SHORT REVISION

SOLUTIONS OF TRIANGLE

I. Sine Formula : In any triangle $\mathrm{ABC}, \frac{\mathrm{a}}{\sin \mathrm{A}}=\frac{\mathrm{b}}{\sin \mathrm{B}}=\frac{\mathrm{c}}{\sin \mathrm{C}}$.
II. Cosine Formula : (i) $\cos \mathrm{A}=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2 \mathrm{bc}}$ or $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc} \cdot \cos \mathrm{A}$
(ii) $\cos \mathrm{B}=\frac{\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{ca}}$
(iii) $\cos \mathrm{C}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}}{2 \mathrm{ab}}$
III. Projection Formula :
(i) $\mathrm{a}=\mathrm{b} \cos \mathrm{C}+\mathrm{c} \cos \mathrm{B}$
(ii) $\mathrm{b}=\mathrm{c} \cos \mathrm{A}+\mathrm{a} \cos \mathrm{C}$
(iii) $c=a \cos B+b \cos A$
(ii) $\tan \frac{\mathrm{C}-\mathrm{A}}{2}=\frac{\mathrm{c}-\mathrm{a}}{\mathrm{c}+\mathrm{a}} \cot \frac{\mathrm{B}}{2}$
(iii) $\tan \frac{\mathrm{A}-\mathrm{B}}{2}=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}} \cot \frac{\mathrm{C}}{2}$
V. Trigonometric Functions Of Half Angles :
(i) $\quad \sin \frac{\mathrm{A}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{bc}}} ; \sin \frac{\mathrm{B}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{c})(\mathrm{s}-\mathrm{a})}{\mathrm{ca}}} ; \sin \frac{\mathrm{C}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})}{\mathrm{ab}}}$
(ii) $\cos \frac{\mathrm{A}}{2}=\sqrt{\frac{\mathrm{s(s-a)}}{\mathrm{bc}}} ; \cos \frac{\mathrm{B}}{2}=\sqrt{\frac{\mathrm{s}(\mathrm{s}-\mathrm{b})}{\mathrm{ca}}} ; \cos \frac{\mathrm{C}}{2}=\sqrt{\frac{\mathrm{s}(\mathrm{s}-\mathrm{c})}{\mathrm{ab}}}$
(iii) $\tan \frac{\mathrm{A}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{s}(\mathrm{s}-\mathrm{a})}}=\frac{\Delta}{\mathrm{s}(\mathrm{s}-\mathrm{a})}$ where $\mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2} \& \Delta=$ area of triangle.
(iv) Area of triangle $=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}$
VI. m-n Rule : In any triangle,
$(m+n) \cot \theta=m \cot \alpha-n \cot \beta$

$$
=n \cot B-m \cot C
$$

VII. $\frac{1}{2} \mathrm{ab} \sin \mathrm{C}=\frac{1}{2} \mathrm{bc} \sin \mathrm{A}=\frac{1}{2}$ ca $\sin \mathrm{B}=$ area of triangle ABC .
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$
Note that $\mathrm{R}=\frac{\mathrm{abc}}{4 \Delta}$; Where R is the radius of circumcircle \& Δ is area of triangle
VIII. Radius of the incircle ' r ' is given by:
(a) $\mathrm{r}=\frac{\Delta}{\mathrm{s}}$ where $\mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}$
(b) $\mathrm{r}=(\mathrm{s}-\mathrm{a}) \tan \frac{\mathrm{A}}{2}=(\mathrm{s}-\mathrm{b}) \tan \frac{\mathrm{B}}{2}=(\mathrm{s}-\mathrm{c}) \tan \frac{\mathrm{C}}{2}$
(c) $r=\frac{a \sin \frac{B}{2} \sin \frac{C}{2}}{\cos \frac{A}{2}} \&$ so on
(d) $r=4 R \sin \frac{\mathrm{~A}}{2} \sin \frac{\mathrm{~B}}{2} \sin \frac{\mathrm{C}}{2}$
IX. Radius of the Ex-circles $r_{1}, r_{2} \& r_{3}$ are given by :
(a)
$r_{1}=\frac{\Delta}{s-a} ; r_{2}=\frac{\Delta}{s-b} ; r_{3}=\frac{\Delta}{s-c}$
(b) $\mathrm{r}_{1}=\mathrm{s} \tan \frac{\mathrm{A}}{2} ; \mathrm{r}_{2}=\mathrm{s} \tan \frac{\mathrm{B}}{2} ; \mathrm{r}_{3}=\mathrm{s} \tan \frac{\mathrm{C}}{2}$
(c) $\mathrm{r}_{1}=\frac{\mathrm{a} \cos \frac{\mathrm{B}}{} \cos \frac{\mathrm{C}}{2}}{\cos \frac{A}{2}} \&$ so on
(d) $\mathrm{r}_{1}=4 \mathrm{R} \sin \frac{\mathrm{A}}{2} \cdot \cos \frac{\mathrm{~B}}{2} \cdot \cos \frac{\mathrm{C}}{2}$;
$r_{2}=4 R \sin \frac{B}{2} \cdot \cos \frac{A}{2} \cdot \cos \frac{C}{2} \quad ; \quad r_{3}=4 R \sin \frac{C}{2} \cdot \cos \frac{A}{2} \cdot \cos \frac{B}{2}$

X. Length Of Angle Bisector \& Medians:

If m_{a} and β_{a} are the lengths of a median and an angle bisector from the angle A then,

$$
\mathrm{m}_{\mathrm{a}}=\frac{1}{2} \sqrt{2 \mathrm{~b}^{2}+2 \mathrm{c}^{2}-\mathrm{a}^{2}} \text { and } \beta_{\mathrm{a}}=\frac{2 \mathrm{bc} \cos \frac{\mathrm{~A}}{2}}{\mathrm{~b}+\mathrm{c}}
$$

Note that $m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)$

XI. Orthocentre And Pedal Triangle:

The triangle KLM which is formed by joining the feet of the altitudes is called the pedal triangle.

- the distances of the orthocentre from the angular points of the $\Delta \mathrm{ABC}$ are $2 \mathrm{R} \cos \mathrm{A}, 2 \mathrm{R} \cos \mathrm{B}$ and $2 \mathrm{R} \cos \mathrm{C}$
- the distances of P from sides are $2 \mathrm{R} \cos \mathrm{B} \cos \mathrm{C}$,
$2 \mathrm{R} \cos \mathrm{C} \cos \mathrm{A}$ and $2 \mathrm{R} \cos \mathrm{A} \cos \mathrm{B}$
- \quad the sides of the pedal triangle are a $\cos \mathrm{A}(=\mathrm{R} \sin 2 \mathrm{~A})$,

$b \cos B(=R \sin 2 B)$ and $c \cos C(=R \sin 2 C)$ and its angles are $\pi-2 \mathrm{~A}, \pi-2 \mathrm{~B}$ and $\pi-2 \mathrm{C}$.
- circumradii of the triangles $\mathrm{PBC}, \mathrm{PCA}, \mathrm{PAB}$ and ABC are equal.

XII Excentral Triangle:
The triangle formed by joining the three excentres $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} of $\triangle \mathrm{ABC}$ is called the excentral or excentric triangle.
Note that :
Incentre I of $\triangle A B C$ is the orthocentre of the excentral $\Delta \mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{3}$.

- $\quad \Delta \mathrm{ABC}$ is the pedal triangle of the $\Delta \mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{3}$.
- - the sides of the excentral triangle are
$4 \mathrm{R} \cos \frac{\mathrm{A}}{2}, 4 \mathrm{R} \cos \frac{\mathrm{B}}{2}$ and $4 \mathrm{R} \cos \frac{\mathrm{C}}{2}$
and its angles are $\frac{\pi}{2}-\frac{A}{2}, \frac{\pi}{2}-\frac{B}{2}$ and $\frac{\pi}{2}-\frac{C}{2}$.
$-\quad I_{1}=4 R \sin \frac{A}{2} ; \quad I_{2}=4 R \sin \frac{B}{2} ; H_{3}=4 R \sin \frac{C}{2}$
XIII. The Distances Between The Special Points:
(a) The distance between circumcentre and orthocentre is $=R \cdot \sqrt{1-8 \cos A \cos B \cos C}$
(b) The distance between circumcentre and incentre is $=\sqrt{\mathrm{R}^{2}-2 \mathrm{Rr}}$
(c) The distance between incentre and orthocentre is $\sqrt{2 \mathrm{r}^{2}-4 \mathrm{R}^{2} \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}}$
XIV. Perimeter (P) and area (A) of a regular polygon of n sides inscribed in a circle of radius r are given by
$\mathrm{P}=2 \mathrm{nr} \sin \frac{\pi}{\mathrm{n}} \quad$ and $\quad \mathrm{A}=\frac{1}{2} \mathrm{nr}^{2} \sin \frac{2 \pi}{\mathrm{n}}$
Perimeter and area of a regular polygon of n sides circumscribed about a given circle of radius r is given by
$\mathrm{P}=2 \mathrm{nr} \tan \frac{\pi}{\mathrm{n}} \quad$ and $\quad \mathrm{A}=\mathrm{nr}^{2} \tan \frac{\pi}{\mathrm{n}}$
EXERCISE-I
With usual notations, prove that in a triangle ABC :
Q. $1 \quad \frac{\mathrm{~b}-\mathrm{c}}{\mathrm{r}_{1}}+\frac{\mathrm{c}-\mathrm{a}}{\mathrm{r}_{2}}+\frac{\mathrm{a}-\mathrm{b}}{\mathrm{r}_{3}}=0$
Q. $2 a \cot \mathrm{~A}+\mathrm{b} \cot \mathrm{B}+\mathrm{c} \cot \mathrm{C}=2(\mathrm{R}+\mathrm{r})$
Q. 3
$\frac{r_{1}}{(s-b)(s-c)}+\frac{r_{2}}{(s-c)(s-a)}+\frac{r_{3}}{(s-a)(s-b)}=\frac{3}{r}$
Q. $4 \quad \frac{\mathrm{r}_{1}-\mathrm{r}}{\mathrm{a}}+\frac{\mathrm{r}_{2}-\mathrm{r}}{\mathrm{b}}=\frac{\mathrm{c}}{\mathrm{r}_{3}}$
Q. 5
$\frac{\mathrm{abc}}{\mathrm{s}} \cos \frac{\mathrm{A}}{2} \cos \frac{\mathrm{~B}}{2} \cos \frac{\mathrm{C}}{2}=\Delta$
Q. $6 \quad\left(r_{1}+r_{2}\right) \tan \frac{C}{2}=\left(r_{3}-r\right) \cot \frac{C}{2}=c$
Q. $7 \quad\left(r_{1}-r\right)\left(r_{2}-r\right)\left(r_{3}-r\right)=4 \mathrm{Rr}^{2}$
Q. $8\left(r+r_{1}\right) \tan \frac{B-C}{2}+\left(r+r_{2}\right) \tan \frac{C-A}{2}+\left(r+r_{3}\right) \tan \frac{A-B}{2}=0$
Q. $9 \frac{1}{\mathrm{r}^{2}}+\frac{1}{\mathrm{r}_{1}^{2}}+\frac{1}{\mathrm{r}_{2}{ }^{2}}+\frac{1}{\mathrm{r}_{3}{ }^{2}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{\Delta^{2}}$
Q. $10 \quad\left(r_{3}+r_{1}\right)\left(r_{3}+r_{2}\right) \sin C=2 r_{3} \sqrt{r_{2} r_{3}+r_{3} r_{1}+r_{1} r_{2}}$
Q. $11 \frac{1}{\mathrm{bc}}+\frac{1}{\mathrm{ca}}+\frac{1}{\mathrm{ab}}=\frac{1}{2 \mathrm{Rr}}$
Q. $12\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{r}_{1}}\right)\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{r}_{2}}\right)\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{r}_{3}}\right)=\frac{4 \mathrm{R}}{\mathrm{r}^{2} \mathrm{~s}^{2}}$
Q. $13 \quad \frac{\mathrm{bc}-\mathrm{r}_{2} \mathrm{r}_{3}}{\mathrm{r}_{1}}=\frac{\mathrm{ca}-\mathrm{r}_{3} \mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{\mathrm{ab}-\mathrm{r}_{1} \mathrm{r}_{2}}{\mathrm{r}_{3}}=\mathrm{r}$
Q. $14\left(\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{r}_{1}}+\frac{1}{\mathrm{r}_{2}}+\frac{1}{\mathrm{r}_{3}}\right)^{2}=\frac{4}{\mathrm{r}}\left(\frac{1}{\mathrm{r}_{1}}+\frac{1}{\mathrm{r}_{2}}+\frac{1}{\mathrm{r}_{3}}\right)$
Q. $15 \operatorname{Rr}(\sin \mathrm{~A}+\sin \mathrm{B}+\sin \mathrm{C})=\Delta$
Q. $16 \quad 2 \mathrm{R} \cos \mathrm{A}=2 \mathrm{R}+\mathrm{r}-\mathrm{r}_{1}$
Q. $17 \cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}=\frac{s^{2}}{\Delta}$
Q. $18 \cot \mathrm{~A}+\cot \mathrm{B}+\cot \mathrm{C}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{4 \Delta}$
Q. 19 Given a triangle ABC with sides $\mathrm{a}=7, \mathrm{~b}=8$ and $\mathrm{c}=5$. If the value of the expression $\left(\sum \sin A\right)\left(\sum \cot \frac{A}{2}\right)$ can be expressed in the form $\frac{p}{q}$ where $p, q \in N$ and $\frac{p}{q}$ is in its lowest form find the value of $(p+q)$.
Q. 20 If $r_{1}=r+r_{2}+r_{3}$ then prove that the triangle is a right angled triangle.
Q. 21 If two times the square of the diameter of the circumcircle of a triangle is equal to the sum of the squares of its sides then prove that the triangle is right angled.
Q. 22 In acute angled triangle $A B C$, a semicircle with radius r_{a} is constructed with its base on $B C$ and tangent to the other two sides. r_{b} and r_{c} are defined similarly. If r is the radius of the incircle of triangle $A B C$ then prove that, $\frac{2}{\mathrm{r}}=\frac{1}{\mathrm{r}_{\mathrm{a}}}+\frac{1}{\mathrm{r}_{\mathrm{b}}}+\frac{1}{\mathrm{r}_{\mathrm{c}}}$.
Q. 23 Given a right triangle with $\angle \mathrm{A}=90^{\circ}$. Let M be the mid-point of BC . If the inradii of the triangle ABM and ACM are r_{1} and r_{2} then find the range of r_{1} / r_{2}.
Q. 24 If the length of the perpendiculars from the vertices of a triangle $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on the opposite sides are $\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}$ then prove that $\frac{1}{\mathrm{p}_{1}}+\frac{1}{\mathrm{p}_{2}}+\frac{1}{\mathrm{p}_{3}}=\frac{1}{\mathrm{r}}=\frac{1}{\mathrm{r}_{1}}+\frac{1}{\mathrm{r}_{2}}+\frac{1}{\mathrm{r}_{3}}$.
Q. 25 Prove that in a triangle $\frac{b c}{r_{1}}+\frac{c a}{r_{2}}+\frac{a b}{r_{3}}=2 R\left[\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)-3\right]$.

EXERCISE-II

Q. 1 With usual notation, if in a $\triangle A B C, \frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}$; then prove that, $\frac{\cos \mathrm{A}}{7}=\frac{\cos \mathrm{B}}{19}=\frac{\cos \mathrm{C}}{25}$.
Q. 2 For any triangle $A B C$, if $B=3 C$, show that $\cos C=\sqrt{\frac{b+c}{4 c}} \& \sin \frac{A}{2}=\frac{b-c}{2 c}$.
Q. $3 \quad$ In a triangle $\mathrm{ABC}, \mathrm{BD}$ is a median. If $l(\mathrm{BD})=\frac{\sqrt{3}}{4} \cdot l(\mathrm{AB})$ and $\angle \mathrm{DBC}=\frac{\pi}{2}$. Determine the $\angle \mathrm{ABC}$.
Q. $4 \quad \mathrm{ABCD}$ is a trapezium such that AB, DC are parallel \& BC is perpendicular to them. If angle $A D B=\theta, B C=p \& C D=q$, show that $A B=\frac{\left(p^{2}+q^{2}\right) \sin \theta}{p \cos \theta+q \sin \theta}$.
Q. 5 If sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ of the triangle ABC are in A.P., then prove that $\sin ^{2} \frac{A}{2} \operatorname{cosec} 2 A ; \sin ^{2} \frac{B}{2} \operatorname{cosec} 2 B ; \quad \sin ^{2} \frac{C}{2} \operatorname{cosec} 2 C$ are in H.P.
Q. 6 Find the angles of a triangle in which the altitude and a median drawn from the same vertex divide the angle at that vertex into 3 equal parts.
Q. 7 In a triangle $A B C$, if $\tan \frac{A}{2}, \tan \frac{B}{2}, \tan \frac{C}{2}$ are in AP. Show that $\cos A, \cos B, \cos C$ are in AP.
Q.8 ABCD is a rhombus. The circumradii of $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$ are 12.5 and 25 respectively. Find the area of rhombus.
Q. 9 In a triangle ABC if $\mathrm{a}^{2}+\mathrm{b}^{2}=101 \mathrm{c}^{2}$ then find the value of $\frac{\cot \mathrm{C}}{\cot \mathrm{A}+\cot \mathrm{B}}$.
Q. 10 The two adjacent sides of a cyclic quadrilateral are $2 \& 5$ and the angle between them is 60°. If the area of the quadrilateral is $4 \sqrt{3}$, find the remaining two sides.
Q. 11 If I be the in-centre of the triangle $A B C$ and x, y, z be the circum radii of the triangles IBC, ICA \& IAB, show that $4 R^{3}-R\left(x^{2}+y^{2}+z^{2}\right)-x y z=0$.
Q. 12 Sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ of the triangle ABC are in H.P., then prove that $\operatorname{cosec} \mathrm{A}(\operatorname{cosec} \mathrm{A}+\cot \mathrm{A}) ; \operatorname{cosec} \mathrm{B}(\operatorname{cosec} \mathrm{B}+\cot \mathrm{B}) \& \operatorname{cosec} \mathrm{C}(\operatorname{cosec} \mathrm{C}+\cot \mathrm{C})$ are in A.P.
Q. 13 In a $\Delta \mathrm{ABC}$,

(ii) $2 \sin \mathrm{~A} \cos \mathrm{~B}=\sin \mathrm{C}$
(iii) $\tan ^{2} \frac{\mathrm{~A}}{2}+2 \tan \frac{\mathrm{~A}}{2} \tan \frac{\mathrm{C}}{2}-1=0$, prove that (i) \Rightarrow (ii)
The sequence $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots \ldots \ldots$ is a geometric sequence.
$\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \ldots \ldots$. is a geometric sequence.
Q. 16 The triangle ABC (with side lengths $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as usual) satisfies
$\log a^{2}=\log b^{2}+\log c^{2}-\log (2 b c \cos A)$. What can you say about this triangle?
Q. 17 With reference to a given circle, A_{1} and B_{1} are the areas of the inscribed and circumscribed regular polygons of n sides, A_{2} and B_{2} are corresponding quantities for regular polygons of 2 n sides. Prove that
(1) A_{2} is a geometric mean between A_{1} and B_{1}.
(2) $\quad B_{2}$ is a harmonic mean between A_{2} and B_{1}.
Q. 18 The sides of a triangle are consecutive integers $n, n+1$ and $n+2$ and the largest angle is twice the smallest angle. Find n.
Q. 19 The triangle ABC is a right angled triangle, right angle at A . The ratio of the radius of the circle circumscribed to the radius of the circle escribed to the hypotenuse is, $\sqrt{2}:(\sqrt{3}+\sqrt{2})$. Find the acute angles B \& C. Also find the ratio of the two sides of the triangle other than the hypotenuse.
Q. $20 \quad \mathrm{ABC}$ is a triangle. Circles with radii as shown are drawn inside the triangle each touching two sides and the incircle. Find the radius of the incircle of the $\triangle \mathrm{ABC}$.

Q. 21 Line l is a tangent to a unit circle S at a point P. Point A and the circle S are on the same side of l, and the distance fromA to l is 3 . Two tangents from point A intersect line l at the point B and C respectively. Find the value of $(\mathrm{PB})(\mathrm{PC})$.
Q. 22 Let ABC be an acute triangle with orthocenter $\mathrm{H} . \mathrm{D}, \mathrm{E}, \mathrm{F}$ are the feet of the perpendiculars from A, B, and C on the opposite sides. Also R is the circumradius of the triangle ABC .
Given $(\mathrm{AH})(\mathrm{BH})(\mathrm{CH})=3$ and $(\mathrm{AH})^{2}+(\mathrm{BH})^{2}+(\mathrm{CH})^{2}=7$. Find
(a) the ratio $\frac{\prod \cos \mathrm{A}}{\sum \cos ^{2} \mathrm{~A}}$,
(b) the product (HD)(HE)(HF)
(c) the value of R .
Q. 1 The radii r_{1}, r_{2}, r_{3} of escribed circles of a triangle ABC are in harmonic progression. If its area is $24 \mathrm{sq} . \mathrm{cm}$ and its perimeter is 24 cm , find the lengths of its sides.
[REE '99, 6]
Q.2(a) In a triangle $A B C$, Let $\angle C=\frac{\pi}{2}$. If ' r ' is the inradius and ' R ' is the circumradius of the triangle, then $2(r+R)$ is equal to:
(A) $a+b$
(B) $\mathrm{b}+\mathrm{c}$
(C) $c+a$
(D) $a+b+c$
(b) In a triangle $A B C, 2$ ac $\sin \frac{1}{2}(A-B+C)=$
(A) $a^{2}+b^{2}-c^{2}$
(B) $\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}$
(C) $b^{2}-c^{2}-a^{2}$
(D) $c^{2}-a^{2}-b^{2}$
[JEE '2000 (Screening) 1+1]
Q. 3 Let ABC be a triangle with incentre 'I' and inradius ' r '. Let D, E, F be the feet of the perpendiculars from I to the sides $B C, C A \& A B$ respectively. If $r_{1}, r_{2} \& r_{3}$ are the radii of circles inscribed in the quadrilaterals AFIE, BDIF \& CEID respectively, prove that

$$
\frac{r_{1}}{r-r_{1}}+\frac{r_{2}}{r-r_{2}}+\frac{r_{3}}{r-r_{3}}=\frac{r_{1} r_{2} r_{3}}{\left(r-r_{1}\right)\left(r-r_{2}\right)\left(r-r_{3}\right)}
$$

[JEE '2000, 7]
Q. 4 If Δ is the area of a triangle with side lengths a, b, c, then show that: $\Delta \leq \frac{1}{4} \sqrt{(a+b+c) a b c}$ Also show that equality occurs in the above inequality if and only if $\mathrm{a}=\mathrm{b}=\mathrm{c}$.
[JEE ' 2001]
Q. 5 Which of the following pieces of data does NOT uniquely determine an acute-angled triangle ABC (R being the radius of the circumcircle)?
(A) $a, \sin A, \sin B$
(B) a, b, c
(C) a, $\sin B, R$
(D) $\mathrm{a}, \sin \mathrm{A}, \mathrm{R}$
[JEE ' 2002 (Scr), 3]
Q. 6 If I_{n} is the area of n sided regular polygon inscribed in a circle of unit radius and O_{n} be the area of the polygon circumscribing the given circle, prove that

$$
\mathrm{I}_{\mathrm{n}}=\frac{\mathrm{O}_{\mathrm{n}}}{2}\left(1+\sqrt{1-\left(\frac{2 \mathrm{I}_{\mathrm{n}}}{\mathrm{n}}\right)^{2}}\right)
$$

[JEE 2003, Mains, 4 out of 60]
Q. 7 The ratio of the sides of a triangle ABC is $1: \sqrt{3}: 2$. The ratio $\mathrm{A}: \mathrm{B}: \mathrm{C}$ is
(A) $3: 5: 2$
(B) $1: \sqrt{3}: 2$
(C) $3: 2: 1$
(D) $1: 2: 3$
[JEE 2004 (Screening)]
Q.8(a) In $\triangle \mathrm{ABC}, \mathrm{a}, \mathrm{b}, \mathrm{c}$ are the lengths of its sides and $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the angles of triangle ABC . The correct relation is
(A) $(\mathrm{b}-\mathrm{c}) \sin \left(\frac{\mathrm{B}-\mathrm{C}}{2}\right)=\mathrm{a} \cos \left(\frac{\mathrm{A}}{2}\right)$
(B) $(\mathrm{b}-\mathrm{c}) \cos \left(\frac{\mathrm{A}}{2}\right)=\mathrm{a} \sin \left(\frac{\mathrm{B}-\mathrm{C}}{2}\right)$
(C) $(\mathrm{b}+\mathrm{c}) \sin \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)=\mathrm{a} \cos \left(\frac{\mathrm{A}}{2}\right)$
(D) $(\mathrm{b}-\mathrm{c}) \cos \left(\frac{\mathrm{A}}{2}\right)=2 \mathrm{a} \sin \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)$
[JEE 2005 (Screening)]
(b) Circles with radii 3, 4 and 5 touch each other externally if P is the point of intersection of tangents to these circles at their points of contact. Find the distance of P from the points of contact.
[JEE 2005 (Mains), 2]
Q.9(a) Given an isosceles triangle, whose one angle is 120° and radius of its incircle is $\sqrt{3}$. Then the area of triangle in sq. units is
(A) $7+12 \sqrt{3}$
(B) $12-7 \sqrt{3}$
(C) $12+7 \sqrt{3}$
(D) 4π
[JEE 2006, 3]
(b) Internal bisector of $\angle \mathrm{A}$ of a triangle ABC meets side BC at D . A line drawn through D perpendicular to $A D$ intersects the side $A C$ at E and the side $A B$ at F. If a, b, c represent sides of $\triangle A B C$ then
(A) AE is HM of b and c
(B) $\mathrm{AD}=\frac{2 \mathrm{bc}}{\mathrm{b}+\mathrm{c}} \cos \frac{\mathrm{A}}{2}$
(C) $\mathrm{EF}=\frac{4 \mathrm{bc}}{\mathrm{b}+\mathrm{c}} \sin \frac{\mathrm{A}}{2}$
(D) the triangle AEF is isosceles
[JEE 2006, 5]
Q. 10 Let $A B C$ and $A B C^{\prime}$ be two non-congruent triangles with sides $A B=4, A C=A C^{\prime}=2 \sqrt{2}$ and angle $B=30^{\circ}$. The absolute value of the difference between the areas of these triangles is
Q. 213
Q. 22
(a) $\frac{3}{14 \mathrm{R}}$, (b) $\frac{9}{8 \mathrm{R}^{3}}$, (c) $\frac{3}{2}$

EXERCISE-III

P. T. O.

Exercise - 1

Part : (A) Only one correct option

1. In a triangle $A B C,(a+b+c)(b+c-a)=k$. $b c$, if :
(A) $\mathrm{k}<0$
(B) $k>6$
(C) $0<\mathrm{k}<4$
(D) $\mathrm{k}>4$
2. In a $\triangle A B C, A=\frac{2 \pi}{3}, b-c=3 \sqrt{3} \mathrm{~cm}$ and $\operatorname{ar}(\triangle A B C)=\frac{9 \sqrt{3}}{2} \mathrm{~cm}^{2}$. Then a is
(A) $6 \sqrt{3} \mathrm{~cm}$
(B) 9 cm
(C) 18 cm
(D) none of these
3. If R denotes circumradius, then in $\triangle A B C, \frac{b^{2}-c^{2}}{2 a R}$ is equal to
(A) $\cos (\mathrm{B}-\mathrm{C})$
(B) $\sin (B-C)$
(C) $\cos B-\cos C$
(D) none of these
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{2}$
(D) $\frac{2 \pi}{3}$
4. In a $\Delta A B C$, the value of $\frac{a \cos A+b \cos B+c \cos C}{a+b+c}$ is equal to:
(A) $\frac{\mathrm{r}}{\mathrm{R}}$
(B) $\frac{R}{2 r}$
(C) $\frac{R}{r}$
(D) $\frac{2 r}{R}$
5. In a right angled triangle R is equal to
(A) $\frac{s+r}{2}$
(B) $\frac{s-r}{2}$
(C) $s-r$
(D) $\frac{s+r}{a}$
6. In a $\triangle A B C$, the inradius and three exradii are r, r_{1}, r_{2} and r_{3} respectively. In usual notations the value of r. $r_{1} \cdot r_{2}, r_{3}$ is equal to
(A) 2Δ
(B) Δ^{2}
(C) $\frac{a b c}{4 R}$
(D) none of these
7. In a triangle if $r_{1}>r_{2}>r_{3}$, then
(A) $a>b>c$
(B) $a<b<c$
(C) a $>$ b and b $<$ c
(D) a $<$ b and b $>$ c
8. With usual notation in a $\triangle A B C\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)\left(\frac{1}{r_{2}}+\frac{1}{r_{3}}\right)\left(\frac{1}{r_{3}}+\frac{1}{r_{1}}\right)=\frac{K R^{3}}{a^{2} b^{2} c^{2}}$, where ' K ' has the value equal to:
(A) 1
(B) 16
(C) 64
(D) 128
9. The product of the arithmetic mean of the lengths of the sides of a triangle and harmonic mean of the lengths of the altitudes of the triangle is equal to:
(A) Δ
(B) 2Δ
(C) 3Δ
(D) 4Δ
10. In a triangle $A B C$, right angled at B, the inradius is:
(A) $\frac{A B+B C-A C}{2}$
(B) $\frac{A B+A C-B C}{2}$
(C) $\frac{A B+B C+A C}{2}$
(D) None
11. The distance between the middle point of $B C$ and the foot of the perpendicular from A is:
(A) $\frac{-a^{2}+b^{2}+c^{2}}{2 a}$
(B) $\frac{b^{2}-c^{2}}{2 a}$
(C) $\frac{b^{2}+c^{2}}{\sqrt{b c}}$
(D) none of these
12. In a triangle $A B C, B=60^{\circ}$ and $C=45^{\circ}$. Let D divides $B C$ internally in the ratio $1: 3$, then, $\frac{\sin \angle B A D}{\sin \angle C A D}=$
(A) $\sqrt{\frac{2}{3}}$
(B) $\frac{1}{\sqrt{3}}$
(C) $\frac{1}{\sqrt{6}}$
(D) $\frac{1}{3}$
13. Let f, g, h be the lengths of the perpendiculars from the circumcentre of the $\triangle A B C$ on the sides a, b and c respectively. If $\frac{a}{f}+\frac{b}{g}+\frac{c}{h}=\lambda \frac{\mathrm{abc}}{\mathrm{fgh}}$ then the value of λ is:
(A) $1 / 4$
(B) $1 / 2$
(C) 1
(D) 2
14. A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of length 3,4 and 5 units. Then area of the triangle is equal to:
(A) $\frac{9 \sqrt{3}(1+\sqrt{3})}{\pi^{2}}$
(B) $\frac{9 \sqrt{3}(\sqrt{3}-1)}{\pi^{2}}$
(C) $\frac{9 \sqrt{3}(1+\sqrt{3})}{2 \pi^{2}}$
(D) $\frac{9 \sqrt{3}(\sqrt{3}-1)}{2 \pi^{2}}$
15. If in a triangle $A B C$, the line joining the circumcentre and incentre is parallel to $B C$, then
$\cos B+\cos C$ is equal to:
(A) 0
(B) 1
(C) 2
(D) none of these
16. If the incircle of the $\triangle A B C$ touches its sides respectively at L, M and N and if x, y, z be the circumradii of the triangles MIN, NIL and LIM where I is the incentre then the product $x y z$ is equal to:
(A) $R r^{2}$
(B) $r R^{2}$
(C) $\frac{1}{2} R r^{2}$
(D) $\frac{1}{2} r R^{B}$
17. If in a $\triangle A B C, \frac{r}{r_{1}}=\frac{1}{2}$, then the value of $\tan \frac{A}{2}\left(\tan \frac{B}{2}+\tan \frac{C}{2}\right)$ is equal to :
(A) 2
(B) $\frac{1}{2}$
(C) 1
(D) None of these
18. In any $\triangle A B C$, then minimum value of $\frac{r_{1} r_{2} r_{3}}{r^{3}}$ is equal to
(A) 3
(B) 9
(C) 27
(D) None of these
19. In a acute angled triangle $A B C, A P$ is the altitude. Circle drawn with $A P$ as its diameter cuts the sides $A B$ and $A C$ at D and E respectively, then length $D E$ is equal to
(A) $\frac{\Delta}{2 R}$
(B) $\frac{\Delta}{3 R}$
(C) $\frac{\Delta}{4 R}$
(D) $\frac{\Delta}{R}$
20. $A A_{1}, B_{1}$ and $C C_{1}$ are the medians of triangle $A B C$ whose centroid is G. If the concyclic, then points
A, C_{1}, G and B_{1} are
(A) $2 b^{2}=a^{2}+c^{2}$
(B) $2 c^{2}=a^{2}+b^{2}$
(C) $2 \mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}$
(D) None of these
21. In a $\triangle A B C, a, b, A$ are given and c_{1}, c_{2} are two values of the third side c. The sum of the areas of two triangles with sides a, b, c_{1} and a, b, c_{2} is
(A) $\frac{1}{2} b^{2} \sin 2 A$ (B) $\frac{1}{2} a^{2} \sin 2 A$
(C) $b^{2} \sin 2 A$
(D) none of these
22. In a triangle $A B C$, let $\angle C=\frac{\pi}{2}$. If r is the inradius and R is the circumradius of the triangle, then $2(r+R)$ is equal to
[IIT - 2000]
(B) $b+c \quad$ (C) $c+a$
(D) $a+b+c$
(A) $a+b-c$
23. Which of the following pieces of data does NOT uniquely determine an acute - angled triangle
$A B C(R$ being the r
(A) $a, \sin A, \sin B$
(B) a, b, c
(C) $a, \sin B, R$
(D) $a, \sin A, R$
24. If the angles of a triangle are in the ratio $4: 1: 1$, then the ratio of the longest side to the perimeter is
(A) $\sqrt{3}:(2+\sqrt{3})$
(B) $1: 6$
(C) $1: 2+\sqrt{3}$
(D) $2: 3$
[IIT - 2003]
25. The sides of a triangle are in the ratio $1: \sqrt{3}: 2$, then the angle of the triangle are in the ratio
[IIT - 2004]
(A) $1: 3: 5$
(B) $2: 3: 4$
(C) $3: 2: 1$
(D) $1: 2: 3$
26. In an equilateral triangle, 3 coincs of radii 1 unit each are kept so that they touche each other and also the sides of the triangle. Area of the triangle is
[IIT - 2005]

(A) $4+2 \sqrt{3}$
(B) $6+4 \sqrt{3}$
(C) $12+\frac{7 \sqrt{3}}{4}$
(D) $3+\frac{7 \sqrt{3}}{4}$
27. If P is a point on C_{1} and Q is a point on C_{2}, then $\frac{P A^{2}+P B^{2}+P C^{2}+P D^{2}}{Q A^{2}+Q B^{2}+Q C^{2}+Q D^{2}}$ equals
(A) $1 / 2$
(B) $3 / 4$
(C) $5 / 6$
(D) $7 / 8$
28. A circle C touches a line L and circle C_{1} externally. If C and C_{1} are on the same side of the line L, then
locus of the centre of circle C is
(A) an ellipse
(B) a circle
(C) a parabola
(D) a hyperbola
29. Let ℓ be a line through A and parallel to $B D$. A point S moves such that its distance from the line $B D$ and the vertex A are equal. If the locus of S meets $A C$ in A_{1}, and ℓ in A_{2} and A_{3}, then area of $\Delta A_{1} A_{2} A_{3}$ is
(A) 0.5 (unit) 2
(B) 0.75 (unit) ${ }^{2}$
(C) $1(\text { unit })^{2}$
(D) $(2 / 3)(\text { unit })^{2}$

Part : (B) May have more than one options correct

31. In a $\triangle \mathrm{ABC}$, following relations hold good. In which case(s) the triangle is a right angled triangle?
(A) $r_{2}+r_{3}=r_{1}-r$
(B) $a^{2}+b^{2}+c^{2}=8 R^{2}$
(C) $r_{1}=s$
(D) $2 R=r_{1}-r$
32. In a triangle $A B C$, with usual notations the length of the bisector of angle A is :
(A) $\frac{2 b c \cos \frac{A}{2}}{b+c}$
(B) $\frac{2 b c \sin \frac{A}{2}}{b+c}$
(C) $\frac{a b c \operatorname{cosec} \frac{A}{2}}{2 R(b+c)}$
(D) $\frac{2 \Delta}{b+c} \cdot \operatorname{cosec} \frac{A}{2}$
33. $A D, B E$ and $C F$ are the perpendiculars from the angular points of a $\triangle A B C$ upon the opposite sides, then :
(A) $\frac{\text { Perimeter of } \triangle \mathrm{DEF}}{\text { Perimeter of } \triangle \mathrm{ABC}}=\frac{r}{R}$
(B) Area of $\Delta \mathrm{DEF}=2 \Delta \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}$
(C) Area of $\triangle \mathrm{AEF}=\Delta \cos ^{2} \mathrm{~A}$
(D) Circum radius of $\triangle D E F=\frac{R}{2}$
34. The product of the distances of the incentre from the angular points of a $\triangle A B C$ is:
(A) $4 R^{2} r$
(B) $4 \mathrm{Rr}^{2}$
(C) $\frac{(a b c) R}{s}$
(D) $\frac{(a b c) r}{s}$
35. In a triangle $\overline{A B C}$, points D and E are taken on side $B C$ such that $B D=D E=E C$. If angle $A D E=$ angle $A E D=\theta$, then:
(A) $\tan \theta=3 \tan B$
(B) $3 \tan \theta=\tan C$
(C) $\frac{6 \tan \theta}{\tan ^{2} \theta-9}=\tan A$
(D) angle $B=$ angle C
36. With usual notation, in a $\triangle A B C$ the value of $\Pi\left(r_{1}-r\right)$ can be simplified as:
(A) abc $\Pi \tan \frac{\mathrm{A}}{2}$
(B) $4 r^{2}$
(C) $\frac{(a b c)^{2}}{R(a+b+c)^{2}}$
(D) $4 R r^{2}$

Exercise - 2

1. If in a triangle $A B C, \frac{\cos A+2 \cos C}{\cos A+2 \cos B}=\frac{\sin B}{\sin C}$, prove that the triangle $A B C$ is either isosceles or right angled.
2. In a triangle $A B C$, if $a \tan A+b \tan B=(a+b) \tan \left(\frac{A+B}{2}\right)$, prove that triangle is isosceles.
3. If $\left(1-\frac{r_{1}}{r_{2}}\right)\left(1-\frac{r_{1}}{r_{3}}\right)=2$ then prove that the triangle is the right triangle.
4. In a $\triangle A B C, \angle C=60^{\circ} \& \angle A=75^{\circ}$. If D is a point on $A C$ such that the area of the $\triangle B A D$ is $\sqrt{3}$ times the area of the $\triangle B C D$ find the $\angle A B D$.
5. The radii r_{1}, r_{2}, r_{3} of escribed circles of a triangle $A B C$ are in harmonic progression. If its area is 24 sq. cm and its perimeter is 24 cm , find the lengths of its sides.
6. $\quad A B C$ is a triangle. D is the middle point of $B C$. If $A D$ is perpendicular to $A C$, then prove that $\cos A \cdot \cos C=\frac{2\left(c^{2}-a^{2}\right)}{3 a c}$.
7. Two circles, of radii a and b, cut each other at an angle θ. Prove that the length of the common chord is $\frac{2 a b \sin \theta}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{abcos} \theta}}$.
8. In the triangle $A B C$, lines $O A, O B$ and $O C$ are drawn so that the angles $O A B, O B C$ and $O C A$ are each equal to ω, prove that
(i) $\cot \omega=\cot A+\cot B+\cot C$
(ii) $\operatorname{cosec}^{2} \omega=\operatorname{cosec}^{2} A+\operatorname{cosec}^{2} B+\operatorname{cosec}^{2} C$
9. In a plane of the given triangle $A B C$ with sides a, b, c the points $A^{\prime}, B^{\prime}, C^{\prime}$ are taken so that the $\Delta A^{\prime} B C, \triangle A B^{\prime} C$ and $\triangle A B C^{\prime}$ are equilateral triangles with their circum radii R_{a}, R_{b}, R_{c}; in-radii r_{a}, r_{b}, r_{c} \& ex-radii $r_{a}^{\prime}, r_{b}^{\prime} \& r_{c}^{\prime}$ respectively. Prove that;
(i) $\quad \Pi r_{a}: \Pi R_{a}: \Pi r_{a}{ }^{\prime}=1: 8: 27$

$$
\begin{equation*}
r_{1} r_{2} r_{3}=\frac{\left[\sum\left(3 R_{a}+6 r_{a}+2 r_{a}^{\prime}\right)\right]^{3}}{648 \sqrt{3}} \Pi \tan \frac{A}{2} \tag{ii}
\end{equation*}
$$

10. The triangle $A B C$ is a right angled triangle, right angle at A. The ratio of the radius of the circle
circumscribed to the radius of the circle escribed to the hypotenuse is, $\sqrt{2}:(\sqrt{3}+\sqrt{2})$. Find the acute angles $B \& C$. Also find the ratio of the two sides of the triangle other than the hypotenuse.
11. The triangle $A B C$ is a right angled triangle, right angle at A. The ratio of the radius of the circle circumscribed to the radius of the circle escribed to the hypotenuse is, $\sqrt{2}:(\sqrt{3}+\sqrt{2})$. Find the acute angles $B \& C$. Also find the ratio of the two sides of the triangle other than the hypotenuse.
12. If the circumcentre of the $\triangle \mathrm{ABC}$ lies on its incircle then prove that,

$$
\cos A+\cos B+\cos C=\sqrt{2}
$$

13. Three circles, whose radii area a, b and c , touch one another externally and the tangents at their points of contact meet in a point; prove that the distance of this point from either of their points of contacts
is $\left(\frac{a b c}{a+b+c}\right)^{\frac{1}{2}}$.

EXERCISE \# 2

EXERCISE \# 1

1. C
2. B
3. B
4. D
5. A
6. B
7. B
8. $\angle \mathrm{ABD}=30^{\circ}$
9. $6,8,10 \mathrm{cms}$
10. A
11. C
12. B
13. A 12. B
14. C
15. A
16. B
17. C
18. B
19. C
20. D
21. A
22. A
23. A
24. D
25. A
26. A
27. $B \quad$ 28. B
28. $\mathrm{B}=\frac{5 \pi}{12}, \mathrm{C}=\frac{\pi}{12}, \frac{\mathrm{~b}}{\mathrm{c}}=2+\sqrt{3}$
