac{b}{\alpha}$ respectively and hence asymptoters are always $y= \pm \frac{b}{a} x$.
Hence (a) is the correct answer
331. If $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ be the common tangent,
then $c^{2}=a^{2} m^{2}-b^{2}$
and $c^{2}=-b^{2} m^{2}+a^{2}$
on eliminating c^{2}, we get $\mathrm{m}^{2}=1 \Rightarrow \mathrm{~m}= \pm 1$.
Now for statement - II,
On eliminating m, we get $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$,
Which is a hyperbola.
Hence (b) is the correct answer.
332. Option (D) is correct.

The statement- 1 is false b^{\prime} coz this will represent hyperbola if $h^{2}>a b$
$\Rightarrow \frac{\lambda^{2}}{4}>2 \Rightarrow|\lambda|>2 \sqrt{2}$
The statmenet- 2 , being a standard result, is true.
333. The statement -1 is false b^{\prime} coz points in region II lie below the line $y=b / a x \Rightarrow \frac{x_{1}^{2}}{a^{2}}-\frac{y_{1}^{2}}{b^{2}}>0$

The region-2 is true (standard result). Indeed for points in region II
$0<\frac{\mathrm{x}_{1}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}_{1}^{2}}{\mathrm{~b}^{2}}<1$.
334. $x^{2} / a^{2}-y^{2} / b^{2}=1$
if $\quad c^{2}=a^{2} m^{2}-b^{2}$
$\Rightarrow c^{2}=3.3^{2}-2=25$
$c= \pm 5$
335. The locus of point of intersection of two mutually perpendicular tangents drawn on to hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is its director circle whose equation is $x^{2}+y^{2}=a^{2}-b^{2}$. For $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1, x^{2}+y^{2}=9-16$
So director circle does not exist.
So ' d ' is correct.
336. $\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}=0$
$\frac{y_{1}+y_{2}+y_{3}+y_{4}}{4}=0$
So $(0,0)$ is average point which is also the mid point of line joining the centres of circle \& rectangular hyperbola ' a ' is correct.
339. The statement- 1 is false. Since this will represent hyperbola if $h^{2}>a b$
$\Rightarrow \frac{\lambda^{2}}{4}>2 \Rightarrow|\lambda|>2 \sqrt{2}$
Thus reason R being a standard result is true.
(A)
340. (a)

Both Statement-1 and Statement-2 are True and Statement-2 is the correct explanation of Statement-2.
341. (A)

$$
\begin{aligned}
& \frac{7^{2}}{4}-\frac{(-3)^{2}}{9}-1>0 \\
& \text { and } \frac{2^{2}}{4}-\frac{7^{2}}{9}-1<0
\end{aligned}
$$

342. (B)

Required chord of contact is $32 x+9 y=144$ obtained from $\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=1$.
for 39 Yrs. Que. of IIT-JEE \&
15 Yrs. Que. of AIEEE
we have distributed
already a book

