

If $m_a^{}$ and $\beta_a^{}$ are the lengths of a median and an angle bisector from the angle A then,

TEKO CLASSES, H.O.D. MATHS : SUHAG R. KARIYA (S. R. K. Sir) PH: 0 903 903 7779, 98930 58881 , BHOPAL

$$m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$$
 and $\beta_a = \frac{2bc \cos{\frac{A}{2}}}{b+c}$

Note that $m_a^2 + m_b^2 + m_c^2 = \frac{3}{4} (a^2 + b^2 + c^2)$

XI. ORTHOREME AND FIGUR TERNSCIE:
The triangle KLM which is formed by joining the feet of the altitudes is
called the pedal triangle.
- the distances of the orthocentre from the angular points of the

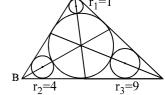
$$\Delta ABC are 2 R \cos A \cdot 2 R \cos B and 2 R \cos C C C = R \sin 2A)$$
,
b cosB (= R sin 2B) and c cosC (= R sin 2C) and its angles are
 $\pi - 2A$, $\pi - 2B$ and $\pi - 2C$.
- circumradii of the triangles PBC, PCA, PAB and ABC are equal.
EXCENTEAL TRANCLE:
The triangle formed by joining the three excentres I1, I2 and I3,
of AABC is called the excentral or excentric triangle.
Note that:
Incentre I of Δ ABC is the dott triangle of the $\Delta 1$, I1, I3,
the sides of the pedal triangle are are
 $4R \cos \frac{A}{2}$, 4 R cos $\frac{B}{2}$ and 4 R cos $\frac{C}{2}$
and its angles are $\frac{\pi}{2} - \frac{A}{2}$, $\frac{\pi}{2} - \frac{B}{2}$ and $\frac{\pi}{2} - \frac{C}{2}$.
II1₁ = 4 R sin $\frac{A}{2}$; IL₂ = 4 R sin $\frac{B}{2}$, H₃ = 4 R sin $\frac{C}{2}$.
(a) The distance between circumcentre and orthocentre is $= \frac{\sqrt{1 - 8} \cos A \cos B \cos C}$
(b) The distance between circumcentre and orthocentre is $= \sqrt{\frac{1^2 - 8R}{2}}$
(c) The distance between circumcentre and orthocentre is $\sqrt{\frac{2^2 - 4R^2}{2} \cos A \cos B \cos C}$
(b) The distance between circumcentre and orthocentre is $\sqrt{\frac{2^2 - 4R^2}{2} \cos A \cos B \cos C}$
(c) The distance between circumcentre and orthocentre is $\sqrt{\frac{2^2 - 4R^2}{2} \cos A \cos B \cos C}$
(b) The distance between circumcentre and sides circumscribed about a given circle of radius r is given by
 $P = 2nr \sin \frac{\pi}{n}$ and $A = n^2 \tan \frac{\pi}{n}$
 $EXERCISE-I$
With usual notations, prove that in a triangle ABC:
Q.1 $\frac{b-c}{r_1} + \frac{c-a}{r_2} + \frac{r_2}{r_2} = 0$
Q.2 $a \cot A + b \cot B + c \cot C = 2(R + r)$
Q.3 $\frac{r_1}{r_1} + \frac{r_2}{r_2} + \frac{r_2}{r_3} = 0$
Q.4 $\frac{r_1 - r}{a} + \frac{r_2 - r}{b} = \frac{c}{r_1}$
Q.5 $\frac{abc}{s} \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} = \Delta$
Q.6 $(r_1 + r_2) \tan \frac{C - A}{2} + (r + r_3) \tan \frac{A - B}{2} = 0$

Q.9
$$\frac{1}{r^{2}} + \frac{1}{r_{1}^{2}} + \frac{1}{r_{2}^{2}} + \frac{1}{r_{3}^{2}} = \frac{a^{2} + b^{2} + c^{2}}{\Delta^{2}}$$
Q.10 $(r_{3} + r_{1})(r_{3} + r_{3}) \sin C = 2r_{3}\sqrt{r_{2}r_{3} + r_{3}r_{1} + r_{1}r_{2}}$ Q.11 $\frac{1}{r} + \frac{1}{r_{2}} + \frac{1}{r_{3}} = \frac{1}{r_{3}}$ Q.12 $(\frac{1}{r} - \frac{1}{r_{1}})(\frac{1}{r} - \frac{1}{r_{3}})(\frac{1}{r} - \frac{1}{r_{3}}) = \frac{4R}{r^{2}s^{2}}$ Q.13 $\frac{bc - r_{3}r_{3}}{r_{3}} = \frac{ca - r_{3}r_{1}}{r_{3}} = \frac{ab - r_{1}r_{2}}{r_{3}} = r$ Q.14 $(\frac{1}{r} + \frac{1}{r_{1}} + \frac{1}{r_{3}})^{2} = \frac{4}{r_{1}}(\frac{1}{r_{1}} + \frac{1}{r_{3}} + \frac{1}{r_{3}})$ Q.15 Rr (sin A + sin B + sin C) = Δ Q.16 2R cos A = 2R + r - r_{1}
Q.17 cot $\frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \frac{s^{2}}{\Delta}$ Q.18 cot A + cot B + cot C = $\frac{a^{2} + b^{2} + c^{2}}{4\Delta}$ Q.19 Given a triangle ABC with sides a = 7, b = 8 and c = 5. If the value of the expression 4 $(\sum \sin A)(\sum \cot \frac{A}{2})$ can be expressed in the form $\frac{P}{q}$ where $p, q \in N$ and $\frac{P}{q}$ is in is lowest form find the value of $(p + q)$.
Q.17 to the value of $(p + q)$.
Q.18 cot A + cot B + cot C = $\frac{a^{2} + b^{2} + c^{2}}{4\Delta}$ Q.19 Given a triangle ABC with sides a = 7, b = 8 and c = 5. If the value of the expression 4 $(\sum \sin A)(\sum \cot \frac{A}{2})$ can be expressed in the form $\frac{P}{q}$ where $p, q \in N$ and $\frac{P}{q}$ is in is lowest form find the value of $(p + q)$.
Q.19 If $r_{1} = r + r_{2} + r_{1}$ the prove that the triangle is a right angled.
Q.21 If acute angled triangle ABC, a semicine with radius r_{1} is constructed with its base on BC and tangent to the other two oddes, r_{1} and $r_{2} + \frac{1}{r_{1}} + \frac{1}{r_{2}} + \frac{1}{r_{2}}$.
Given a right triangle with $2A = 90^{\circ}$. Let M be the mid-point of BC. If the inradii of the triangle ABC then prove that, $\frac{2}{r_{1}} + \frac{1}{r_{1}} + \frac{1}{r_{2}} + \frac{1}{r_{2}} = \frac{1}{r_{1}} + \frac{1}{r_{2}} + \frac{1}{r_{3}}$.
EXERCISE-II
Q.24 If the length of the perpendiculars from the vertices of a triangle A, B, C on the opposite sides are p_{1}, p_{2}, p_{3} then prove that $\frac{1}{p_{1}} + \frac{1}{p_{2}} + \frac{1}{p_{3}} = \frac{1}{r_{1}} = \frac{1}{r_{1}} + \frac{1}{r_{2}} + \frac{1}{$

- Q.6 Find the angles of a triangle in which the altitude and a median drawn from the same vertex divide the angle at that vertex into 3 equal parts.
- In a triangle ABC, if $\tan \frac{A}{2}$, $\tan \frac{B}{2}$, $\tan \frac{C}{2}$ are in AP. Show that $\cos A$, $\cos B$, $\cos C$ are in AP. Q.7
- ABCD is a rhombus. The circumradii of \triangle ABD and \triangle ACD are 12.5 and 25 respectively. Find the area Q.8 of rhombus.
- In a triangle ABC if $a^2 + b^2 = 101c^2$ then find the value of $\frac{\cot C}{\cot A + \cot B}$ Q.9
- The two adjacent sides of a cyclic quadrilateral are 2 & 5 and the angle between them is 60°. If the area Q.10 of the quadrilateral is $4\sqrt{3}$, find the remaining two sides.
- If I be the in-centre of the triangle ABC and x, y, z be the circum radii of the triangles IBC, ICA & IAB, Q.11 FREE Download Study Package from website: www.tekoclasses.com show that $4R^3 - R(x^2 + y^2 + z^2) - xyz = 0$.
 - Sides a, b, c of the triangle ABC are in H.P., then prove that Q.12 $\operatorname{cosec} A(\operatorname{cosec} A + \operatorname{cot} A); \operatorname{cosec} B(\operatorname{cosec} B + \operatorname{cot} B) \& \operatorname{cosec} C(\operatorname{cosec} C + \operatorname{cot} C) \text{ are in A.P.}$

In a \triangle ABC, (i) $\frac{a}{\cos A} = \frac{b}{\cos B}$ Q.13

- (iii) $\tan^2 \frac{A}{2} + 2 \tan \frac{A}{2} \tan \frac{C}{2} 1 = 0$, prove that (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i).
- The sequence a_1, a_2, a_3, \dots is a geometric sequence. 0.14 The sequence b_1, b_2, b_3, \dots is a geometric sequence.


$$b_1 = 1;$$
 $b_2 = \sqrt[4]{7} - \sqrt[4]{28} + 1;$ $a_1 = \sqrt[4]{28}$ and $\sum_{n=1}^{\infty} \frac{1}{a_n} = \sum_{n=1}^{\infty} b_n$

If the area of the triangle with sides lengths a_1 , a_2 and a_3 can be expressed in the form of p/q where p and q are relatively prime, find (p + q).

(ii) $2 \sin A \cos B = \sin C$

- If p_1, p_2, p_3 are the altitudes of a triangle from the vertices A, B, C & Δ denotes the area of the Q.15 triangle, prove that $\frac{1}{p_1} + \frac{1}{p_2} - \frac{1}{p_3} = \frac{2ab}{(a+b+c)\Delta} \cos^2 \frac{C}{2}$.
- Q.16 The triangle ABC (with side lengths a, b, c as usual) satisfies $\log a^2 = \log b^2 + \log c^2 - \log (2bc \cos A)$. What can you say about this triangle?
- Q.17 With reference to a given circle, A1 and B1 are the areas of the inscribed and circumscribed regular polygons of n sides, A_2 and B_2 are corresponding quantities for regular polygons of 2n sides. Prove that
 - A_2 is a geometric mean between A_1 and B_1 . (1)
 - B_2 is a harmonic mean between A_2 and B_1 . (2)
- The sides of a triangle are consecutive integers n, n + 1 and n + 2 and the largest angle is twice the Q.18 smallest angle. Find *n*.
- The triangle ABC is a right angled triangle, right angle at A. The ratio of the radius of the circle circumscribed 0.19 to the radius of the circle escribed to the hypotenuse is, $\sqrt{2}:(\sqrt{3}+\sqrt{2})$. Find the acute angles B & C. Also find the ratio of the two sides of the triangle other than the hypotenuse.

ABC is a triangle. Circles with radii as shown are drawn inside O.20 the triangle each touching two sides and the incircle. Find the radius of the incircle of the $\triangle ABC$.

- Line *l* is a tangent to a unit circle S at a point P. Point A and the circle S are on the same side of *l*, and the Q.21 distance from A to l is 3. Two tangents from point A intersect line l at the point B and C respectively. Find the value of (PB)(PC).
- Q.22 Let ABC be an acute triangle with orthocenter H. D, E, F are the feet of the perpendiculars from A, B, and C on the opposite sides. Also R is the circumradius of the triangle ABC. Given (AH)(BH)(CH) = 3 and $(AH)^2 + (BH)^2 + (CH)^2 = 7$. Find

(a) the ratio $\frac{1}{\sum \cos^2 A}$, (b) the product (HD)(HE)(HF) (c) the value of R.

EXERCISE-III

Q.1 The radii r_1, r_2, r_3 of escribed circles of a triangle ABC are in harmonic progression. If its area is 24 sq. cm and its perimeter is 24 cm, find the lengths of its sides. [REE '99, 6]

FREE Download Study Package from website: www.tekoclasses.com Q.2(a) In a triangle ABC, Let $\angle C = \frac{\pi}{2}$. If 'r' is the inradius and 'R' is the circumradius of the triangle, then 2(r+R) is equal to: $(\mathbf{B})\mathbf{b} + \mathbf{c}$ (A) a + b (D) a + b + c(C) c +

- In a triangle ABC, 2 a c sin $\frac{1}{2}$ (A B + C) = (b) (B) $c^2 + a^2 - b^2$ (A) $a^2 + b^2 - c^2$ (C) b^2 -
 - Q.3 Let ABC be a triangle with incentre 'I' and inradius 'r'. Let D, E, F be the feet of the perpendiculars from I to the sides BC, CA & AB respectively. If r_1 , r_2 & r_3 are the radii of circles inscribed in the quadrilaterals AFIE, BDIF & CEID respectively, prove that

$$\frac{\mathbf{r}_1}{\mathbf{r} - \mathbf{r}_1} + \frac{\mathbf{r}_2}{\mathbf{r} - \mathbf{r}_2} + \frac{\mathbf{r}_3}{\mathbf{r} - \mathbf{r}_3} = \frac{\mathbf{r}_1 \mathbf{r}_2 \mathbf{r}_3}{(\mathbf{r} - \mathbf{r}_1)(\mathbf{r} - \mathbf{r}_2)(\mathbf{r} - \mathbf{r}_3)}.$$
 [JEE '2000, 7]

If Δ is the area of a triangle with side lengths a, b, c, then show that: $\Delta \leq \frac{1}{4} \sqrt{(a+b+c)abc}$ Q.4 Also show that equality occurs in the above inequality if and only if a = b = c. [JEE '2001]

- Q.5 Which of the following pieces of data does NOT uniquely determine an acute-angled triangle ABC (R being the radius of the circumcircle)? (A) a, sinA, sinB (B) a, b, c (C) a, sinB, R (D) a, sinA, R
 - [JEE ' 2002 (Scr), 3] If I_n is the area of n sided regular polygon inscribed in a circle of unit radius and O_n be the area of the Q.6 polygon circumscribing the given circle, prove that

$$I_n = \frac{O_n}{2} \left(1 + \sqrt{1 - \left(\frac{2I_n}{n}\right)^2} \right)$$

[JEE 2003, Mains, 4 out of 60]

- Q.7 The ratio of the sides of a triangle ABC is $1: \sqrt{3}: 2$. The ratio A: B: C is
 - (B) 1 : $\sqrt{3}$: 2 (A) 3:5:2 (C) 3:2:1 (D) 1:2:3

[JEE 2004 (Screening)]

(D) $c^2 - a^2 - b^2$

[JEE '2000 (Screening) 1 + 1]

Q.8(a) In \triangle ABC, a, b, c are the lengths of its sides and A, B, C are the angles of triangle ABC. The correct relation is

(A)
$$(b-c)\sin\left(\frac{B-C}{2}\right) = a\cos\left(\frac{A}{2}\right)$$
 (B) $(b-c)\cos\left(\frac{A}{2}\right) = a\sin\left(\frac{B-C}{2}\right)$

(C)
$$(b+c)\sin\left(\frac{B+C}{2}\right) = a\cos\left(\frac{A}{2}\right)$$
 (D) $(b-c)\cos\left(\frac{A}{2}\right) = 2a\sin\left(\frac{B+C}{2}\right)$

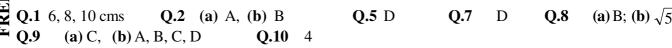
[JEE 2005 (Screening)] (b) Circles with radii 3, 4 and 5 touch each other externally if P is the point of intersection of tangents to these circles at their points of contact. Find the distance of P from the points of contact.

[JEE 2005 (Mains), 2]

- Page: 17 of 21 PROPERTIES OF TRIANGLES Q.9(a) Given an isosceles triangle, whose one angle is 120° and radius of its incircle is $\sqrt{3}$. Then the area of triangle in sq. units is
 - (A) $7 + 12\sqrt{3}$ (B) $12 - 7\sqrt{3}$ (C) $12 + 7\sqrt{3}$ (D) 4π [JEE 2006, 3]
 - (b) Internal bisector of ∠A of a triangle ABC meets side BC at D. A line drawn through D perpendicular to AD intersects the side AC at E and the side AB at F. If a, b, c represent sides of \triangle ABC then

 $\frac{1}{2}$, 2

Q.23


- TEKO CLASSES, H.O.D. MATHS : SUHAG R. KARIYA (S. R. K. Sir) PH: 0 903 903 7779, 98930 58881 , BHOPAL (C) $EF = \frac{4bc}{b+c} \sin \frac{A}{2}$ (D) the triangle AEF is isosceles [JEE 2006, 5]
- Let ABC and ABC' be two non-congruent triangles with sides AB = 4, AC = AC' = $2\sqrt{2}$ and Q.10 angle $B = 30^{\circ}$. The absolute value of the difference between the areas of these triangles is

[JEE 2009, 5]

EXERCISE-I

EXERCISE-II Q.3 400 0.9 50 **Q.10** 3 cms & 2 cms 120° $\pi/6, \pi/3, \pi/2$ **Q.8** 0.6 **Q.19** B = $\frac{5\pi}{12}$; C = $\frac{\pi}{12}$; $\frac{b}{c} = 2 + \sqrt{3}$ Q.14 **Q.16** triangle is isosceles Q.18 9 4 **Q.22** (a) $\frac{3}{14R}$, (b) $\frac{9}{8R^3}$, (c) $\frac{3}{2}$ Q.20 r = 11 **0.21** 3

EXERCISE-III

P. T. O.

107

E	Exercise	- 1	(Objective	Questions)	NGLES										
Part :	(A) Only one correct	t option			RIA										
1.	In a triangle ABC, (a (A) k < 0	(B) k > 6	= k. b c, if : (C) 0 < k < 4	(D) k > 4	Page: 18 of 21 PROPERTIES OF TRIANGLES										
2.	In a $\triangle ABC$, $A = \frac{2\pi}{3}$,	In a $\triangle ABC$, $A = \frac{2\pi}{3}$, $b - c = 3\sqrt{3}$ cm and ar ($\triangle ABC$) $= \frac{9\sqrt{3}}{2}$ cm ² . Then a is													
	(A) 6 √3 cm	(B) 9 cm	(C) 18 cm	(D) none of these	PRC										
3.	If R denotes circum	adius then in \ABC	$\frac{b^2 - c^2}{c}$ is equal to		3 of 21										
0.	(A) $\cos (B - C)$	(B) sin (B – C)	, 2a R (C) cos B – cos C	(D) none of these	ge: 18										
= ^{4.}	If the radius of the cir	cumcircle of an isos	celes triangle PQR is equ	ual to PQ (= PR), then the angle F	o is ea										
www.tekoclasses.com o i	(A) $\frac{\pi}{6}$	(B) $\frac{\pi}{3}$	(C) $\frac{\pi}{2}$	(D) $\frac{2\pi}{3}$	BHOPAL										
koclas 9	In a \triangle ABC, the value of $\frac{a\cos A + b\cos B + c\cos C}{a + b + c}$ is equal to:														
ww.te	(A) $\frac{r}{R}$	(B) $\frac{R}{2r}$	(C) $\frac{R}{r}$	(D) $\frac{2r}{R}$	8881 ,										
0.	In a right angled triar		7	C+r	98930 58881										
bsite	(A) $\frac{s+r}{2}$	(B) $\frac{s-r}{2}$	(C) s – r	(D) $\frac{s+r}{a}$											
J we	In a $\triangle ABC$, the inradi r. r_1 , r_2 , r_3 is equal to	us and three exradii	are r, r_1 , r_2 and r_3 respection	respectively. In usual notations the valu											
ckage from website:	(A) 2 Δ	(B) Δ²	(C) <u>abc</u> 4R	(D) none of these	of 6111 E06 E										
ackag °°	In a triangle if $r_1 > r_2$ (A) $a > b > c$	> r ₃ , then (B) a < b < c	(C) a > b and b <	c (D) a < b and b > c	1: 0 903										
ed y P.	With usual notation in a \triangle ABC $\left(\frac{1}{r_1} + \frac{1}{r_2}\right)\left(\frac{1}{r_2} + \frac{1}{r_3}\right)\left(\frac{1}{r_3} + \frac{1}{r_1}\right) = \frac{KR^3}{a^2b^2c^2}$,														
id St	where 'K' has the val (A) 1		(C) 64	(D) 128	R. K. Sir) Pł										
FREE Download Study P .1 01 00	The product of the ar lengths of the altitud (A) Δ	ithmetic mean of the soft the triangle is (B) 2 Δ	e lengths of the sides of a equal to: (C) 3 Δ	of a triangle and harmonic mean of the (D) 4 Δ											
Ă ⊡ 11.	In a triangle ABC, rig		()	(-)	KAR										
RE	(A) $\frac{AB+BC-AC}{C}$	(B) $\frac{AB + AC - E}{C}$	$\frac{BC}{FBC}$ (C) $\frac{AB + BC + AC}{2}$	C (D) None	с К										
<u>∓</u> 12.				erpendicular from A is :	ЛНА										
	(A) $\frac{-a^2+b^2+c^2}{2a}$	$(B) \frac{b^2 - c^2}{2a}$	(C) $\frac{b^2 + c^2}{\sqrt{bc}}$	(D) none of these	the definition of the definiti										
13.	In a triangle ABC, B =	= 60° and C = 45°. L	et D divides BC internally	y in the ratio 1 : 3, then, $\frac{\sin ∠BAE}{\sin ∠CAE}$	MAT										
	(A) $\sqrt{\frac{2}{3}}$	(B) $\frac{1}{\sqrt{3}}$	(C) $\frac{1}{\sqrt{6}}$	(D) $\frac{1}{3}$, н.о.г										
14.	Let f, g, h be the leng	ths of the perpendicu	ulars from the circumcent	re of the Δ ABC on the sides a, b a	and Signal										
	c respectively. If $\frac{a}{f}$ +	$\frac{b}{a} + \frac{c}{b} = \lambda \frac{abc}{fab}$ ther	the value of λ is:		CLAS										
	(A) 1/4	(B) 1/2	(C) 1	(D) 2	Ň										
15.	A triangle is inscribe 3, 4 and 5 units. The	d in a circle. The ver n area of the triangl	tices of the triangle divid e is equal to:	e the circle into three arcs of leng											

(A)
$$\frac{9\sqrt{3}(1+\sqrt{3})}{\pi^2}$$
 (B) $\frac{9\sqrt{3}(\sqrt{3}-1)}{\pi^2}$ (C) $\frac{9\sqrt{3}(1+\sqrt{3})}{2\pi^2}$ (D) $\frac{9\sqrt{3}(\sqrt{3}-1)}{2\pi^2}$
(E) If in a triangle ABC, the line joining the circumcentre and incentre is parallel to BC, then the incert is the incert is the ABC tooches its sides respectively at L. M and N and it X, y to be the circumradii of the triangles MIN. NLL and LIM where list incentre then the product xy is equal to:
(A) R r² (B) R² (C) $\frac{1}{2} Rr^2$ (D) $\frac{1}{2} rR^3$ (D) $\frac{1}{2} rR^3$
(A) R r² (B) R² (B) R² (C) $\frac{1}{2} Rr^2$ (D) $\frac{1}{2} rR^3$
(A) R r² (B) R² (C) 1 (D) None of these
(A) R r² (B) R² (C) 1 (D) None of these
(A) R r² (B) R² (C) 1 (D) None of these
(A) R r² (B) R² (C) 1 (D) None of these
(A) R r² (B) R² (C) 1 (D) None of these
(A) R r² (B) R² (C) 1 (D) None of these
(A) R r² (B) R² (C) R r² (D) None of these
(A) R r² (B) R² (C) R r² (D) None of these
(A) R r² (B) R R² (C) R r² (D) None of these
(A) R r² (B) R R² (C) R r² (D) None of these
(A) R r² (B) R R² (C) R r² (D) None of these
(A) R r² (B) R R² (C) R r² (D) None of these
(A) R r² (B) R R² (C) R r² (D) None of these
(A) R r² (B) R R² (C) R r² (D) None of these
(A) R r² (B) R R R (C) R R R (C) R R R R (C) R R R R (C) R R R (C) R (C)

Let ℓ be a line through A and parallel to BD. A point S moves such that its distance from the line BD and the vertex A are equal. If the locus of S meets AC in A₁, and ℓ in A₂ and A₃, then area of $\Delta A_1 A_2 A_3$ is 30. (A) 0.5 (unit)² (B) 0.75 (unit)² (C) 1 (unit)² (D) (2/3) (unit)² Part : (B) May have more than one options correct 31. In a $\triangle ABC$, following relations hold good. In which case(s) the triangle is a right angled triangle? (B) $a^2 + b^2 + c^2 = 8 R^2$ (C) $r_1 = s$ (A) $r_2 + r_3 = r_1 - r_1$ (D) 2 R = $r_1 - r_2$ 32. In a triangle ABC, with usual notations the length of the bisector of angle A is : abc cosec 2bc cos 4 (D) $\frac{2\Delta}{b+c} \cdot \csc \frac{A}{2}$ (A) (B) 2R(b+c)33. AD, BE and CF are the perpendiculars from the angular points of a Δ ABC upon the opposite sides then : Perimeter of ΔDEF (B) Area of $\Delta DEF = 2 \Delta \cos A \cos B \cos C$ (A) Perimeter of ABC (D) Circum radius of $\Delta DEF =$ (C) Area of $\triangle AEF = \triangle \cos^2 A$ 34. The product of the distances of the incentre from the angular points of a Δ ABC is: (C) $\frac{(abc)R}{(abc)R}$ (D) (abc)r $(A) 4 R^{2}r$ (B) 4 Rr² 35. In a triangle ABC, points D and E are taken on side BC such that BD = DE = EC. If angle ADE = angle AED = $\dot{\theta}$, then: (A) $\tan\theta = 3 \tan B$ (B) 3 tan θ = tanC 6tanθ = tan A (D) angle B = angle C $\tan^2 \theta - 9$ 36. With usual notation, in a Δ ABC the value of Π (r, r) can be simplified as: (D) 4 R r² (A) abc П tan B) 4 r R² ve $+ 2\cos C$ sin B cos A If in a triangle ABC , prove that the triangle ABC is either isosceles or right 1. sin C cos A $2\cos B$ angled. In a triangle ABC, if a tan A + b tan B = (a + b) tan $\left(\frac{A + B}{2}\right)$, prove that triangle is isosceles. $\left(1-\frac{r_1}{r_2}\right)$ 3. = 2 then prove that the triangle is the right triangle. In a \triangle ABC, \angle C = 60° & \angle A = 75°. If D is a point on AC such that the area of the \triangle BAD is $\sqrt{3}$ times 4. the area of the \triangle BCD, find the \angle ABD. The radii r₁ r₂ r₃ of escribed circles of a triangle ABC are in harmonic progression. If its area is 24 sq. 5. cm and its perimeter is 24 cm, find the lengths of its sides. 6. ABC is a triangle. D is the middle point of BC. If AD is perpendicular to AC, then prove that $2(c^2-a^2)$ $\cos A \cdot \cos C =$ 3ac 7. Two circles, of radii a and b, cut each other at an angle θ . Prove that the length of the common chord is 2absinθ $\sqrt{a^2 + b^2 + 2abcos\theta}$ In the triangle ABC, lines OA, OB and OC are drawn so that the angles OAB, OBC and OCA are each 8. equal to ω , prove that $\cot \omega = \cot A + \cot B + \cot C$ (ií) $cosec^2 \omega = cosec^2 A + cosec^2 B + cosec^2 C$ In a plane of the given triangle ABC with sides a, b, c the points A', B', C' are taken so that the 9. $\Delta A' BC$, $\Delta AB' C$ and $\Delta ABC'$ are equilateral triangles with their circum radii R_a , R_b , R_c ; in–radii r_a , r_b , r_c & ex-radii r_a', r_b' & r_c' respectively. Prove that; $r_{1}r_{2}r_{3} = \frac{\left[\sum (3R_{a}+6r_{a}+2r_{a}')\right]^{2}}{648\sqrt{3}}$ Π r_a: Π R_a: Π r_a' = 1: 8: 27 (ii) (i)

www.tekoclasses.com

FREE Download Study Package from website:

10. The triangle ABC is a right angled triangle, right angle at A. The ratio of the radius of the circle

STOUTING Gircumscribed to the radius of the circle escribed to the hypotenuse is, $\sqrt{2} : (\sqrt{3} + \sqrt{2})$. Find the acute angles B & C. Also find the ratio of the two sides of the triangle other than the hypotenuse. The triangle ABC is a right angled triangle, right angle at A. The ratio of the radius of the circle circumscribed to the radius of the circle escribed to the hypotenuse is, $\sqrt{2} : (\sqrt{3} + \sqrt{2})$. Find the acute angles B & C. Also find the ratio of the two sides of the triangle other than the hypotenuse. If the circumcentre of the Δ ABC lies on its incircle then prove that, $\cos A + \cos B + \cos C = \sqrt{2}$ Three circles, whose radii area a, b and c, touch one another externally and the tangents at their points of contact meet in a point; prove that the distance of this point from either of their points of contacts $is(\frac{abc}{a+b+c})^{\frac{1}{2}}$. 11. 12.

13.

$$s\left(\frac{abc}{a+b+c}\right)^{\frac{1}{2}}$$

com				4	ns	SM	/e	rs)													ç
ISSES.C	EX	(EF	RCI	SE	#	1									E)	XERCISE $\angle ABD = 30^{\circ}$	# 2	2				
<u>xocla</u>	1.	С	2.	В	3.	В	4.	D	5.	A	6.	В	7.	В	4.	$\angle ABD = 30^{\circ}$	D	5.	6, 8, 1	0 cm	S	
w.tek	8.	Α	9.	С	10.	в	11.	A	12.	В	13.	С	14.	Α		5π	πΙ	h				Ş
ΜM	15.	А	16.	В	17.	С	18.	В	19.	C	20.	D	21.	С	10.	$B = \frac{5\pi}{12}, C =$	$\frac{\pi}{12}$,	<u>c</u> = 2	+ √3			i
ite:	22.	А	23.	A	24.	D	25.	А	26.	A	27.	В	28.	В		5π	π	b				0000
webs	22. 29.	С	30.	С	31.	AB	CD	32.	ACE)	33.	AB	CD		11.	$B = \frac{5\pi}{12}, C =$	<u>,, ,</u> 12 , (_ = 2	+√3			ļ
rom	34.		35.	AC	D	36.	AC	D														i
age f																						
FREE Download Study Package from					٢)																
ıdy F	1																					
d Stu																						2
nloa																						ç
Dow																						
EE																						2
FR																						
																						Ċ