Download FREE Study Package from <u>www.TekoClasses.com</u> & Learn on Video <u>www.MathsBySuhag.com</u> Phone : 0 903 903 7779, 98930 58881 WhatsApp 9009 260 559 BINOMIAL THEOREM PART 2 OF 2

fo/u fopkjr Hk# tu] ughavkjEHksdke] foifr n§k NkWsrjar e/;e eu dj ';keA i∉"k flg lelYi dj] lgrsfoifr vusl] ^cuk`u NkWs/;ş dk§ j?kqj jk[ksVslAA jfpr%ekuo /keZizksk Inxof Jhj. KNKWaki thegkjkt

Some questions (Assertion–Reason type) are given below. Each question contains **Statement – 1** (Assertion) and **Statement – 2** (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct. So select the correct choice :*Choices are* :

(A) Statement -1 is True, Statement -2 is True; Statement -2 is a correct explanation for Statement -1.

(B) Statement -1 is True, Statement -2 is True; Statement -2 is NOT a correct explanation for Statement -1.

- (C) Statement -1 is True, Statement -2 is False.
- (D) Statement -1 is False, Statement -2 is True.

BINOMIAL THEOREM

- **373. Statement-1:** The binomial theorem provides an expansion for the expression $(a + b)^n$. where $a, b, n \in \mathbb{R}$. **Statement-2:** All coefficients in a binomial expansion may be obtained by Pascal's triangle.
- **374.** Statement-1: If n is an odd prime then integral part of $(\sqrt{5} + 2)^n 2^{n+1}([x])$ is divisible by 20 n. **Statement-2:** If n is prime then ${}^nC_{12}, {}^nC_{22}, \dots, {}^nC_{2n-1}$ must be divisible by n.
- **Statement-2:** If n is prime then ${}^{n}C_{1}$, ${}^{n}C_{2}$, ${}^{n}C_{3}$, ${}^{n}C_{n-1}$ must be divisible by n. **375. Statement-1 :** 2^{60} when divided by 7 leaves the reminder 1. **Statement-2 :** $(1 + x)^{n} = 1 + n_{1}x$, where n, $n_{1} \in N$.
- **376.** Statement-1 : ${}^{21}C_0 + {}^{21}C_1 + ... + {}^{21}C_{10} = 2^{20}$ Statement-2 : ${}^{2n+1}C_0 + {}^{2n+1}C_1 + ... {}^{2n+1}C_{2n+1} = 2^{2n+1}$ and ${}^{n}C_r = {}^{n}C_{n-r}$
- **377.** Let n be a positive integers and k be a whole number, $k \le 2n$. **Statement-1** : The maximum value of ${}^{2n}C_k$ is ${}^{2n}C_n$. **Statement-2** : $\frac{{}^{2n}C_{k+1}}{{}^{2n}C} > 1$, for k = 0, 1, 2, ..., n - 1.

378. Let n be a positive integer. **Statement-1** :
$$3^{2n+2} - 8n - 9$$
 is divisible by 64.
Statement-2 : $3^{2n+2} - 8n - 9 = (1+8)^{n+1} - 8n - 9$ and in the binomial expansion of $(1+8)^{n+1}$, sum of first two terms is $8n + 9$ and after that each term is a multiple of 8^2 .

- **379.** Statement-1 : If n is an odd prime, then integral part of $(\sqrt{5}+2)^n$ is divisible by 20n.
- **Statement-2** : If n is prime, then ${}^{n}c_{1}$, ${}^{n}c_{2}$, ${}^{n}c_{3}$... ${}^{n}c_{n-1}$ must be divisible by n. **380. Statement-1** : The coefficient of x^{203} in the expression $(x - 1)(x^{2} - 2)(x^{2} - 3)$... $(x^{20} - 20)$

must be 13. **Statement-2** : The coefficient of x^8 in the expression $(2 + x)^2 (3 + x)^3 (4 + x)^4$ is equal to 30.

- **381.** Statement-1: $C_0^2 + C_1^2 + C_2^2 + C_3^2 + ... + C_n^2 = \frac{2n!}{(n!)^2}$ Statement-2: ${}^{n}C_0 {}^{n}C_1 + {}^{n}C_2 ... + (-1)^{n} {}^{n}C_n = 0$
- **382.** Statement-1 : Some of coefficient $(x 2y + 4z)^n$ is 3^n Statement-2 : Some of coefficient of $(c_0x_0 + c_1x_1 + c_2x_2 + \dots + c_nx^n)^n$ is 2^n

383. Statement-1: The greatest coefficient in the expansion of $(a_1 + a_2 + a_3 + a_4)^{17}$ is $\frac{17!}{(3!)^3 4!}$ Statement-2: The number of distinct terms in $(1 + x + x^2 + x^3 + x^4 + x^5)^{100}$ is 501.

Download FREE Study Package from www.TekoClasses.com & Learn on Video www.MathsBySuhag.com Phone : 0 903 903 7779, 98930 58881 WhatsApp 9009 260 559 **BINOMIAL THEOREM PART 2 OF 2**

- **Statement-1:** The co-efficient of x^5 in the expansion of $(1 + x^2)^5 (1 + x)^4$ is 120 384.
- **Statement-2:** The sum of the coefficients in the expansion of $(1 + 2x 3y + 5z)^3$ is 125.
- **Statement-1:** The number of distinct terms in $(1 + x + x^2 + x^3 + x^4)^{1000}$ is 4001 385.
- **Statement-2:** The number of distinct terms in the expansion $(a_1 + a_2 + ... + a_m)^n$ is ${}^{n+m-1}C_{m-1}$
- **Statement-1:** In the expansion of $(1 + x)^{30}$, greatest binomial coefficient is ${}^{30}C_{15}$ **Statement-2:** In the expansion of $(1 + x)^{30}$, the binomial coefficients of equidistant terms from end & beginning 386. are equal.

Statement-1: Integral part of $(\sqrt{3}+1)^{2n+1}$ is even where $n \in I$. 387.

Statement-2: Integral part of any integral power of the expression of the form of $p + \sqrt{q}$ is even.

388. Statement-1:
$$\sum_{r=4}^{20} {}^{r}C_{4} = {}^{21}C_{4}$$
 Statement-2: $1 + x + x^{2} + x^{3} + ... + x^{n-1} = \frac{1 - x^{n}}{1 - x} = \text{sum of n terms of GP}.$

- **Statement-1:** Last two digits of the number $(13)^{41}$ are 31. 389. Statement-2: When a number in divided by 1000, the remainder gives the last three digits.
- 390. **Statement-1:** ${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n} = 2^{n}$ where $n \in N$. Statement-2: The all possible selections of n distinct objects are 2ⁿ.
- **Statement-1**: The integral part of $(5+2\sqrt{6})^n$ is odd, where $n \in N$. 391.
- 392.
- Statement-2: $(x + a)^n (x a)^n = 2[{}^nC_0x^n + {}^nC_2x^{x-2}a^2 + {}^nC_4 + x^{n-4}a^4 + \dots]$ Statement-1: If n is even than ${}^{2n}C_1 + {}^{2n}C_3 + {}^{2n}C_5 + \dots + {}^{2n}C_{n-1} = 2^{2n-1}$ Statement-2: ${}^{2n}C_1 + {}^{2n}C_3 + {}^{2n}C_5 + \dots + {}^{2n}C_{2n-1} = 2^{2n-1}$
- **Statement-1**: Any positive integral power of $(\sqrt{2}-1)$ can be expressed as $\sqrt{N} \sqrt{N-1}$ for some natural 393. number N > 1.

Statement-2: Any positive integral power of $\sqrt{2}-1$ can be expressed as A + B $\sqrt{2}$ where A and B are integers.

Statement-1: The term independent of x in the expansion of $\left(x + \frac{1}{x} + 3\right)^m$ is $\frac{4m!}{(2m!)^2}$. 394.

Statement-2: The Coefficient of x^b in the expansion of $(1 + x)^n$ is nC_b . **Statement-1:** The coefficient of x^8 in the expansion of $(1 + 3x + 3x^2 + x^3)^{17}$ is ${}^{51}C_2$. 395.

- **Statement-2**: Coefficient of x^r in the expansion of $(1 + x)^n$ is nC_r . 396. **Statement-1:** If $(1 + x)^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$ then
 - $c_0 2.c_1 + 3.c_2 \dots + (-1)^n (n+1)c_n = 0$ **Statement-2:** Coefficients of equidistant terms in the expansion of $(x + a)^n$ where $n \in N$ are equal.
- **Statement-1:** $\sum_{k=1}^{n} k ({}^{n}C_{n})^{2} = n^{2n-1}C_{n-1}$ 397.
- **Statement-2:** If 2^{2003} is divided by 15 then remainder is 8. Statement-1: The co-efficient of $(1 + x^2)^5 (1 + x)^4$ is 120. 398.
 - **Statement-2:** The integral part of $(\sqrt{5}+2)^{10}$ is odd.

ANSWER

373. D	374. A	375. A	376. A 377	A 378. A	379. A 380. C 381.	B 382. C 383. D
384. D 38	5. B 386. B	387. C 38	88. D 389. D	390. A	391. B. 392. D 393.	A 394. D 395. D
396. B	397. B	39	98. D	399. A		

OUE. FROM COMPT. EXAMS.

1.	The value of $(\sqrt{2} + 1)$	$(1)^{6} + (\sqrt{2} - 1)^{6}$ will be	[RPET 1997]				
	(a) – 198	(b) 198	(c)	99	(d)	- 99	
2.	If $(1 + ax)^n = 1 + 8x + $	+ $24x^2$ +, then the value	[HT 1983; Pb. CET 1994, 99]				
	(a) 2, 4	(b) 2, 3	(c)	3,6	(d)	1,2	
3.	The coefficient of x	x^5 in the expansion of $(1 + x)^{-5}$		[EAMCE	T 1996; UPSEAT 2001; Pb. CET 2002]	

		Study Package from <u>w</u>								
	www.MathsBySuhag.	com Phone : 0 903 903 BINOMIAL THEORI		9, 98930 58881 WhatsApp 9009 260 559 PART 2 OF 2						
	(a) 30	(b) 60	(c)	40 (d)	None of these					
4	If $\frac{(1-3x)^{1/2} + (1-x)^{5/3}}{\sqrt{4-x}}$ is a			- (-)						
	(a) $\left(1, \frac{35}{24}\right)$									
5.	The value of x in the express	ssion $[x + x^{\log_{10}(x)}]^5$, if the	third term	in the expansion i	is 10,00,000 [Roorkee 1992]					
	(a) 10	(b) 11	(c)	12 (d)	None of these					
6.			on of $(1 + \lambda)$	$(x)^{2n+2}$ is p and the	e coefficients of middle terms in the					
	expansion of $(1 + x)^{2n+1}$ are	•	(-)							
7					(d) $p + q + r = 0$					
7.	In the polynomial $(x - 1)(x - 3)(x $	(x-2)(x-3)(x-10) (b) -5050	(c) (c)	100 (d)	[AMU 2002] 99					
8.	The coefficient of x^{100} in t			(1)						
0.		$\sum_{j=0}^{j=0} (1 + x)$) 13							
	(200)	(201)		(200)	[UPSEAT 2004]					
	(a) $\begin{pmatrix} 200\\ 100 \end{pmatrix}$	(b) $\begin{pmatrix} 101\\102 \end{pmatrix}$	(c)	$\begin{pmatrix} 200\\ 101 \end{pmatrix} (d)$	(100)					
9.	If the coefficient of x^7 in	$\left(\frac{1}{2}\right)^{11}$ is equal to the	e coefficie	nt of x^{-7} in $\int ax$	$\begin{pmatrix} 1 \end{pmatrix}^{11}$ then $ab =$					
7.	If the coefficient of x in	$\left(\frac{ax}{bx} + \frac{bx}{bx}\right)$ is equal to u			SA)					
	(a) 1	(b) 1/2	(c)	[MP PET 1999 2 (d)	9; AMU 2001; Pb. CET 2002; AIEEE 2005] 3					
10.	If the coefficient of x in the	expansion of $\begin{pmatrix} k \\ k \end{pmatrix}^5$		- <i>k</i> -	[EAMCET 2002]					
10.	If the coefficient of x in the	$\begin{pmatrix} x & +\frac{1}{x} \end{pmatrix}$	18 270, the	1 K —	[EAMCE1 2002]					
	(a) 1	(b) 2	(c)	3 (d)	4					
11.	value of <i>n</i> will be	[UPSEAT	1999]		, 330 and 462 respectively, then the					
12.	(a) 11 If the coefficient of $(2r + 4)$	(b) 10 th and $(r - 2)^{th}$ torms in the	(c)	12 (d)	8 wel then r-					
12.	If the coefficient of $(2i + 4)$	and $(1-2)$ terms in the	cxpansion		[MP PET 1997; Pb. CET 2001]					
	(a) 12	(b) 10	(c)	8 (d)	6					
13.	The middle term in the exp	ansion of $(1 + x)^{2n}$ is								
	(1,3,5,,(5n-1))	2.4.62n 2n1		1.3.5(2n-1)	[Pb. CET 1998]					
	(a) $\frac{1.3.5(5n-1)}{n!}x^n$	(b) $\frac{1}{n!} x^{2n+1}$	(c)	<u>n!</u>	x^n (d) $\frac{1.3.5(2n-1)}{n!} 2^n x^n$					
14.	The value of $\begin{pmatrix} 30\\0 \end{pmatrix} \begin{pmatrix} 30\\10 \end{pmatrix} - \begin{pmatrix} 30\\30\\10 \end{pmatrix} = \begin{pmatrix} 30\\30\\30\\30 \end{pmatrix} = \begin{pmatrix} 30\\30\\30\\30\\30\\30\\30\\30\\30\\30\\30\\30\\30\\3$	$ \begin{array}{c} 30\\1 \end{array} \begin{pmatrix} 30\\11 \end{pmatrix} $								
	$+ \begin{pmatrix} 30\\2 \end{pmatrix} \begin{pmatrix} 30\\12 \end{pmatrix} + \dots$	$\dots + \begin{pmatrix} 30 \\ 20 \end{pmatrix} \begin{pmatrix} 30 \\ 30 \end{pmatrix}$								
	40	20		40	[IIT Screening 2005]					
	(a) ${}^{60}C_{20}$	(b) ${}^{30}C_{10}$	(c)	$^{60}C_{30}$ (d)	$^{40}C_{30}$					
15.	Middle term in the expansion	on of $(1+3x+3x^2+x^3)^6$	IS		[MP PET 1997]					
	(a) 4 th	(b) 3^{rd}	(c)	10 th (d)	[MF PET 1997] None of these					
16.	Two middle terms in the expansion	ansion of $\left(x - \frac{1}{x}\right)^{-1}$ are								
	(a) 231 <i>x</i> and $\frac{231}{x}$		(c)	$-462x$ and $\frac{462}{x}$	$\frac{2}{d}$ (d) None of these					

Download FREE Study Package from <u>www.TekoClasses.com</u> & Learn on Video <u>www.MathsBySuhag.com</u> Phone : 0 903 903 7779, 98930 58881 WhatsApp 9009 260 559 BINOMIAL THEOREM PART 2 OF 2

17.	The term independent of y	in the expansion of $(v^{-1/6})$	v ^{1/3}) ⁹ is			[BIT Ranchi 198	01
17.	(a) 84	(b) 8.4	-y) is (c)	0.84	(d)	– 84	0]
18.	The coefficient of the term	independent of x in the exp		(1 + <i>x</i> + 2	x^3) $\left(\frac{3}{2}x^2\right)$	-	1994]
	(a) $\frac{1}{3}$	(b) $\frac{19}{54}$	(c)	<u>17</u> 54	(d)	$\frac{1}{4}$	
19.	The term independent of x	in $\left[\frac{\sqrt{x}}{3} + \frac{\sqrt{3}}{x^2}\right]^{10}$ is					
	(a) $\frac{2}{3}$	(b) $\frac{5}{3}$	(c)	$\frac{4}{3}$	(d)	[EAM None of these	CET 1984; RPET 2000]
20.	The term independent of x	in $\left(\sqrt{x}-\frac{2}{x}\right)^{18}$ is					
	10 (10 10		10 1	0		[EAMCET 1990]
	(a) ${}^{18}C_6 2^6$	(b) ${}^{18}C_6 2^{12}$	(c)	$^{18}C_{18}2^{1}$	8	(d) None	e of these
21.	The largest term in the exp	ansion of $(3+2x)^{50}$ where	$x = \frac{1}{5}$ is			[IIT Screening 1	993]
	(a) 5 th	(b) 51 st	(c)	7^{th}	(d)	6 th	
22.	$\frac{C_1}{C_0} + 2\frac{C_2}{C_1} + 3\frac{C_3}{C_2} + \dots + 15$	$\frac{C_{15}}{C_{14}} =$ [IIT 1	1962]				
	(a) 100	(b) 120	(c)	-120	(d)	None of these	
23.	$\binom{n}{0} + 2\binom{n}{1} + 2^2\binom{n}{2} + \dots +$	$2^n \binom{n}{n}$ is equal to [AMU 20]	000]				
	(a) 2^n	(b) 0	(c)	3 ⁿ	(d)	None of these	
24.	If C_r stands for nC_r , the st	um of the given series					
	$\frac{2(n/2)!(n/2)!}{n!}[C_0^2 - 2C_1^2 + 3]$	$C_2^2 - \dots + (-1)^n (n+1) C_n^2$, W	Where <i>n</i> is a	an even po	ositive in	teger, is [IIT 1	986]
	(a) 0	(b) $(-1)^{n/2}(n+1)$	(c)	(-1) ⁿ (n-	⊦ 2)	(d) (-1) ⁿ	^{/2} (n+2)
25.	Sum of odd terms is A and	sum of even terms is B in	the expansi	ion $(x + a)$) ⁿ , then	[RPET 1987; U	PSEAT 2004]
	(a) $AB = \frac{1}{4}(x-a)^{2n} - (x+a)^{2n} + \frac{1}{4}(x-a)^{2n} + $	a) ²ⁿ	(b)	2 <i>AB</i> = ($(x + a)^{2n}$ -	$-(x-a)^{2n}$	
	(c) $4AB = (x+a)^{2n} - (x-a)^{2n}$	2n	(d)	None of	these		
26.	In the expansion of $(x + a)^{t}$ be [RPET 1997; Pb. CET 1		P and sum	n of even	terms is	Q, then the value	ue of $(P^2 - Q^2)$ will
	(a) $(x^2 + a^2)^n$	(b) $(x^2 - a^2)^n$	(c)	$(x-a)^{2r}$	' (d)	$(x+a)^{2n}$	
27.	The sum of the coefficients	s in the expansion of $(1 + x)$	$(-3x^2)^{2163}$	will be		[IIT 1	982]
	(a) 0	(b) 1	(c)	-1	(d)	2 ²¹⁶³	
28.	If the sum of the coefficient	ents in the expansion of	(1 - 3x + 10)	$(x^2)^n$ is a	and if	the sum of the	e coefficients in the
	expansion of $(1 + x^2)^n$ is b	, then		[UPSEA1	[2001]		
	(a) <i>a</i> = 3 <i>b</i>	(b) $a = b^3$	(c)	$b = a^3$	(d)	None of these	
29.	The sum of the coefficients	in the expansion of $(x + y)$) ⁿ is 4096.	The great	test coeff	icient in the exp	pansion is

[Kurukshetra CEE 1998; AIEEE 2002]

	Download FR <u>www.MathsBySuh</u>		<mark>m</mark> Ph	one :	0 903		7779,) 588	81 WI				9	
	(a) 1024	((b) 92	4			(c)	82	24	(d)	724	Ļ			
30.	If the sum of the coeffi	cients	in the	expans	sion of	$(\alpha x^2 -$	-2 <i>x</i> +	1) ³⁵ is	equal	to the	sum of	the coef	ficients		
	in the expansion of (x-	-αy) ³⁵	, then	α =											
	(a) 0						(b)	1							
	(c) May be any real nu	umber					(d)	Ν	o sucl	h value	exist				
31.	For every natural numb	ber n, S	3 ²ⁿ⁺² –	8n-9	is div	visible	by								
														[11]	Г 1977]
	(a) 16		(b) 12				(c)	2:	56	(d)	No	ne of the	ese		
32.	The least remainder wh	nen 17	³⁰ is d	livided	by 5 i	S							F T 7		
	(a) 1	((b) 2				(c)	3		(d)	4		[Karna	taka CET	2003]
33.	The value of the natura			such th	nat the								ſM	INR 1994	1
	(a) For $n \ge 3$			r <i>n</i> < 3		-	(c)		or mn			any n	[1
34.	Let $P(n)$ be a statement						. ,			. ,		•			
	(a) For all <i>n</i>		(b)	- ·		r all <i>n</i> :									
	(c) For all $n > m, m$ be	eing a f	fixed p	ositive	e integ	er									
	(d) Nothing can be sai	d													
35.	$(1+x)^n - nx - 1$ is divis	sible b	y (whe	ere n∈	N)										
	(a) 2 <i>x</i>	((b) x ²	2			(c)	2	x ³	(d)	All	of these	;		
			-		A	NSW	ER K	EY				-			
		1	b	2	а	3	b	4	b	5	а				
		6	с	7	b	8	а	9	а	10	с				
		11	а	12	d	13	d	14	b	15	с				
		16	с	17	d	18	С	19	b	20	а				
		21	с	22	b	23	с	24	d	25	с				
		26	b	27	с	28	b	29	b	30	b				
		31	а	32	d	33	а	34	d	35	b	-			
							1		_1	1		J			
		fo	or 3	9 Y	rs.	-	1e. 87	of	II	[-J]	EE				

&

15 Yrs. Que. of AIEEE we have distributed already a book