विध्न विचारत भीरु जन, नहीं आरम्भे काम, विपति देख छोड़े तुरंत मध्यम मन कर श्याम। पुरुष सिंह संकल्प कर, सहते विपति अनेक, ‘बना' न छोड़े ध्येय को, रघुबर राखे टेक।।

रचितः मानव धर्ग प्रणेता

सदवृुु ड्री रणछोड़दाEEणी महहlटाज
 STUDY PACKAGE Subject: Mathematics
 Topic : HIGHLIGHTS ON PARABOLA, ELLIPSE \& HYPERBOLA

Available Online : www.MathsBySuhag.com

Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal绝: 0903903 7779, 98930 58881, WhatsApp 9009260559 www.TekoClasses.com www.MathsBySuhag.com

HIGHLIGHTS ON PARABOLA, ELLIPSE \& HYPERBOLA

1.HIGHLIGHTS OF PARABOLA

CHORD WITH A GIVEN MIDDLE POINT :General method for finding the equation우
of a chord of any conic with middle point (h, k).
Example: Let the parabola be $\mathrm{y}^{2}=8 \mathrm{x}$ and $(\mathrm{h}, \mathrm{k}) \equiv(2,-3)$
we have to find the equation of AB

$$
y+3=m(x-2)
$$

$$
\begin{array}{ll}
\text { now } & y_{1}^{2}=4 \mathrm{ax}_{1} \\
\text { and } & y_{2}^{2}=4 \mathrm{ax}_{2}
\end{array}
$$

\qquad
Subtraction

$$
y_{1}^{2}-y_{2}^{2}=4 a\left(x_{1}-x_{2}\right) \quad \text { or } \quad \frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{4 a}{y_{1}+y_{2}}=m
$$

$$
\text { but } \quad y_{1}+y_{2}=2 k=-6 \text { and } 4 a=8 \quad \therefore \quad m=\frac{8}{-6}=-\frac{4}{3}
$$

Hence equation of $\left.\mathrm{AB}=\mathrm{y}+3=-\frac{4}{3}(\mathrm{x}-2) \Rightarrow \quad 4 \mathrm{x}+3 \mathrm{y}+1=0 \quad\right]$
Conversely : To find the mid point of given chord :Let the equation of the line be $4 x+3 y+1=0$ given. To find the mid point (h, k) of $A B$
here $m=-\frac{4}{3}=\frac{4 a}{y_{1}+y_{2}} \Rightarrow-\frac{4}{3}=\frac{8}{2 k} \Rightarrow k=-3$
since $4 \mathrm{~h}+3 \mathrm{k}+1=0 \Rightarrow 4 \mathrm{~h}-9+1=0 \Rightarrow \mathrm{~h}=2$ hence M is $(2,-3)$

For a parabola in particular

Equation of AB

$$
\begin{equation*}
y-k=m(x-h) \tag{1}
\end{equation*}
$$

$$
\mathrm{m}_{\mathrm{AB}}=\frac{2}{\mathrm{t}_{1}+\mathrm{t}_{2}} \quad \text { also } \quad 2 \mathrm{k}=2 \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)
$$

$\therefore \quad \mathrm{m}_{\mathrm{AB}}=\frac{2 \mathrm{a}}{\mathrm{k}} \quad$ Hence equation of a chord whose mid point is (h, k)
....(2) or
$4 \mathrm{ah}+\mathrm{ky}-\mathrm{k}^{2}=2 \mathrm{a}(\mathrm{x}-\mathrm{h})+4 \mathrm{ah}=2 \mathrm{a}(\mathrm{x}+\mathrm{h})$
But $\quad m_{A B}=\frac{2}{t_{1}+t_{2}}$ also $2 k=2 a\left(t_{1}+t_{2}\right)$
$\left(t_{1}+t_{2}\right)=\frac{k}{a}$
$\frac{k}{a}$
$y-k=\frac{2 a}{k}(x-h)$

EXAMPLES : Ex-1F the locus of the middle point of chords of the parabola $y^{2}=4 a x$ which
(i) passes through the foeus [Ans. $\left.y^{2}=2 a(x-a)\right]$
(ii) are normal to the parabola
[Ans. $\left.y^{2}\left(y^{2}-2 a x+4 a^{2}\right)+8 a^{4}=0\right]$
 (iii)subtend a constant angle α at the vertex(Homogenise)Ans. $\left.\left(8 a^{2}+y^{2}-2 a x\right)^{2} \tan ^{2} \alpha=16 a^{2}\left(4 a x-y^{2}\right)\right]$ (iv)are of given length (say $2 l$) (v) are such that the normals at their extremities meet on the parabola [Ans. $y^{2}=2 a(x+2 a) ;$ Hint: use $\left.t_{1} t_{2}=2\right]$
[Sol. (i) $2 \mathrm{~h}=\mathrm{a}\left(\mathrm{t}_{1}^{2}+\mathrm{t}_{2}^{2}\right)$
$2 \mathrm{k}=2 \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
..(2) $k^{2}=a^{2}\left[t_{1}^{2}+t_{2}^{2}+2 t_{1} t_{2}\right]$
$2\left[\frac{2 \mathrm{~h}}{\mathrm{a}}-2\right] \quad=2 \mathrm{ah}-2 \mathrm{a}^{2} \quad \therefore \quad \mathrm{y}^{2}=2 \mathrm{a}(\mathrm{x}-\mathrm{a})$

This could also be spelled as locus of the middle point of all focal chords of all the particles ${ }^{2}$ $y^{2}=4 \mathrm{ax}$. or Locus of the middle point of all the chord of contact of the pair of tangents drawn from any point on this directrix.
(ii) $2 \mathrm{~h}=\mathrm{a}\left(\mathrm{t}_{1}^{2}+\mathrm{t}_{2}^{2}\right)$

$$
\begin{equation*}
; \mathrm{k}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) \tag{1}
\end{equation*}
$$

alsot $_{2}=-t_{1}-\frac{2}{t_{1}} \Rightarrow t_{1}+t_{2}=-\frac{2}{t_{1}}$
using (2), $\frac{\mathrm{k}}{\mathrm{a}}=-\frac{2}{\mathrm{t}_{1}} \Rightarrow \mathrm{t}_{1}=-\frac{2 \mathrm{a}}{\mathrm{k}}$
$\therefore \mathrm{t}_{2}=+\frac{2 \mathrm{a}}{\mathrm{k}}+\frac{2 \mathrm{k}}{2 \mathrm{a}} \Rightarrow \mathrm{t}_{2}=\frac{2 \mathrm{a}}{\mathrm{k}}+\frac{\mathrm{k}}{\mathrm{a}} \therefore \mathrm{t}_{1} \mathrm{t}_{2}=-\frac{2 \mathrm{a}}{\mathrm{k}}\left[\frac{2 \mathrm{a}}{\mathrm{k}}+\frac{\mathrm{k}}{\mathrm{a}}\right]=-2-\frac{4 \mathrm{a}^{2}}{\mathrm{k}^{2}}$.

$2 a h k^{2}=k^{4}+4 a^{2} k^{2}+8 a^{4} \quad k^{2}\left(k^{2}-2 a h+4 a^{2}\right)+8 a^{4}=0 \quad$ Ans. $]$
Ex-2 A series of chords is drawn so that their projections on the straight line which is inclined at an angle α to the axis are of constant length c . Prove that the locus of their middle point is the curve $\quad\left(y^{2}-4 a x\right)(y \cos \alpha+2 a \sin \alpha)^{2}+a^{2} c^{2}=0$

$$
\left.\mathrm{a}^{2}\left[\left(\mathrm{t}_{2}+\mathrm{t}_{1}\right)^{2}-4 \mathrm{t}_{1} \mathrm{t}_{2}\right]\left[\mathrm{a}\left(\mathrm{t}_{2}+\mathrm{t}_{1}\right) \cos \alpha+2 \mathrm{a} \sin \alpha\right]^{2}=\mathrm{c}^{2} \quad\right]
$$

Ex-3Through each point of the straight line $x=m y+h$ is drawn the chord of the parabola $y^{2}=4 a x$ which is bisected at the point. Prove that it always touches parabola $(y+2 a m)^{2}=8 a(x-h)$.
which is bisected at the point. Prove that it always touches
[Sol. Equation of var. chord $A B y-y_{i}=\frac{2 a}{y_{i}}\left(x-m y_{1}-h\right)$

$$
\begin{aligned}
& {y y_{i}-y_{i}}^{2}=2 \mathrm{axx}^{2}-2 \mathrm{amy}_{1}-2 \mathrm{ah} \\
& \mathrm{y}_{\mathrm{i}}^{2}-(\mathrm{y}+2 \mathrm{am}) \mathrm{y}_{\mathrm{i}}+2 \mathrm{a}(\mathrm{x}-\mathrm{h})=0 \\
& \left.(\mathrm{y}+2 \mathrm{am})^{2}=8 \mathrm{a}(\mathrm{x}-\mathrm{h}) \quad\right]
\end{aligned}
$$

DIAMETER : The locus of the middle points of a system of parallel chords of a

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com Parabola is called a Diameter. Equation to the diameter of a parabola is $y=2 \mathrm{a} / \mathrm{m}$, where $\mathrm{m}=$ slope of parallel chords.
Explanation : Slope of $A B$ ism $=\frac{2}{t_{1}+t_{2}} \ldots$. (1) also $\quad 2 \mathrm{k}=2 \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) \Rightarrow \mathrm{t}_{1}+\mathrm{t}_{2}=\frac{\mathrm{k}}{\mathrm{a}} \therefore \mathrm{k}=\frac{2 \mathrm{a}}{\mathrm{m}}=$ constant Hence equation of the diameter is $\mathrm{y}=\frac{2 \mathrm{a}}{\mathrm{m}}$ i.e. a line parallel to
 the axis of the parabola. Solving $y=\frac{2 \mathrm{a}}{\mathrm{m}}$ with $\mathrm{y}^{2}=4 \mathrm{ax}$, we have, $\frac{4 \mathrm{a}^{2}}{\mathrm{~m}^{2}}=4 \mathrm{ax}$ orx $=\frac{\mathrm{a}}{\mathrm{m}^{2}}$ Hence coordinates of Q are $\left(\frac{\mathrm{a}}{\mathrm{m}^{2}}, \frac{2 \mathrm{a}}{\mathrm{m}}\right)$ Hence the tangent at the extremity of a diameter of a parabola is parallel to the system of chords it bisects.Since point of intersection of the two tangents are A and B is $a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)$ or $\left(a t_{1} t_{2}, \frac{2 a}{m}\right)$ Hence the tangent at the ends of any chords of a parabola meet on the diameter which bisects the chord. Note:A line segment from a point P on the parabola and parallel to the system of parallel chords is called the ordinate to the diameter bisecting the system of parallel chords and the chords are called its double ordinate. IMPORTANTHIGHLIGHTS:
(a) If the tangent \& normal at any point ' P ' of the parabola intersect the axis at $\mathrm{T} \& \mathrm{G}$ then

$$
\begin{aligned}
& \mathrm{PM}=\mathrm{PS} \\
& \mathrm{PU}=\mathrm{PN} \\
& \mathrm{PM}-\mathrm{PU}=\mathrm{PS}-\mathrm{PN} \\
& \mathrm{MU}=\mathrm{SN} \\
& \mathrm{QL}=\mathrm{SN}
\end{aligned}
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

$\mathrm{ST}=\mathrm{SG}=\mathrm{SP}$ where ' S ' is the focus. In other words the tangent and the normal at a point P on from P on the directrix. From this we conclude that all rays emanating from S will become $\underset{\sim}{\text { or }}$ parallel to the axis of the parabola after reflection.

Deduce that, if Q is any point on the tangent and QN is the perpendicular from Q on focal radius and QL is the perpendicular on the directrix then $\mathrm{QL}=\mathrm{SN}$.
Note : Circle circumscribing the triangle formed by any tangent normal and x -axis,
(b) The portion of a tangent to a parabola cut off between the directrix \& the curve subtends a right angle at the focus.
$\mathrm{m}_{1}=\frac{2 \mathrm{at}}{\mathrm{at}^{2}-\mathrm{a}}=\frac{2 \mathrm{t}}{\mathrm{t}^{2}-1} \quad ;$
$\mathrm{m}_{2}=\frac{-\mathrm{a}\left(\mathrm{t}^{2}-1\right)}{\mathrm{t} \cdot 2 \mathrm{a}}=-\frac{\left(\mathrm{t}^{2}-1\right)}{2 \mathrm{t}}$

$$
\therefore \quad \mathrm{m}_{1} \mathrm{~m}_{2}=-1
$$

(c) The tangents at the extremities of a focal chord intersect at right angles on the directrix, and hence a circle on any focal chord as diameter touches the directrix. Also a circle on any focal radii of a point $\mathrm{P}\left(\mathrm{at}^{2}\right.$, 2at) as diameter touches the tangent at the vertex and intercepts a chord of length $a \sqrt{1+t^{2}}$ on a normal at the point P .

(d) Any tangent to a parabola \& the perpendicular on it from the focus meet on the tangent at the vertex.
i.e. locus of the feet of the perpendicular drawn from focus upon a variable tangent is the tangent drawn to the parabola at its vertex.
\mathcal{E} Explanation : Tangent ' t ' is

$$
\begin{equation*}
t y=x+a t^{2} \tag{1}
\end{equation*}
$$

Passing through (h, k) hence

$$
\begin{equation*}
\mathrm{tk}=\mathrm{h}+\mathrm{at}^{2} \tag{A}
\end{equation*}
$$

A line through $(a, 0)$ with slope $-t$

$$
y=-t(x-a)
$$

(2) also passes through (h, k)

$$
\begin{align*}
& \mathrm{k}=-\mathrm{th}+\mathrm{at} \\
& \mathrm{tk}=-\mathrm{t}^{2} \mathrm{~h}+\mathrm{at}^{2} \tag{B}
\end{align*}
$$

(A) $-(B)$ gives $0=\left(1+t^{2}\right) h$
$\Rightarrow \quad \mathrm{x}=0$ which is the tangent at the vertex. Slope $\frac{1}{\mathrm{t}}$
(e) If the tangents at P and Q meet in T , then :

- $\quad \mathrm{ST}^{2}=\mathrm{SP} \cdot \mathrm{SQ} \&$
- The triangles SPT and STQ are similar.
(i) To prove that $\alpha=\beta$, it will be sufficient to prove that ' T ' lies on the angle bisector of the angle $\angle \mathrm{PSQ}$ i.e. perpendicular distance of ' T ' from the line SP is equal to the perpendicular of T from SQ .
equation of SP

(ii) $\mathrm{SP} \cdot \mathrm{SQ}=\left(\mathrm{a}+\mathrm{at}_{1}^{2}\right)\left(\mathrm{a}+\mathrm{a} \mathrm{t}_{2}^{2}\right)=\mathrm{a}^{2}\left(1+\mathrm{t}_{1}^{2}\right)\left(1+\mathrm{t}_{2}^{2}\right)$
also $(S T)^{2}=a^{2}\left(\mathrm{t}_{1} \mathrm{t}_{2}-1\right)^{2}+\mathrm{a}^{2}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}=\mathrm{a}^{2}\left[\mathrm{t}_{1}^{2} \mathrm{t}_{2}^{2}+1+\mathrm{t}_{2}^{2}+\mathrm{t}_{2}^{2}\right]$
$=\mathrm{a}^{2}\left(1+\mathrm{t}_{1}^{2}\right)\left(1+\mathrm{t}_{2}^{2}\right)$
Hence $(S T)^{2}=S P \cdot S Q$
This is conclusive that product of the focal radii of two points P and Q is equal to the square of the distance of focus from the point of intersection of the tangents drawn at P and Q.
(iii) again, $\frac{\mathrm{ST}}{\mathrm{SP}}=\frac{\mathrm{SQ}}{\mathrm{ST}}$ and $\alpha=\beta$
hence the two triangles SPT and SQT are similar.
(f) Tangents and Normals at the extremities of the latus rectum of a parabola $y^{2}=4 a x$ constitute Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com a square, their points of intersection being $(-a, 0) \&(3 a, 0)$.

figure is Self explanatory]

合 Note :

(1) The two tangents at the extremities of focal chord meet on the foot of the directrix.
(2) Figure $\mathrm{L}_{1} \mathrm{NL}_{2} \mathrm{G}$ is square of side $2 \sqrt{2} \mathrm{a}$
(g) Semi latus rectum of the parabola $y^{2}=4 a x$, is the harmonic mean between segments of any focal chord of the parabola is : $2 \mathrm{a}=\frac{2 \mathrm{bc}}{\mathrm{b}+\mathrm{c}}$ i.e. $\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=\frac{1}{\mathrm{a}}$.

$$
\begin{align*}
& 2 \mathrm{a}=\frac{2 \mathrm{bc}}{\mathrm{~b}+\mathrm{c}} \text { i.e. } \quad \frac{1}{\mathrm{a}}=\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}} \\
& \Rightarrow \quad \mathrm{~b}=\mathrm{a}+\mathrm{at}^{2} \\
& \Rightarrow \quad \mathrm{~b}=\mathrm{a}\left(1+\mathrm{t}^{2}\right) \\
& \Rightarrow \quad \frac{\mathrm{a}}{\mathrm{~b}}=\frac{1}{1+\mathrm{t}^{2}} \ldots .(1) \tag{1}\\
& \mathrm{c}=\mathrm{a}+\frac{\mathrm{a}}{\mathrm{t}^{2}} \\
& \Rightarrow \quad \mathrm{c}=\mathrm{a}\left(1+\frac{1}{\mathrm{t}^{2}}\right) \Rightarrow \quad \frac{\mathrm{a}}{\mathrm{c}}=\frac{\mathrm{t}^{2}}{\mathrm{t}^{2}+1}
\end{align*}
$$

from (1) and (2)

$$
\left.\frac{\mathrm{a}}{\mathrm{~b}}+\frac{\mathrm{a}}{\mathrm{c}}=1 \quad \Rightarrow \quad \frac{1}{\mathrm{a}}=\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}} \quad\right]
$$

(h) The circle circumscribing the triangle formed by any three tangents to a parabola passest through the focus.
TPT $\alpha=\beta$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

$$
\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{\left|\begin{array}{ccc}
\mathrm{at}_{1}^{2} & 2 \mathrm{at}_{1} & 1 \\
\mathrm{at}_{2}^{2} & 2 \mathrm{at}_{2} & 1 \\
\mathrm{at}_{3}^{2} & 2 \mathrm{at}_{3} & 1
\end{array}\right|}{\left|\begin{array}{lll}
\mathrm{at}_{1} \mathrm{t}_{2} & \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) & 1 \\
\mathrm{at}_{2} \mathrm{t}_{3} & \mathrm{a}\left(\mathrm{t}_{2}+\mathrm{t}_{3}\right) & 1 \\
\mathrm{at}_{3} \mathrm{t}_{1} & \mathrm{a}\left(\mathrm{t}_{3}+\mathrm{t}_{1}\right) & 1
\end{array}\right|}=2
$$

MORE ABOUT NORMALS

If normal drawn to a parabola passes through a point $\mathrm{P}(\mathrm{h}, \mathrm{k})$ then $\mathrm{k}=\mathrm{mh}-2 \mathrm{am}-\mathrm{am}^{3}$ i.e. $\mathrm{am}^{3}+\mathrm{m}(2 \mathrm{a}-\mathrm{h})+\mathrm{k}=0$.
Then gives $\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}=0 ; \mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{m}_{2} \mathrm{~m}_{3}+\mathrm{m}_{3} \mathrm{~m}_{1}=\frac{2 \mathrm{a}-\mathrm{h}}{\mathrm{a}} ; \mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{~m}_{3}=-\frac{\mathrm{k}}{\mathrm{a}}$. where $\mathrm{m}_{1}, \mathrm{~m}_{2}, \& \mathrm{~m}_{3}$ are the slopes of the three concurrent normals. Note that the algebraic sum of the :

- slopes of the three concurrent normals is zero.
- ordinates of the three conormal points on the parabola is zero.
- Centroid of the triangle formed by three co-normal points lies on the x -axis.

Example: Consider of the triangle ABC is

$$
\begin{aligned}
x_{1} & =\frac{a\left(m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right)}{3} \\
y_{1} & =-\frac{2 a\left(m_{1}+m_{2}+m_{3}\right)}{3}=0 \\
\text { now } x_{1} & =\frac{a}{3}\left[\left(m_{1}+m_{2}+m_{3}\right)^{2}-2 \sum m_{1} m_{2}\right] \\
& =-\frac{2 a}{3} \frac{(2 a-h)}{a}=\frac{2}{3}(h-2 a)
\end{aligned}
$$

$\therefore \quad$ centroid is $\frac{2}{3}(h-2 a), 0 \quad$ but $\quad \frac{2}{3}(h-2 a)>0$
$\therefore \quad h>2 a$
Hence abscissa of the point of concurrency of 3 concurrent normals $>2 \mathrm{a}$.

EXAMPLES :

Ex. 1 Find the locus of a point which is such that (a) two of the normals drawn from it to the parabola are at right angles, (b) the three normals through it cut the axis in points whose distances from the vertex are in arithmetical progression.
[Ans:
: (a) $y^{2}=a(h-3 a)$;
(b) $27 a y^{2}=2(x-2 a)^{3}$
[Ex.237, Pg.212, Loney]
 [Sol. (a) we have $m_{1} m_{2}=-1$
also $m_{1} m_{2} m_{3}=-\frac{k}{a}$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
FREE Download Study Package from website: www.TekoClasses.com \& www.MathsBySuhag.com

$$
\begin{aligned}
& \therefore \quad m_{3}=\frac{k}{a} \\
& \text { put } m_{3}=-\frac{k}{a} \text { is a root of } \\
& {a m^{3}}^{2}+(2 a-h) m+k=0 \\
& y=m x-2 a m-a m^{3}
\end{aligned}
$$

$$
\text { hence } 2 \mathrm{a}+\mathrm{am}_{1}^{2}, 2 \mathrm{a}+\mathrm{am}_{2}^{2}, 2 \mathrm{a}+\mathrm{am}_{3}^{2}
$$

$$
\therefore \quad 2 \mathrm{~m}_{2}^{2}=\mathrm{m}_{1}^{2}+\mathrm{m}_{3}^{2}
$$

$$
3 \mathrm{~m}_{2}^{2}=\mathrm{m}_{1}^{2}+\mathrm{m}_{2}^{2}+\mathrm{m}_{3}^{2}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}\right)^{2}-2\left(\sum \mathrm{~m}_{1} \mathrm{~m}_{2}\right)=\frac{2(\mathrm{~h}-2 \mathrm{a})}{\mathrm{a}}
$$

$$
\left.\mathrm{m}_{2}^{2}=\frac{2(\mathrm{~h}-2 \mathrm{a})}{3 \mathrm{a}} \quad \text { which is root of } \mathrm{am}^{3}+(2 \mathrm{a}-\mathrm{h}) \mathrm{m}+\mathrm{k}=0 \quad\right]
$$

Ex. 2 If the normals at three points P, Q and R meet in a point O and S be the focus, prove that SP
$\cdot \mathrm{SQ} \cdot \mathrm{SR}=\mathrm{a} \cdot \mathrm{SO}^{2}$.
[Ex.238, Pg.213, Loney]
[Sol. $\mathrm{SP}=\mathrm{a}\left(1+\mathrm{m}_{1}^{2}\right)$;
$S Q=a\left(1+m_{2}^{2}\right) ;$
$\mathrm{SR}=\mathrm{a}\left(1+\mathrm{m}_{3}^{2}\right)$
$\frac{\mathrm{SP} \cdot \mathrm{SQ} \cdot \mathrm{SR}}{\mathrm{a}^{3}}=\left(1+\mathrm{m}_{1}^{2}\right)\left(1+\mathrm{m}_{2}^{2}\right)\left(1+\mathrm{m}_{3}^{2}\right)$
$[1+\left(\left(\sum \mathrm{m}_{1}\right)^{2}-2 \sum \mathrm{~m}_{1} \mathrm{~m}_{2}\right)+(\left(\sum \mathrm{m}_{1} \mathrm{~m}_{2}\right)^{2}-\underbrace{2 \mathrm{~m}_{1} \mathrm{~m}_{2} \mathrm{~m}_{3}\left(\sum \mathrm{~m}_{1}\right)}_{\text {zero }})+\left(\mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{~m}_{3}\right)^{2}]$
Ex. 3 A circle circumscribing the triangle formed by three co-normal points passes through the vertex of the parabola and its equation is, $2\left(x^{2}+y^{2}\right)-2(h+2 a) x-k y=0$.
[Q.13, Ex-30, Loney]
[Sol. Equation of the normal at P

$$
y+t x=2 a t+a t^{3}
$$

passes through (h, k)

$$
\begin{align*}
& \text { s through (h, k) } \tag{1}\\
& \mathrm{at}^{3}+(2 \mathrm{a}-\mathrm{h}) \mathrm{t}-\mathrm{k}=0<\mathrm{t}_{1} \\
& \mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}=0 \\
& \mathrm{t}_{1} \mathrm{t}_{2}+\mathrm{t}_{2} \mathrm{t}_{3}+\mathrm{t}_{3} \mathrm{t}_{1}=\frac{2 \mathrm{a}-\mathrm{h}}{\mathrm{a}}, \quad \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}=\frac{\mathrm{k}}{\mathrm{a}}
\end{align*}
$$

Let the circle through PQR is

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

solving circle $x=a t^{2}, y=2 a t$
FREE Download Study Package from website: www.TekoClasses.com \& www.MathsBySuhag.com

$$
\begin{align*}
& a^{2} t^{4}+4 a^{2} t^{2}+2 g a t^{2}+2 f \cdot 2 a t+c=0 \\
& a^{2} t^{4}+2 a(2 a+g) t^{2}+4 f a t+c=0 \tag{2}
\end{align*}
$$

$\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}+\mathrm{t}_{4}=0$
but $\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}=0 \quad \Rightarrow \quad \mathrm{t}_{4}=0 \Rightarrow$ circle passes through the origin hence the equation of the circle

$$
x^{2}+y^{2}+2 g x+2 f y=0
$$

now equation (2) becomes

$$
\begin{equation*}
\mathrm{at}^{3}+2(2 \mathrm{a}+\mathrm{g}) \mathrm{t}+4 \mathrm{f}=0<_{\mathrm{t}_{2}}^{\mathrm{t}_{1}} \tag{3}
\end{equation*}
$$

(1) and (3) must have the same root

$$
\begin{aligned}
& 2(2 a+g)=2 a-h \\
& 2 g=-(h+2 a)
\end{aligned}
$$

and $4 \mathrm{f}=-\mathrm{k} \quad \Rightarrow \quad 2 \mathrm{f}=-\frac{\mathrm{k}}{2}$
Hence the equation of the circle is

$$
x^{2}+y^{2}-(h+2 a) x-\frac{k}{2} y=0 \Rightarrow 2\left(x^{2}+y^{2}\right)-2(h+2 a) x-k y=0
$$

Ex. 4 Three normals are drawn to the parabola $y^{2}=4 a x \cos \alpha$ from any point on the straight line $y \frac{\circ}{\square}$ $=b \sin \alpha$. Prove that the locus of the orthocentre of the triangle formed by the corresponding tangent is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, the angle α being variable.
[Q.15, Ex.30, Loney]
[Sol. $y^{2}=4 A x$ where $A=a \cos \alpha$
$y+t x=2 A t+a t^{3}$ passes through $\lambda, b \sin \alpha$
$b \sin \alpha+t \lambda=2 A t+A t^{3}$
$A t^{3}+(2 A-\lambda) t-b \sin \alpha=0$
$\therefore \quad \mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}=0 \quad ; \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}=\frac{\mathrm{b} \sin \alpha}{\mathrm{A}}$
also $\mathrm{h}=-\mathrm{A}=-\mathrm{a} \cos \alpha$

and $\mathrm{k}=\mathrm{A}\left(\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}+\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}\right)$

$$
=\mathrm{A}\left(0+\frac{\mathrm{b} \sin \alpha}{\mathrm{~A}}\right)
$$

$$
\begin{equation*}
\mathrm{k}=\mathrm{b} \sin \alpha \tag{2}
\end{equation*}
$$

from (1) and (2) locus is

$$
\left.\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\right]
$$

LEVEL 3 PROBLEMS

Ex. 1 Locus of a point P when the 3 normals drawn from it are such that area of the triangle Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com formed by their feet is constant. [Q.6, Ex-30, Loney]
E [Hint: \quad Area of $\triangle \mathrm{ABC}=$ constant

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
$\Rightarrow \quad t_{1}+t_{3}=-\frac{a^{2} t_{2}-2 a b t_{2}}{a^{2}}=\frac{t_{2}(2 b-a)}{a}$
and $\quad t_{1} t_{3}=\frac{a^{2} t_{2}^{2}-4 b c}{a^{2}} ; \quad$ hence $\frac{k}{a}=\frac{t_{2}(2 b-a)}{a} \Rightarrow t_{2}=\frac{k}{2 b-a}$

$$
\frac{\mathrm{h}}{\mathrm{a}}=\frac{\mathrm{at}_{2}^{2}-4 \mathrm{bc}}{\mathrm{a}^{2}} \Rightarrow \frac{\mathrm{ah}+4 \mathrm{bc}}{\mathrm{a}}=\mathrm{t}_{2}^{2} \quad \Rightarrow \quad \frac{\mathrm{k}^{2}}{(2 \mathrm{~b}-\mathrm{a})^{2}}=\frac{\mathrm{ah}+4 \mathrm{bc}}{\mathrm{a}}
$$

hence locus is $\left.\mathrm{ay}^{2}=(2 \mathrm{~b}-\mathrm{a})^{2}(\mathrm{ax}+4 \mathrm{bc}) \quad\right]$
Ex. 3 Circles are drawn through the vertex of the parabola to cut the parabola orthogonally at the other point of intersection. Prove that the locus of the centres of the circles is the curve,

$$
2 y^{2}\left(2 y^{2}+x^{2}-12 a x\right)=a x(3 x-4 a)^{2} \quad[Q .26, \text { Ex. } 28(\text { Loney })]
$$

Ex. 4 If the normal at P and Q meet on the parabola, prove that the point of intersection of the tangents at P and Q lies either on a certain straight line, which is parallel to the tangent at the vertex, or on the curve whose equation is $y^{2}(x+2 a)+4 a^{3}=0$.

$y^{2}=4 a x$ and $x^{2}=4 b y$ whose sides touch the other parabola.
(b) Prove that the locus of the centre of the circle, which passes through the vertex of a parabola and through its intersections with a normal chord, is the parabola $2 y^{2}=a x-a^{2}$.
[Q.25, Ex. 30 (Loney)]

