Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 WhatsApp 9009260559 BINOMIAL THEOREM PART 2 OF 2

i\&kd glen of] l gsfif vus] jftro $\mathrm{ckc} / \mathrm{lez}$ thk

Some questions (Assertion-Reason type) are given below. Each question contains Statement - 1 (Assertion) and Statement - 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. So select the correct choice :Choices are :
(A)Statement - $\mathbf{1}$ is True, Statement - $\mathbf{2}$ is True; Statement $\mathbf{- 2}$ is a correct explanation for Statement $\mathbf{- 1}$.
(B)Statement $\mathbf{- 1}$ is True, Statmnt $\mathbf{- 2}$ is True; Statement $\mathbf{- 2}$ is NOT a correct explanation for $\mathbf{S t a t e m e n t} \mathbf{- 1}$.
(C) Statement - $\mathbf{1}$ is True, Statement - $\mathbf{2}$ is False.
(D) Statement -1 is False, Statement -2 is True.

BINOMIAL THEORFM

373. Statement-1: The binomial theorem provides an expansion for the expression $(a+b)^{n}$. where $a, b, n \in R$.

Statement-2: All coefficients in a binomial expansion may be obtained by Pascal's triangle.
374. Statement-1: If n is an odd prime then integral part of $(\sqrt{5}+2)^{n}-2^{n+1}([x]$ is divisible by $20 n$.

Statement-2: If n is prime then ${ }^{n} C_{1},{ }^{n} C_{2},{ }^{n} C_{3}, \ldots .{ }^{n} C_{n-1}$ must be divisible by n.
375. Statement-1 : 2^{60} when divided by 7 leaves the reminder 1 .

Statement-2 : $(1+\mathrm{x})^{\mathrm{n}}=1+\mathrm{n}_{1} \mathrm{x}$, where $\mathrm{n}, \mathrm{n}_{1} \in \mathrm{~N}$.
376. Statement-1 : ${ }^{21} \mathrm{C}_{0}+{ }^{21} \mathrm{C}_{1}+\ldots+{ }^{21} \mathrm{C}_{10}=2^{20}$

Statement-2 : ${ }^{2 n+1} C_{0}+{ }^{2 n+1} C_{1}+\ldots{ }^{2 n+1} C_{2 n+1}=2^{2 n+1}$ and ${ }^{n} C_{r}={ }^{n} C_{n-r}$
377. Let n be a positive integers and k be a whole number, $\mathrm{k} \leq 2 \mathrm{n}$.

Statement-1 : The maximum value of ${ }^{2 n} C_{k}$ is ${ }^{2 n} C_{n}$.
Statement-2 : $\frac{{ }^{2 n} C_{k+1}}{{ }^{2 n} C_{k}}>1$, for $\mathrm{k}=0,1,2, \ldots, \mathrm{n}-1$.
378. Let n be a positive integer. Statement-1 : $\quad 3^{2 n+2}-8 n-9$ is divisible by 64 .

Statement-2 : $3^{2 n+2}-8 n-9=(1+8)^{n+1}-8 n-9$ and in the binomial expansion of $(1+8)^{\mathrm{n}+1}$, sum of first two terms is $8 n+9$ and after that each term is a multiple of 8^{2}.
379. Statement-1 : If n is an odd prime, then integral part of $(\sqrt{5}+2)^{\mathrm{n}}$ is divisible by 20 n .

Statement-2 : If n is prime, then ${ }^{n} c_{1},{ }^{n} c_{2},{ }^{n} c_{3} \ldots,{ }^{n} c_{n-1}$ must be divisible by n.
380. Statement-1 : The coefficient of x^{203} in the expression $(x-1)\left(x^{2}-2\right)\left(x^{2}-3\right) \ldots\left(x^{20}-20\right)$ must be 13 .
Statement-2 : The coefficient of x^{8} in the expression $(2+x)^{2}(3+x)^{3}(4+x)^{4}$ is equal to 30 .
381. Statement-1 : $\mathrm{C}_{0}{ }^{2}+\mathrm{C}_{1}{ }^{2}+\mathrm{C}_{2}{ }^{2}+\mathrm{C}_{3}{ }^{2}+\ldots+\mathrm{C}_{\mathrm{n}}{ }^{2}=\frac{2 \mathrm{n}!}{(\mathrm{n}!)^{2}}$ Statement-2 : ${ }^{\mathrm{n}} \mathrm{C}_{0}-{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2} \ldots .+(-1)^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=0$
382. Statement-1 : Some of coefficient $(x-2 y+4 z)^{n}$ is 3^{n}

Statement-2 : Some of coefficient of $\left(c_{0} x_{0}+c_{1} x_{1}+c_{2} x_{2}+\ldots . .+c_{n} x^{n}\right)^{n}$ is 2^{n}
383. Statement-1: The greatest coefficient in the expansion of $\left(a_{1}+a_{2}+a_{3}+a_{4}\right)^{17}$ is $\frac{17!}{(3!)^{3} 4!}$

Statement-2: The number of distinct terms in $\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)^{100}$ is 501 .

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 WhatsApp 9009260559 BINOMIAL THEOREM PART 2 OF 2

384. Statement-1: The co-efficient of x^{5} in the expansion of $\left(1+x^{2}\right)^{5}(1+x)^{4}$ is 120

Statement-2: The sum of the coefficients in the expansion of $(1+2 x-3 y+5 z)^{3}$ is 125 .
385. Statement-1: The number of distinct terms in $\left(1+x+x^{2}+x^{3}+x^{4}\right)^{1000}$ is 4001

Statement-2: The number of distinct terms in the expansion $\left(a_{1}+a_{2}+\ldots+a_{m}\right)^{n}$ is ${ }^{n+m-1} C_{m-1}$
386. Statement-1: In the expansion of $(1+x)^{30}$, greatest binomial coefficient is ${ }^{30} \mathrm{C}_{15}$

Statement-2: In the expansion of $(1+x)^{30}$, the binomial coefficients of equidistant terms from end \& beginning are equal.
387. Statement-1: Integral part of $(\sqrt{3}+1)^{2 n+1}$ is even where $n \in I$.

Statement-2: Integral part of any integral power of the expression of the form of $p+\sqrt{q}$ is even.
388. Statement-1 : $\sum_{r=4}^{20}{ }^{r} C_{4}={ }^{21} C_{4}$ Statement-2: $1+x+x^{2}+x^{3}+\ldots+x^{n-1}=\frac{1-x^{n}}{1-x}=$ sum of n terms of GP.
389. Statement-1: Last two digits of the number (13) ${ }^{41}$ are 31 .

Statement-2: When a number in divided by 1000, the remainder gives the last three digits.
390. Statement-1: ${ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots . .+{ }^{n} C_{n}=2^{n}$ where $n \in N$.

Statement-2: The all possible selections of n distinct objects are 2^{n}.
391. Statement-1 : The integral part of $(5+2 \sqrt{6})^{n}$ is odd, where $n \in N$.

Statement-2 : $(x+a)^{n}-(x-a)^{n}=2\left[{ }^{n} C_{0} x^{n}+{ }^{n} C_{2} x^{x-2} a^{2}+{ }^{n} C_{4}+x^{n-4} a^{4}+\ldots ..\right]$
392. Statement-1: If n is even than ${ }^{2 n} C_{1}+{ }^{2 n} C_{3}+{ }^{2 n} C_{5}+\ldots+{ }^{2 n} C_{n-1}=2^{2 n-1}$

Statement-2: ${ }^{2 n} \mathrm{C}_{1}+{ }^{2 \mathrm{n}} \mathrm{C}_{3}+{ }^{2 \mathrm{n}} \mathrm{C}_{5}+\ldots+{ }^{2 \mathrm{n}} \mathrm{C}_{2 \mathrm{n}-1}=2^{2 \mathrm{n}-1}$
393. Statement-1 : Any positive integral power of $(\sqrt{2}-1)$ can be expressed as $\sqrt{N}-\sqrt{N-1}$ for some natural number $\mathrm{N}>1$.
Statement-2 : Any positive integral power of $\sqrt{2}-1$ can be expressed as $A+B \sqrt{2}$ where A and B are integers.
394. Statement-1 : The term independent of x in the expansion of $\left(x+\frac{1}{x}+3\right)^{m}$ is $\frac{4 m!}{(2 m!)^{2}}$.

Statement-2: The Coefficient of x^{b} in the expansion of $(1+x)^{n}$ is ${ }^{n} C_{b}$.
395. Statement-1: The coefficient of x^{8} in the expansion of $\left(1+3 x+3 x^{2}+x^{3}\right)^{17}$ is ${ }^{51} C_{2}$.

Statement-2 : Coefficient of x^{r} in the expansion of $(1+x)^{n}$ is ${ }^{n} C_{r}$.
396. Statement-1: If $(1+x)^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}$ then

$$
\mathrm{c}_{0}-2 . \mathrm{c}_{1}+3 . \mathrm{c}_{2}-\ldots . .+(-1)^{\mathrm{n}}(\mathrm{n}+1) \mathrm{c}_{\mathrm{n}}=0
$$

Statement-2: Coefficients of equidistant terms in the expansion of $(x+a)^{n}$ where $n \in N$ are equal.
397. Statement-1: $\sum_{k=1}^{n} k\left({ }^{n} C_{n}\right)^{2}=n{ }^{2 n-1} C_{n-1}$

Statement-2: If 2^{2003} is divided by 15 then remainder is 8 .
398. Statement-1: The co-efficient of $\left(1+x^{2}\right)^{5}(1+x)^{4}$ is 120 .

Statement-2: The integral part of $(\sqrt{5}+2)^{10}$ is odd.

ANSWER

QUE. FROM COMPT. EXAMS.

1. The value of $(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}$ will be [RPET 1997]
(a) - 198
(b) 198
(c)
99
(d)

- 99

2. If $(1+a x)^{n}=1+8 x+24 x^{2}+\ldots$, then the value of a and n is
(a) 2,4
(b) 2,3
(c)
3. The coefficient of x^{5} in the expansion of $\left(1+x^{2}\right)^{5}(1+x)^{4}$ is

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 WhatsApp 9009260559
 BINOMIAL THEOREM PART 2 OF 2

(a) 30
(b) 60
(c) 40
(d) None of these
4. If $\frac{(1-3 \mathrm{x})^{1 / 2}+(1-\mathrm{x})^{5 / 3}}{\sqrt{4-\mathrm{x}}}$ is approximately equal to $\mathrm{a}+\mathrm{bx}$ for small values of x, then $(\mathrm{a}, \mathrm{b})=$
(a) $\left(1, \frac{35}{24}\right)$
(b) $\left(1,-\frac{35}{24}\right)$
(c) $\quad\left(2, \frac{35}{12}\right)$
(d) $\quad\left(2,-\frac{35}{12}\right)$
5. The value of x in the expression $\left[\mathrm{x}+\mathrm{x}^{\log _{10}(\mathrm{x})}\right]^{5}$, if the third term in the expansion is $10,00,000$
[Roorkee 1992]
(a) 10
(b) 11
(c) 12
(d) None of these
6. If the coefficient of the middle term in the expansion of $(1+\mathrm{x})^{2 n+2}$ is p and the coefficients of middle terms in the expansion of $(1+\mathrm{x})^{2 n+1}$ are q and r, then
(a) $p+q=r$
(b) $\mathrm{p}+\mathrm{r}=\mathrm{q}$
(c) $\mathrm{p}=\mathrm{q}+\mathrm{r}$
(d) $\mathrm{p}+\mathrm{q}+\mathrm{r}=0$
7. In the polynomial $(x-1)(x-2)(x-3) \ldots(x-100)$, the coefficient of x^{99} is
[AMU 2002]
(a) 5050
(b) -5050
(c) 100
(d) 99
8. The coefficient of x^{100} in the expansion of $\sum_{j=0}^{200}(1+x)^{j}$ is
[UPSEAT 2004]
(a) $\binom{200}{100}$
(b) $\binom{201}{102}$
(c) $\quad\binom{200}{101}$
(d) $\quad\binom{201}{100}$
9. If the coefficient of x^{7} in $\left(a x^{2}+\frac{1}{b x}\right)^{11}$ is equal to the coefficient of x^{-7} in $\left(a x-\frac{1}{b x^{2}}\right)^{11}$, then $a b=$
[MP PET 1999; AMU 2001; Pb. CET 2002; AIEEE 2005]
(a) 1
(b) $1 / 2$
(c) 2
(d) 3
10. If the coefficient of x in the expansion of $\left(x^{2}+\frac{\mathrm{k}}{\mathrm{x}}\right)^{5}$ is 270 , then $k=$

[EAMCET 2002]

(a) 1
(b) 2
(c) 3
(d) 4
11. The coefficients of three successive terms in the expansion of $(1+x)^{n}$ are 165,330 and 462 respectively, then the value of n will be
[UPSEAT 1999]
(a) 11
(b) 10
(c) 12
(d) 8
12. If the coefficient of $(2 r+4)^{\text {th }}$ and $(r-2)^{\text {th }}$ terms in the expansion of $(1+x)^{18}$ are equal, then $r=$
[MP PET 1997; Pb. CET 2001]
(a) 12
(b) 10
(c) 8
(d) 6
13. The middle term in the expansion of $(1+x)^{2 n}$ is
(a) $\frac{1.3 \cdot 5 \ldots .(5 n-1)}{n!} x^{n}$
(b) $\frac{2.4 .6 \ldots .2 n}{n!} x^{2 n+1}$
(c) $\quad \frac{1.3 .5 \ldots .(2 n-1)}{n!} x^{n}$
(d) $\frac{1 \cdot 3 \cdot 5 \ldots .(2 n-1)}{n!} 2^{n} x^{n}$
14. The value of $\binom{30}{0}\binom{30}{10}-\binom{30}{1}\binom{30}{11}$

$$
+\binom{30}{2}\binom{30}{12}+\ldots \ldots .+\binom{30}{20}\binom{30}{30}
$$

[IIT Screening 2005]
(a) ${ }^{60} \mathrm{C}_{20}$
(b) ${ }^{30} \mathrm{C}_{10}$
(c) $\quad{ }^{60} \mathrm{C}_{30}$
(d) $\quad{ }^{40} \mathrm{C}_{30}$
15. Middle term in the expansion of $\left(1+3 x+3 x^{2}+x^{3}\right)^{6}$ is
(a) $4^{\text {th }}$
(b) $3^{\text {rd }}$
(c) $10^{\text {th }}$
(d) None of these
16. Two middle terms in the expansion of $\left(x-\frac{1}{x}\right)^{11}$ are
(a) $231 x$ and $\frac{231}{x}$
(b) $462 x$ and $\frac{462}{x}$
(c) $-462 x$ and $\frac{462}{x}$
(d) None of these

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 WhatsApp 9009260559 BINOMIAL THEOREM PART 2 OF 2

17. The term independent of y in the expansion of $\left(y^{-1 / 6}-y^{1 / 3}\right)^{9}$ is
[BIT Ranchi 1980]
(a) 84
(b) 8.4
(c)
0.84
(d) -84
18. The coefficient of the term independent of x in the expansion of $\left(1+x+2 x^{3}\right)\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$ is [DCE 1994]
(a) $\frac{1}{3}$
(b) $\frac{19}{54}$
(c) $\frac{17}{54}$
(d) $\frac{1}{4}$
19. The term independent of x in $\left[\frac{\sqrt{x}}{3}+\frac{\sqrt{3}}{x^{2}}\right]^{10}$ is
[EAMCET 1984; RPET 2000]
(a) $\frac{2}{3}$
(b) $\frac{5}{3}$
(c) $\frac{4}{3}$
(d) None of these
20. The term independent of x in $\left(\sqrt{x}-\frac{2}{x}\right)^{18}$ is
[EAMCET 1990]
(a) ${ }^{18} \mathrm{C}_{6} 2^{6}$
(b) ${ }^{18} \mathrm{C}_{6} 2^{12}$
(c)
${ }^{18} \mathrm{C}_{18} 2^{18}$
(d) None of these
21. The largest term in the expansion of $(3+2 x)^{50}$ where $x=\frac{1}{5}$ is
[IIT Screening 1993]
(a) $5^{\text {th }}$
(b) $51^{\text {st }}$
(c) $\quad 7^{\text {th }}$
(d) $6^{\text {th }}$
22. $\frac{\mathrm{C}_{1}}{\mathrm{C}_{0}}+2 \frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}+3 \frac{\mathrm{C}_{3}}{\mathrm{C}_{2}}+\ldots .+15 \frac{\mathrm{C}_{15}}{\mathrm{C}_{14}}=\quad$ [IIT 1962]
(a) 100
(b) 120
(c) -120
(d) None of these
23. $\binom{n}{0}+2\binom{n}{1}+2^{2}\binom{n}{2}+\ldots . .+2^{n}\binom{n}{n}$ is equal to [AMU 2000]
(a) 2^{n}
(b) 0
(c) $\quad 3^{n}$
(d) None of these
24. If C_{r} stands for ${ }^{n} C_{r}$, the sum of the given series $\frac{2(n / 2)!(n / 2)!}{n!}\left[C_{0}^{2}-2 C_{1}^{2}+3 C_{2}^{2}-\ldots . .+(-1)^{n}(n+1) C_{n}^{2}\right]$, Where n is an even positive integer, is [IIT 1986]
(a) 0
(b) $(-1)^{\mathrm{n} / 2}(\mathrm{n}+1)$
(c)
$(-1)^{n}(n+2)$
(d) $\quad(-1)^{n / 2}(n+2)$
25. Sum of odd terms is A and sum of even terms is B in the expansion $(x+a)^{n}$, then [RPET 1987; UPSEAT 2004]
(a) $A B=\frac{1}{4}(x-a)^{2 n}-(x+a)^{2 n}$
(b) $\quad 2 A B=(x+a)^{2 n}-(x-a)^{2 n}$
(c) $4 \mathrm{AB}=(\mathrm{x}+\mathrm{a})^{2 \mathrm{n}}-(\mathrm{x}-\mathrm{a})^{2 \mathrm{n}}$
(d) None of these
26. In the expansion of $(\mathrm{x}+\mathrm{a})^{\mathrm{n}}$, the sum of odd terms is P and sum of even terms is Q, then the value of $\left(\mathrm{P}^{2}-\mathrm{Q}^{2}\right)$ will be [RPET 1997; Pb. CET 1998]
(a) $\left(x^{2}+a^{2}\right)^{n}$
(b) $\left(x^{2}-a^{2}\right)^{n}$
(c) $\quad(x-a)^{2 n}$
(d) $\quad(x+a)^{2 n}$
27. The sum of the coefficients in the expansion of $\left(1+x-3 x^{2}\right)^{2163}$ will be
[IIT 1982]
(a) 0
(b) 1
(c) $\quad-1$
(d) 2^{2163}
28. If the sum of the coefficients in the expansion of $\left(1-3 x+10 x^{2}\right)^{n}$ is a and if the sum of the coefficients in the expansion of $\left(1+x^{2}\right)^{n}$ is b, then [UPSEAT 2001]
(a) $a=3 b$
(b) $a=b^{3}$
(c) $\quad b=a^{3}$
(d) None of these
29. The sum of the coefficients in the expansion of $(x+y)^{n}$ is 4096 . The greatest coefficient in the expansion is
[Kurukshetra CEE 1998; AIEEE 2002]

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 WhatsApp 9009260559

BINOMIAL THEOREM PART 2 OF 2
(a) 1024
(b) 924
(c) 824
(d) 724
30. If the sum of the coefficients in the expansion of $\left(\alpha x^{2}-2 x+1\right)^{35}$ is equal to the sum of the coefficients in the expansion of $(\mathrm{x}-\alpha \mathrm{y})^{35}$, then $\alpha=$
(a) 0
(b) 1
(c) May be any real number
(d) No such value exist
31. For every natural number $n, 3^{2 n+2}-8 n-9$ is divisible by
[IIT 1977]
(a) 16
(b) 128
(c) 256
(d) None of these
32. The least remainder when 17^{30} is divided by 5 is
(a) 1
(b) 2
(c) 3
(d) 4
33. The value of the natural numbers n such that the inequality $2^{n}>2 n+1$ is valid is
[MNR 1994]
(a) For $n \geq 3$
(b) For $n<3$
(c) For $m n$
(d) For any n
34. Let $P(n)$ be a statement and let $P(n) \Rightarrow p(n+1)$ for all natural numbers n, then $P(n)$ is true
(a) For all n
(b)
For all $n>1$
(c) For all $n>m, m$ being a fixed positive integer
(d) Nothing can be said
35. $(1+x)^{n}-n x-1$ is divisible by (where $n \in N$)
(a) $2 x$
(b) x^{2}
(c) $2 x^{3}$
(d) All of these

ANSWER KEY

1	b	2	a	3	b	4	b	5	a
6	c	7	b	8	a	9	a	10	c
11	a	12	d	13	d	14	b	15	c
16	c	17	d	18	c	19	b	20	a
21	c	22	b	23	c	24	d	25	c
26	b	27	c	28	b	29	b	30	b
31	a	32	d	33	a	34	d	35	b

for 39 Yrs. Que. of IIT-JEE

